Ataxia Telangiectasia: a Diagnostic Challenge. Case Report

Total Page:16

File Type:pdf, Size:1020Kb

Ataxia Telangiectasia: a Diagnostic Challenge. Case Report case reports 2020; 6(2) https://doi.org/10.15446/cr.v6n2.83219 ATAXIA TELANGIECTASIA: A DIAGNOSTIC CHALLENGE. CASE REPORT Keywords: Ataxia Telangiectasia; Neurodegenerative Diseases; Cerebellar Ataxia; Spinocerebellar Degenerations; Telangiectasia. Palabras clave: Ataxia telangiectasia; Enfermedades neurodegenerativas; Ataxia cerebelosa; Degeneraciones espinocerebelosa; Telangiectasia. Natalia Martínez-Córdoba Universidad Militar Nueva Granada - Faculty of Medicine - Pediatric Neurology Research Group - Bogotá D.C. - Colombia. Hospital Militar Central - Pediatric Neurology Service - Bogotá D.C. - Colombia. Eugenia Espinosa-García Universidad Militar Nueva Granada - Faculty of Medicine - Pediatric Neurology Research Group - Bogotá D.C. - Colombia. Hospital Militar Central - Pediatric Neurology Service - Bogotá D.C. - Colombia. Universidad del Rosario - Medical School - Bogotá D.C. - Colombia. Corresponding author Natalia Martínez-Córdoba. Faculty of Medicine, Universidad Militar Nueva Granada. Bogotá D.C. Colombia. Email: [email protected]. Received: 28/10/2019 Accepted: 08/01/2020 case reports Vol. 6 No. 2: 109-17 110 RESUMEN ABSTRACT Introducción. La ataxia-telangiectasia (AT) es Introduction: Ataxia-telangiectasia (AT) is a un síndrome neurodegenerativo con baja inciden- neurodegenerative syndrome with low incidence cia y prevalencia mundial que es causado por una and prevalence worldwide, which is caused by a mutación del gen ATM, es de herencia autosó- mutation of the ATM gene. It is an autosomal re- mica recesiva y se asocia a mecanismos defec- cessive disorder that is associated with defective tuosos en la regeneración y reparación del ADN. cell regeneration and DNA repair mechanisms. It Este síndrome se caracteriza por la presencia de is characterized by progressive cerebellar atax- ataxia cerebelosa progresiva, movimientos ocula- ia, abnormal eye movements, oculocutaneous res anormales, telangiectasias oculocutáneas e telangiectasias and immunodeficiency. Early inmunodeficiencia. El diagnóstico oportuno de la diagnosis is critical to initiate a timely interdis- AT es muy importante para poder iniciar un manejo ciplinary treatment, improve acute symptoms, interdisciplinario temprano, mejorar la sintomato- and control the multiple comorbidities of the logía aguda y controlar las múltiples comorbilida- disease. The following is the case of a patient des que causa. A continuación se presenta el caso who presented with the aforementioned char- de una paciente con las características clásicas acteristics and had an adequate response to de esta enfermedad y una adecuada respuesta the established medical treatment. y evolución al manejo médico instaurado. Case presentation: A 7-year-old female pa- Presentación de caso. Paciente femenina de tient from Bogotá, who presented clinical signs 7 años de edad, procedente de Bogotá, quien of global neurodevelopmental delay, cerebellar presentó cuadro clínico inicial de retraso global ataxia, frequent respiratory infections and ocu- del neurodesarrollo, ataxia cerebelosa, infec- lar telangiectasias. Symptoms were associated ciones respiratorias frecuentes y telangiectasias with elevation of alpha fetoprotein and immu- oculares. La sintomatología se asoció a elevación nodeficiency, which allowed for a diagnosis of de alfa fetoproteína e inmunodeficiencia, lo que AT and the initiation of a timely interdisciplinary permitió plantear el diagnóstico de AT e iniciar treatment. de manera oportuna el manejo interdisciplinario. Conclusion: AT is a chromosomal instability Conclusión. La AT es un síndrome de inestabili- syndrome with characteristic signs and symp- dad cromosómica con signos clínicos y síntomas toms. It is essential to know the etiopathogene- característicos, por lo que es primordial conocer la sis, clinical manifestations, diagnostic criteria, etiopatogenia, el cuadro clínico, los criterios diag- and therapeutic options, emphasizing that ear- nósticos y las propuestas terapéuticas, pues la ly detection and clinical suspicion could favor detección y la sospecha clínica temprana pueden the proper management of the comorbidities favorecer el manejo precoz de las diferentes co- and improve the progressive course of the morbilidades y mejorar el curso progresivo. disease. ataxia telangiectasia: a diagnostic challenge INTRODUCTION CASE PRESENTATION 111 Ataxia-telangiectasia (AT), also known as Bod- Mestizo, female patient, 7 years old, from Bogotá er-Sedgwick syndrome or Louis-Bar syndrome, D.C., Colombia, and the product of a second is a multisystemic, neurodegenerative, autoso- pregnancy by young, non-blood related, mid- mal recessive disease associated with the ATM dle-class parents. The girl had no significant pre- gene mutation (A-T-mutated), which is located natal history and was born by cesarean section at on the long arm of chromosome 11 (11q22-23). 35 weeks of gestation. Her weight at birth was (1) This syndrome affects multiple organs of the 1 800gr and her size was 40cm; the APGAR body and has moderate and severe long-term score was 4/10, 7/10 and 7/10 at 1 minute, sequelae. 5 minutes and 10 minutes, respectively. She AT is characterized by progressive neu- also presented with neonatal hypoxia, requiring rological dysfunction with multisystemic mechanical ventilation for 24 hours and hospi- alterations and predisposition to cancer. The talization in the neonatal intensive care unit for characteristic symptoms of this disease usually 20 days. appear early in childhood and include cere- The child’s psychomotor development was bellar ataxia, oculomotor apraxia, chorea, and normal until the age of 20 months, at which cognitive impairment. (2) Moreover, the cells time it was evident that there was language of AT patients present chromosomal instability, delay, café-au-lait spots and unsteady gait. At hypersensitivity to X-rays, propensity to lym- 31 months, she was referred to the Neuropedi- phoid neoplasms, variable immunodeficiency, atrics Service, which requested magnification and susceptibility to infections, which cause and brain magnetic resonance imaging (MRI) systemic symptoms such as endocrinopathies, studies; management with physical and lan- leukemias, radiosensitivity and ocular telangi- guage therapy was initiated. ectasias. (3,4) At 5 years of age, the patient was taken to While over 400 mutations of the ATM gene the emergency department due to a possible have been detected, it has been reported that focal onset impaired awareness seizure. During AT has an incidence of 1 between 40 000 and the interview, psychomotor and language delays 100 000 people (5) and that its frequency of were observed, as well as multiple respirato- heterozygosity in the mutant allele is 1.4% to ry and gastrointestinal tract infections. The 2% in the general population. (1,3) neurological examination revealed bradylalia, This disease is usually diagnosed late, as it bradypsychia, ataxic gait with enlargement of is only identifiable when patients have severe the support polygon, presence of oculomotor symptoms that begin with alterations in the apraxia, dysmetria and telangiectasias in sclera motor system. In addition, it is often misdiag- (Figure 1), so more specific tests were requested. nosed as cerebral palsy. (6) Finally, since MRI showed cerebellar atrophy So far there is no specific treatment for AT, (Figure 2), video-electroencephalography so its management is palliative and supportive. (EGG) was normal, alpha-fetoprotein (AFP) (7) Patients with this disease should participate levels were elevated, and immunological tests in daily and social integration activities, always were altered (Table 1), a diagnosis of AT was trying to maintain their quality of life. suggested. case reports Vol. 6 No. 2: 109-17 112 Figure 1. Patient with sclera telangiectasia. Source: Document obtained during the study. Figure 2. Brain MRI showing cerebellar vermian atrophy. A) Sagittal plane / T1 sequence; B) Coronal plane / FLAIR sequence. Source: Document obtained during the study. Table 1. Laboratory tests performed during patient follow-up. First sample Second sample Third sample Reference Test (11/09/2017) (09/05/2018) (04/06/2019) values IgA mg/dL 94 77.3 76.9 58-311 IgM mg/dL 157 147 174.5 84-383 IgG1 mg/dL 6.34 6.34 7.97 3.06-9.450 IgG2 mg/dL 0.56 2.34 3.05 0.605-3.450 IgG3 mg/dL 0.57 0.44 0.41 0.099-1.221 IgG4 mg/dL 0.01 0.10 0.15 0.018-1.125 CD3 669 672 778 1400-3700 CD4 282 265 256 700-2200 CD8 639 301 443 490-1300 Alpha- Fetoprotein (ng/mL) 69 74 69.4 0.89-8.78 Source: Own elaboration. ataxia telangiectasia: a diagnostic challenge The child was assessed by the Pediatric the findings on physical examination and the 113 Immunology Service, which considered cellular associated comorbidities. and humoral immunodeficiency (IgG2 and At the time of preparation of this case report, IgG4 deficiency), so she started treatment the patient had undergone a global evaluation with gamma globulin IV every 28 days. She of the disease (AFP levels, immunological was also assessed by the pediatric hema- tests, video telemetry and blood counts) which tology-oncology service due to bicytopenia showed, on the one hand, an adequate response (leukopenia+thrombocytopenia) during a to the treatment and, on the other, the absence hospital stay without evidence of neoplastic of new alterations or comorbidities. It is worth alteration. The patient continued attending mentioning that, despite the poor and uncertain child psychiatry and physical, occupational prognosis that AT usually has, the child did not
Recommended publications
  • Immunology in Pediatric Dentistry
    PEDIATRIC DENTISTRY/Copynght© 1983 by The American Academy of Pedodontics/Vol. 5, No. 3 Immunology in pediatric dentistry William C. Donlon, DMD, MA Abstract The scope of clinical immunology is ever- usually are directed against a specific allergen and this increasing. A working knowledge of the immune substance will always invoke the same type of response system and its disease states is important in the although the severity may vary. Another variable is evalution and treatment of pediatric dental patients. whether the reaction is localized or generalized. This review focuses both on immune conditions with The antibody type which initiates the histamine- a possible iatrogenic origin, such as allergy, and releasing immediate atopic reaction is IgE. Molecule immune phenomena which the pedodontist may dimers of IgE adhere to most cells and basophils causing diagnose or treat as part of the medical team. degranulation and subsequent increase in extracellular levels of vasodilators such as histamine, slow-reacting substance - A, and the kinins. Clinical symptoms are "ue to advances in the science of immunology, pa- cutaneous wheal and flare, edema, rhinorrhea, tearing, tients with defects of the immune system are being possible respiratory embarrassment, and hypotension diagnosed earlier and living longer. The condition and/or (Figure 1). treatment modality may affect the patient's oral health Antihistamines are the most effective treatment in mild and delivery of dental care. On a more mundane level, cases. Active therapy of allergy may include induction of the pedodontist deals with the immune system daily when IgG antibody synthesis by multiple injections of minute inquiring about allergies and rheumatic fever in the quantities of the allergen.
    [Show full text]
  • Ataxia..Telangiectasia and Cellular Responses to DNA Damage'
    (CANCERRESEARCH55. 5991-6001. December 15, 19951 Review Ataxia..Telangiectasia and Cellular Responses to DNA Damage' M. Stephen Meyn2 Departments of Genetics and Pediatrics, Yale University School of Medicine, New Haven, connecticut 06510 Abstract elevated frequencies of spontaneous and induced chromosome aber rations, high spontaneous rates of intrachromosomal recombination, Ataxia-telangiectasia (A-T) is a human disease characterized by high aberrant immune gene rearrangements, and inability to arrest the cell cancer risk, immune defects, radiation sensitivity, and genetic instability. Although A-T homozygotes are rare, the A-T gene may play a role in cycle in response to DNA damage (3—6)]. sporadic breast cancer and other common cancers. Abnormalities of DNA The nature of the A-T defect has been the subject of much repair, genetic recombination, chromatin structure, and cell cycle check speculation; most hypotheses focus on the radiation sensitivity of point control have been proposed as the underlying defect in A-T; how A-T cells. Early reports that A-T fibroblasts were unable to excise ever, previous models cannot satisfactorily explain the plelotropic A-T radiation-induced DNA adducts prompted suggestions that the phenotype. radiation sensitivity of A-T cells was due to an intrinsic defect in Two recent observations help clarify the molecular pathology of A-T: DNA repair (7). However, subsequent work indicated that not all (a) inappropriate p53-mediated apoptosis is the major cause of death in A-T fibroblasts have a defect in DNA adduct excision (8), and that A-T cells irradiated in culture; and (b) ATM, the putative gene for A-T, has extensive homology to several celi cycle checkpoint genes from other the kinetics of repair of DNA breaks and chromosome aberrations organisms.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Agammaglobulinemia Hypogammaglobulinemia Hereditary Disease Immunoglobulins
    Pediat. Res. 2: 72-84 (1968) Agammaglobulinemia hypogammaglobulinemia hereditary disease immunoglobulins Hereditary Alterations in the Immune Response: Coexistence of 'Agammaglobulinemia', Acquired Hypogammaglobulinemia and Selective Immunoglobulin Deficiency in a Sibship REBECCA H. BUCKLEY[75] and J. B. SIDBURY, Jr. Departments of Pediatrics, Microbiology and Immunology, Division of Immunology, Duke University School of Medicine, Durham, North Carolina, USA Extract A longitudinal immunologic study was conducted in a family in which an entire sibship of three males was unduly susceptible to infection. The oldest boy's history of repeated severe infections be- ginning in infancy and his marked deficiencies of all three major immunoglobulins were compatible with a clinical diagnosis of congenital 'agammaglobulinemia' (table I, fig. 1). Recurrent severe in- fections in the second boy did not begin until late childhood, and his serum abnormality involved deficiencies of only two of the major immunoglobulin fractions, IgG and IgM (table I, fig. 1). This phenotype of selective immunoglobulin deficiency is previously unreported. Serum concentrations of the three immunoglobulins in the youngest boy (who also had a late onset of repeated infection) were normal or elevated when he was first studied, but a marked decline in levels of each of these fractions was observed over a four-year period (table I, fig. 1). We could find no previous reports describing apparent congenital and acquired immunologic deficiencies in a sibship. Repeated infections and demonstrated specific immunologic unresponsiveness preceded gross ab- normalities in the total and fractional gamma globulin levels in both of the younger boys (tables II-IV). When the total immunoglobulin level in the second boy was 735 mg/100 ml, he failed to respond with a normal rise in titer after immunization with 'A' and 'B' blood group substances, diphtheria, tetanus, or Types I and II poliovaccines.
    [Show full text]
  • Practice Parameter for the Diagnosis and Management of Primary Immunodeficiency
    Practice parameter Practice parameter for the diagnosis and management of primary immunodeficiency Francisco A. Bonilla, MD, PhD, David A. Khan, MD, Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD, David I. Bernstein, MD, Joann Blessing-Moore, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Chief Editor: Francisco A. Bonilla, MD, PhD Co-Editor: David A. Khan, MD Members of the Joint Task Force on Practice Parameters: David I. Bernstein, MD, Joann Blessing-Moore, MD, David Khan, MD, David Lang, MD, Richard A. Nicklas, MD, John Oppenheimer, MD, Jay M. Portnoy, MD, Christopher R. Randolph, MD, Diane Schuller, MD, Sheldon L. Spector, MD, Stephen Tilles, MD, Dana Wallace, MD Primary Immunodeficiency Workgroup: Chairman: Francisco A. Bonilla, MD, PhD Members: Zuhair K. Ballas, MD, Javier Chinen, MD, PhD, Michael M. Frank, MD, Joyce T. Hsu, MD, Michael Keller, MD, Lisa J. Kobrynski, MD, Hirsh D. Komarow, MD, Bruce Mazer, MD, Robert P. Nelson, Jr, MD, Jordan S. Orange, MD, PhD, John M. Routes, MD, William T. Shearer, MD, PhD, Ricardo U. Sorensen, MD, James W. Verbsky, MD, PhD GlaxoSmithKline, Merck, and Aerocrine; has received payment for lectures from Genentech/ These parameters were developed by the Joint Task Force on Practice Parameters, representing Novartis, GlaxoSmithKline, and Merck; and has received research support from Genentech/ the American Academy of Allergy, Asthma & Immunology; the American College of Novartis and Merck.
    [Show full text]
  • Neonatal Leukopenia and Thrombocytopenia
    Neonatal Leukopenia and Thrombocytopenia Vandy Black, M.D., M.Sc., FAAP March 3, 2016 April 14, 2011 Objecves • Summarize the differenHal diagnosis of leukopenia and/or thrombocytopenia in a neonate • Describe the iniHal steps in the evaluaon of a neonate with leukopenia and/or thrombocytopenia • Review treatment opHons for leukopenia and/ or thrombocytopenia in the NICU Clinical Case 1 • One day old male infant admiUed to the NICU for hypoglycemia and a sepsis rule out • Born at 38 weeks EGA by SVD • Birth weight 4 lbs 13 oz • Exam shows a small cephalohematoma; no dysmorphic features • PLT count 42K with an otherwise normal CBC Definions • Normal WBC count 9-30K at birth – Mean 18K • What is the ANC and ALC – <1000/mm3 is abnormal – 6-8% of infants in the NICU • Normal platelet count: 150-450,000/mm3 – Not age dependent – 22-35% of infants in the NICU have plts<150K Neutropenia Absolute neutrophil count <1500/mm3 Category ANC* InfecHon risk • Mild 1000-1500 None • Moderate 500-1000 Minimal • Severe <500 Moderate to Severe (Highest if <200) • Recurrent bacterial or fungal infecHons are the hallmark of symptomac neutropenia! • *ANC = WBC X % (PMNs + Bands) / 100 DefiniHon of Neutropenia Black and Maheshwari, Neoreviews 2009 How to Approach Cytopenias • Normal vs. abnormal (consider severity) • Malignant vs. non-malignant • Congenital vs. acquired • Is the paent symptomac • Transient, recurrent, cyclic, or persistent How to Approach Cytopenias • Adequate vs. decreased marrow reserve • Decreased producHon vs. increased destrucHon/sequestraon Decreased neutrophil/platelet producon • Primary – Malignancy/leukemia/marrow infiltraon – AplasHc anemia – Genec disorders • Secondary – InfecHous – Drug-induced – NutriHonal • B12, folate, copper Increased destrucHon/sequestraon • Immune-mediated • Drug-induced • Consumpon à Hypersplenism vs.
    [Show full text]
  • Current Perspectives on Primary Immunodeficiency Diseases
    Clinical & Developmental Immunology, June–December 2006; 13(2–4): 223–259 Current perspectives on primary immunodeficiency diseases ARVIND KUMAR, SUZANNE S. TEUBER, & M. ERIC GERSHWIN Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis School of Medicine, Davis, CA, USA Abstract Since the original description of X-linked agammaglobulinemia in 1952, the number of independent primary immunodeficiency diseases (PIDs) has expanded to more than 100 entities. By definition, a PID is a genetically determined disorder resulting in enhanced susceptibility to infectious disease. Despite the heritable nature of these diseases, some PIDs are clinically manifested only after prerequisite environmental exposures but they often have associated malignant, allergic, or autoimmune manifestations. PIDs must be distinguished from secondary or acquired immunodeficiencies, which are far more common. In this review, we will place these immunodeficiencies in the context of both clinical and laboratory presentations as well as highlight the known genetic basis. Keywords: Primary immunodeficiency disease, primary immunodeficiency, immunodeficiencies, autoimmune Introduction into a uniform nomenclature (Chapel et al. 2003). The International Union of Immunological Societies Acquired immunodeficiencies may be due to malnu- (IUIS) has subsequently convened an international trition, immunosuppressive or radiation therapies, infections (human immunodeficiency virus, severe committee of experts every two to three years to revise sepsis), malignancies, metabolic disease (diabetes this classification based on new PIDs and further mellitus, uremia, liver disease), loss of leukocytes or understanding of the molecular basis. A recent IUIS immunoglobulins (Igs) via the gastrointestinal tract, committee met in 2003 in Sintra, Portugal with its kidneys, or burned skin, collagen vascular disease such findings published in 2004 in the Journal of Allergy and as systemic lupus erythematosis, splenectomy, and Clinical Immunology (Chapel et al.
    [Show full text]
  • On Lupus, Vitamin D and Leukopenia
    r e v b r a s r e u m a t o l . 2 0 1 6;5 6(3):206–211 REVISTA BRASILEIRA DE REUMATOLOGIA w ww.reumatologia.com.br Original article On lupus, vitamin D and leukopenia ∗ Juliana A. Simioni, Flavia Heimovski, Thelma L. Skare Rheumatology Unit, Hospital Universitário Evangélico de Curitiba, Curitiba, PR, Brazil a r t i c l e i n f o a b s t r a c t Article history: Background: Immune regulation is among the noncalcemic effects of vitamin D. So, this Received 7 October 2014 vitamin may play a role in autoimmune diseases such as systemic lupus erythematosus Accepted 24 June 2015 (SLE). Available online 4 September 2015 Objectives: To study the prevalence of vitamin D deficiency in SLE and its association with clinical, serological and treatment profile as well as with disease activity. Keywords: Methods: Serum OH vitamin D3 levels were measured in 153 SLE patients and 85 controls. Data on clinical, serological and treatment profile of lupus patients were obtained through Systemic lupus erythematosus Vitamin D chart review. Blood cell count and SLEDAI (SLE disease activity index) were measured simul- Leukopenia taneously with vitamin D determination. Granulocytopenia Results: SLE patients have lower levels of vitamin D than controls (p = 0.03). In univariate analysis serum vitamin D was associated with leukopenia (p = 0.02), use of cyclophos- phamide (p = 0.007) and methotrexate (p = 0.03). A negative correlation was verified with prednisone dose (p = 0.003). No association was found with disease activity measured by SLEDAI (p = 0.88).
    [Show full text]
  • De Novo Generation of CD4 T Cells Against Viruses Present in the Host During Immune Reconstitution
    IMMUNOBIOLOGY De novo generation of CD4 T cells against viruses present in the host during immune reconstitution Tomas Kalina, Hailing Lu, Zhao Zhao, Earl Blewett, Dirk P. Dittmer, Julie Randolph-Habecker, David G. Maloney, Robert G. Andrews, Hans-Peter Kiem, and Jan Storek T cells recognizing self-peptides are typi- Here we demonstrate in baboons infected gens present in the host. This finding cally deleted in the thymus by negative with baboon cytomegalovirus and ba- provides a strong rationale to improve selection. It is not known whether T cells boon lymphocryptovirus (Epstein-Barr vi- thymopoiesis in recipients of hematopoi- against persistent viruses (eg, herpesvi- rus–like virus) that after autologous trans- etic cell transplants and, perhaps, in other ruses) are generated by the thymus (de plantation of yellow fluorescent protein persons lacking de novo–generated CD4 novo) after the onset of the infection. (YFP)–marked hematopoietic cells, YFP؉ T cells, such as AIDS patients and elderly Peptides from such viruses might be con- CD4 T cells against these viruses were persons. (Blood. 2005;105:2410-2414) sidered by the thymus as self-peptides, generated de novo. Thus the thymus gen- and T cells specific for these peptides erates CD4 T cells against not only patho- might be deleted (negatively selected). gens absent from the host but also patho- © 2005 by The American Society of Hematology Introduction Patients who have undergone hematopoietic cell transplantation, disease in recipients of transplant (CMV pneumonia or gastroenteri- AIDS patients, patients with congenital thymic hypoplasia, and tis, EBV lymphoma).12,13 Seropositivity is a marker of infection elderly persons lack naive T cells because of insufficient generation because after primary infection of humans with human CMV or of T cells de novo (thymopoiesis).1-6 Ways to improve de novo EBV, anti-CMV/EBV antibodies are generated for life.
    [Show full text]
  • Interactions of the Classical and Alternate Complement Pathway with Endotoxin Lipopolysaccharide EFFECT on PLATELETS and BLOOD COAGULATION
    Interactions of the Classical and Alternate Complement Pathway with Endotoxin Lipopolysaccharide EFFECT ON PLATELETS AND BLOOD COAGULATION Michael A. Kane, … , Joseph E. May, Michael M. Frank J Clin Invest. 1973;52(2):370-376. https://doi.org/10.1172/JCI107193. Research Article The contributions of the classical and alternate pathways of complement activation to the biological effects of endotoxin have been examined in the guinea pig, with particular reference to thrombocytopenia, leukopenia, and the development of the hypercoagulable state. Injection of endotoxin into normal guinea pigs led to a 95% fall in the level of circulating platelets within 15 min as well as a fall in circulating granulocytes. C4-deficient guinea pigs, known to have a complete block in the activity of the classical complement pathway, but with the alternate pathway intact, sustained no fall in platelets. The development of granulocytopenia proceeded normally. Endotoxin did activate the alternate complement pathway in C4D guinea pigs, as evidenced by the fall in C3-9 titers. With restoration of serum C4 levels, endotoxin- induced thrombocytopenia was observed in C4D animals. Thus, function of the classical complement pathway was an absolute requirement for the development of thrombocytopenia. Experiments performed in cobra venom factor (CVF)- treated normal guinea pigs, with normal levels of C1, C4, and C2, but with less than 1% of serum C3-9 demonstrated the importance of the late components in the development of thrombocytopenia but not leukopenia. C4-deficient guinea pigs had normal clotting times demonstrating that C4 was not required for normal clotting. In addition, development of the hypercoagulable state, evidenced by a marked shortening of the clotting […] Find the latest version: https://jci.me/107193/pdf Interactions of the Classical and Alternate Complement Pathway with Endotoxin Lipopolysaccharide EFFECT ON PLATELETS AND BLOOD COAGULATION MICHAEL A.
    [Show full text]
  • Blood and Immunity
    Chapter Ten BLOOD AND IMMUNITY Chapter Contents 10 Pretest Clinical Aspects of Immunity Blood Chapter Review Immunity Case Studies Word Parts Pertaining to Blood and Immunity Crossword Puzzle Clinical Aspects of Blood Objectives After study of this chapter you should be able to: 1. Describe the composition of the blood plasma. 7. Identify and use roots pertaining to blood 2. Describe and give the functions of the three types of chemistry. blood cells. 8. List and describe the major disorders of the blood. 3. Label pictures of the blood cells. 9. List and describe the major disorders of the 4. Explain the basis of blood types. immune system. 5. Define immunity and list the possible sources of 10. Describe the major tests used to study blood. immunity. 11. Interpret abbreviations used in blood studies. 6. Identify and use roots and suffixes pertaining to the 12. Analyse several case studies involving the blood. blood and immunity. Pretest 1. The scientific name for red blood cells 5. Substances produced by immune cells that is . counteract microorganisms and other foreign 2. The scientific name for white blood cells materials are called . is . 6. A deficiency of hemoglobin results in the disorder 3. Platelets, or thrombocytes, are involved in called . 7. A neoplasm involving overgrowth of white blood 4. The white blood cells active in adaptive immunity cells is called . are the . 225 226 ♦ PART THREE / Body Systems Other 1% Proteins 8% Plasma 55% Water 91% Whole blood Leukocytes and platelets Formed 0.9% elements 45% Erythrocytes 10 99.1% Figure 10-1 Composition of whole blood.
    [Show full text]
  • Immunodeficiency Disorders Ivan K
    Immunodeficiency Disorders Ivan K. Chinn, MD,*† Jordan S. Orange, MD, PhD‡x *Department of Pediatrics, Section of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX †Center for Human Immunobiology, Texas Children’s Hospital, Houston, TX ‡Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY xNew York Presbyterian Morgan Stanley Children’s Hospital, New York, NY Education Gaps Immunodeficiencies are no longer considered rare conditions. Although susceptibility to infections has become well-recognized as a sign of most primary immunodeficiencies, some children will present with noninfectious manifestations that remain underappreciated and warrant evaluation by an immunologic specialist. Providers must also consider common secondary causes of immunodeficiency in children. Objectives After completing this article, readers should be able to: 1. Recognize infectious signs and symptoms of primary immunodeficiency that warrant screening and referral to a specialist. 2. Understand noninfectious signs and symptoms that should raise concern for primary immunodeficiency. 3. Determine appropriate testing for patients for whom immunodeficiency is suspected. AUTHOR DISCLOSURE Dr Chinn has disclosed that he is the recipient of a 4. Discuss the management of patients with primary immunodeficiency. Translational Research Program grant from the Jeffrey Modell Foundation. Dr Orange has 5. Appreciate secondary causes of immunodeficiency. disclosed that he is a consultant on the topic of therapeutic immunoglobulin for Shire, CSL Behring, and Grifols and that he serves on the scientific advisory board for ADMA Biologics. This commentary does contain a discussion of INTRODUCTION an unapproved/investigative use of a commercial product/device. Immunodeficiency disorders represent defects in the immune system that result in weakened or dysregulated immune defense.
    [Show full text]