The Ai Data Marketplace Solution At

Total Page:16

File Type:pdf, Size:1020Kb

The Ai Data Marketplace Solution At Info Paper AI Data Marketplace DATA FUELS DIGITAL AGENCIES ACHIEVING YOUR MISSION: THE AI DATA MARKETPLACE SOLUTION AT EQUINIX® Enabling trusted, effective data sharing in a scalable, secure, cost-effective environment to support AI innovation and meet mission needs. Introduction Government agencies increasingly depend on data to support decisions and automate actions. Artificial intelligence (AI) is used to predict trends, optimize processes, speed up decision-making, enhance accuracy, improve pattern recognition and much more. For AI to learn how to reason, AI algorithms must be able to access large, diverse data sets to ensure their functionality and accuracy. The demand for data from within and outside of government agencies is increasing exponentially—on average, 75 percent of enterprise applications use 10 external data sources.1 Agencies must utilize One Platform. neutral, secure data marketplaces to exchange the data and algorithms that make AI-driven innovation possible. One Solution. Data marketplaces (also known as digital data marketplaces, or DDMs) Simplify Data Exchange allow data providers and data consumers to share, buy or sell data and and Monetization algorithms privately and securely, without violating government regulations such as GDPR, using a programmable, community-owned, safe and secure Easy to share. Easy to consume. infrastructure that organizes trust. Governance models regulate how the Easy to sell. Easy to buy. All in members of the marketplace interact. The marketplace facilitates legal one platform. contracts and asset registration that enable third-party services (data anonymization, conflict arbitration, analytics tools, etc.) and payment Ensure Data Traceability management. Sharing data assets via a secure, trusted and neutral data and Integrity marketplace driven by a consortium established on the basis of a common Fully secured AI models benefit is a promising opportunity for government agencies as they advance and data lineage tracking. their missions in the 21st century. Bring Algorithms to the Data* Run analytics wherever data resides. No need to move data. The ability to merge physical models with digital Enjoy Proven Trust and Neutrality content and conduct deep analysis at extraordinary Turnkey data center and speeds presents unprecedented opportunity to technology capabilities in transform the productivity, capacity, and capability ONE solution. No need to of the geospatial intelligence workforce. integrate point solutions. Global Distributed Solution MeriTalk, in collaboration with USGIF 1 Support for data sharing in different regions/markets for data residency/compliance. * Depending upon the trust model, bring data Equinix.com to the algorithm or the algorithm to the data. PLATFORM EQUINIX® Data & Algorithm Public Agency 1 Governance Cloud 1 Data & Algorithm Data & Algorithm Marketplace Data & Algorithm Data & Algorithm Public Agency 2 Analytics Cloud 2 Data & Algorithm Infrastructure Agency 3 Data Broker Fig. 1. A highly secure data marketplace enables sovereign organizations to make assets available to others for mutual benefit. Data marketplace overview The AI Data Marketplace The basic role of the data marketplace is to organize Solution at Equinix is different, and facilitate interactions between data suppliers and and here’s why algorithm developers to explore, select, and agree to create, execute and complete data science transactions. 1. It supports multiple data sharing A data marketplace is a global structure that enables and trust archetypes sovereign organizations—many of which require absolute control of their data asset—to make assets Different data sets warrant different data sharing available to others under strict conditions to achieve and trust models. The AI Data Marketplace solution mutual benefits that no single organization could at Equinix makes it easy to bring data and algorithms achieve on its own. into a secure, software-definable and geo-distributed data exchange sandbox while preventing the data There are many types of data marketplace solutions or algorithms from being exposed to other parties. already out there, but they aren’t fully addressing AI algorithms can be trained on data from different government agencies’ data sharing challenges and owners at different locations via the data marketplace, concerns. In many cases, they do not adequately making the AI Data Marketplace solution at Equinix satisfy the demands of data providers or data right for most government agency use cases. consumers, either. Agencies need a solution that The solution supports all three of these data gives them the confidence to share data and sharing mechanisms: algorithms with each other and with partner organizations and service providers. They need Distributed Model a trusted, secure data marketplace. Bring the algorithm to the data Data providers who are unwilling to let data leave The high-level architecture depicted in Figure 1 shows their premises due to confidentiality or intellectual the data marketplace as an entity that is owned and property concerns can utilize a private cage at operated by a membership organization through Equinix to host an AI training stack and run federated, which data providers and data consumers can securely privacy-preserving algorithms that require higher interact and transact based on community rules and power density requirements. individual agreements. Equinix.com Federated Model Local Model Bring the data and algorithms to a neutral exchange location Building Data and algorithm providers who prefer that their assets remain inaccessible in each other’s locations can utilize secure, neutral exchange infrastructure cages inside Equinix data centers for data trading and algorithm use (see Figure 2). Governance is negotiable. Raw data and Customer 1 algorithms are never taken outside the shared cage. Private Cage Centralized Model Global Model Building Bring the data to the algorithm Local Data providers who are comfortable sharing low-risk or non-confidential Models assets can utilize a public cloud marketplace or a hybrid model where the data to be shared is stored in a persistent manner in a private cage Customer 2 Shared at Equinix, then moved into the public cloud infrastructures used by data Private Consortium Data Center Cage science organizations for sharing or model training purposes. Global Model Equinix Data 2. Its multi-zone architecture ensures that data Center is always secure The AI Data Marketplace solution at Equinix deploys an architecture with three separate security zones (domains): the control plane Customer 3 software zone, the provider/consumer data exchange zone, and the Public Cloud data provider’s permanent data storage location (secure repository). Among the security advantages: Fig. 2. A federated learning framework. § Protection against hacking – Cybercriminals cannot access data being exchanged between parties in the data exchange zone. § Inability to take raw data out – AI/analytics pipelines are executed From a mission standpoint, in a sandbox run on a Kubernetes cluster where ingress/egress is stakeholders believe GEOINT- strictly controlled. related AI will have the greatest impact on:1 § Restricted access pattern monitoring – Providers do not have access to, or visibility into, how data consumers are using purchased data, and the IP of data consumer algorithms is protected. § Flexibility in security hardware – Providers have several encryption options to ensure their data can never be accessed in the clear in the National security data exchange zone. § Time-bound access to data – dProxy provides a layer of indirection that ensures a provider’s real data storage location is never divulged to a data consumer. Auditability and lineage tracking – Lineage tracking can be done for any § Urban planning AI model created in the secure sandbox (data sources, AI frameworks, and development who did the model training). Emergency response/ natural disaster aid Equinix.com 3. Federated analytics enable privacy Unlocking the Power of AI and efficient data handling The American Artificial Intelligence Initiative calls The AI Data Marketplace solution at Equinix is for government agencies to maximize AI resources, distributed, meaning that a marketplace can embrace trustworthy AI and remove barriers to AI simultaneously manage multiple geo-distributed data innovation. To do so effectively, they must collaborate exchange locations at any given point in time. This with each other and with non-federal entities to share allows it to support federated learning frameworks the data and algorithms that feed robust AI models and where local AI models on private infrastructure stacks drive innovation. (as shown in Figure 2) can be built, then aggregated into a global AI model at a mutually trusted neutral location like Equinix. The AI Data Marketplace solution at Equinix allows data scientists to invoke third-party federated learning frameworks via Kubeflow. The president’s FY21 budget A federated learning approach is primarily useful commits to double AI research and for two reasons: development over the next two years. Privacy-preserving AI § – When data providers want The White House Office of Science and Technology Policy, algorithm providers to ship their algorithm to the data February 2020 location because they do not want to let raw data out of their security domain, federated learning can be leveraged to build a model locally, then share the anonymized model with the data consumer. Equinix partners with the world’s
Recommended publications
  • The Fundamental Articles of I.AM Cyborg Law
    Beijing Law Review, 2020, 11, 911-946 https://www.scirp.org/journal/blr ISSN Online: 2159-4635 ISSN Print: 2159-4627 The Fundamental Articles of I.AM Cyborg Law Stephen Castell CASTELL Consulting, Witham, UK How to cite this paper: Castell, S. (2020). Abstract The Fundamental Articles of I.AM Cyborg Law. Beijing Law Review, 11, 911-946. Author Isaac Asimov first fictionally proposed the “Three Laws of Robotics” https://doi.org/10.4236/blr.2020.114055 in 1942. The word “cyborg” appeared in 1960, describing imagined beings with both artificial and biological parts. My own 1973 neologisms, “neural Received: November 2, 2020 plug compatibility”, and “softwiring” predicted the computer software-driven Accepted: December 15, 2020 Published: December 18, 2020 future evolution of man-machine neural interconnection and synthesis. To- day, Human-AI Brain Interface cyborg experiments and “brain-hacking” de- Copyright © 2020 by author(s) and vices are being trialed. The growth also of Artificial Intelligence (AI)-driven Scientific Research Publishing Inc. Data Analytics software and increasing instances of “Government by Algo- This work is licensed under the Creative Commons Attribution International rithm” have revealed these advances as being largely unregulated, with insuf- License (CC BY 4.0). ficient legal frameworks. In a recent article, I noted that, with automation of http://creativecommons.org/licenses/by/4.0/ legal processes and judicial decision-making being increasingly discussed, Open Access RoboJudge has all but already arrived; and I discerned also the cautionary Castell’s Second Dictum: “You cannot construct an algorithm that will relia- bly decide whether or not any algorithm is ethical”.
    [Show full text]
  • Capital Reporting Company U.S. Copyright Office Section 512 Public Roundtable 05-03-2016
    Capital Reporting Company U.S. Copyright Office Section 512 Public Roundtable 05-03-2016 1 UNITED STATES COPYRIGHT OFFICE SECTION 512 STUDY + + + + + 9:00 a.m. + + + + + Tuesday, May 3, 2016 Thurgood Marshall United States Courthouse 40 Centre Street New York, New York U.S. COPYRIGHT OFFICE: CINDY ABRAMSON JACQUELINE C. CHARLESWORTH KARYN TEMPLE CLAGGETT RACHEL FERTIG BRAD GREENBERG KIMBERLEY ISBELL (866) 448 - DEPO www.CapitalReportingCompany.com © 2016 Capital Reporting Company U.S. Copyright Office Section 512 Public Roundtable 05-03-2016 2 1 P A R T I C I P A N T S: 2 ALLAN ADLER, Association of American Publishers 3 SANDRA AISTARS, Arts & Entertainment Advocacy Clinic 4 at George Mason University School of 5 JONATHAN BAND, Library Copyright Alliance and Amazon 6 MATTHEW BARBLAN, Center for the Protection of 7 Intellectual Property 8 GREGORY BARNES, Digital Media Association 9 JUNE BESEK, Kernochan Center for Law, Media and the 10 Arts 11 ANDREW BRIDGES, Fenwick & West LLP 12 WILLIAM BUCKLEY, FarePlay, Inc. 13 STEPHEN CARLISLE, Nova Southeastern University 14 SOFIA CASTILLO, Association of American Publishers 15 ALISA COLEMAN, ABKCO Music & Records 16 ANDREW DEUTSCH, DLA Piper 17 TROY DOW, Disney 18 TODD DUPLER, The Recording Academy 19 SARAH FEINGOLD, Etsy, Inc. 20 KATHY GARMEZY, Directors Guild of America 21 JOHN GARRY, Pearson Education 22 MELVIN GIBBS, Content Creators Coalition 23 DAVID GREEN, NBC Universal 24 TERRY HART, Copyright Alliance 25 MICHAEL HOUSLEY, Viacom (866) 448 - DEPO www.CapitalReportingCompany.com © 2016 Capital Reporting Company U.S. Copyright Office Section 512 Public Roundtable 05-03-2016 3 1 P A R T I C I P A N T S 2 SARAH HOWES, Copyright Alliance 3 WAYNE JOSEL, American Society of Composers, Authors 4 and Publishers 5 BRUCE JOSEPH, Wiley Rein LLP (for Verizon) 6 DAVID KAPLAN, Warner Bros.
    [Show full text]
  • Beyond Algorithms: Toward a Normative Theory of Automated Regulation
    Boston College Law Review Volume 62 Issue 1 Article 2 1-28-2021 Beyond Algorithms: Toward a Normative Theory of Automated Regulation Felix Mormann Texas A&M University, [email protected] Follow this and additional works at: https://lawdigitalcommons.bc.edu/bclr Part of the Antitrust and Trade Regulation Commons, Law and Economics Commons, and the Law and Society Commons Recommended Citation Felix Mormann, Beyond Algorithms: Toward a Normative Theory of Automated Regulation, 62 B.C. L. Rev. 1 (2021), https://lawdigitalcommons.bc.edu/bclr/vol62/iss1/2 This Article is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact [email protected]. BEYOND ALGORITHMS: TOWARD A NORMATIVE THEORY OF AUTOMATED REGULATION FELIX MORMANN INTRODUCTION ................................................................................................................................ 3 I. THE NEED FOR INSURANCE AGAINST FORECAST ERRORS ........................................................... 6 II. AUTOMATED REGULATION IN PRACTICE: AN ENERGY CASE STUDY ....................................... 14 A. Time-Sensitive Regulatory Automation ................................................................................ 15 B. Market-Sensitive Regulatory Automation ............................................................................
    [Show full text]
  • Recommendations for Ai Governance in the Brazilian Judiciary
    1 ACKNOWLEDGEMENT ................................................................................................................................................................ 3 EXECUTIVE SUMMARY ............................................................................................................................................................... 4 GLOSSARY ....................................................................................................................................................................................... 7 PART I. BACKGROUND ............................................................................................................................................................... 8 1. Introduction ............................................................................................................................................................................................ 8 2. Scope and Goals ..................................................................................................................................................................................... 8 PART II. METHODOLOGY AND FINDINGS ........................................................................................................................ 10 1. Methodology ......................................................................................................................................................................................... 10 2. Key AI Actors and Systems.............................................................................................................................................................
    [Show full text]
  • EPIC Comments to the Office of Management and Budget
    COMMENTS OF THE ELECTRONIC PRIVACY INFORMATION CENTER to the OFFICE OF MANAGEMENT AND BUDGET Request for Comments on a Draft Memorandum to the HeAds of Executive Departments and Agencies, “Guidance for RegulAtion of ArtificiAl Intelligence ApplicAtions” 85 FR 1825 MArch 13, 2020 _____________________________________________________________________________ By notice published JAnuary 13, 2020, the Office of MAnagement and Budget (“OMB”) requests comments on a Draft Memorandum to the HeAds of Executive Departments and Agencies, “Guidance for RegulAtion of ArtificiAl Intelligence ApplicAtions.”1 EPIC submits these comments to encourage OMB to (1) require transparent reporting from the agencies regarding their AI regulAtion to increAse accountAbility, (2) include prohibitions on Secret Profiling and SociAl Scoring, (3) apply the principles to government agencies, and (4) recommend enacting the principles set forth into binding regulAtion. EPIC is a public interest reseArch center in WAshington, D.C. that wAs estAblished in 1994 to focus public attention on emerging privacy and relAted humAn rights issues, and to protect privacy, the First Amendment, and constitutional values.2 EPIC has a long history of promoting transparency And accountAbility for informAtion technology.3 EPIC has a particulAr interest in promoting algorithmic transparency and has consistently AdvocAted for the releAse of reports, validation studies, and use of the UniversAl Guidelines for AI to 1 Management and Budget Office, Request for Comments on a Draft Memorandum to the Heads of Executive Departments and Agencies, “Guidance for Regulation of Artificial Intelligence Applications,” 85 Fed. Reg. 1825 (Jan. 13, 2020), https://www.federalregister.gov/documents/2020/01/13/2020-00261/request- for-comments-on-a-draft-memorandum-to-the-heads-of-executive-departments-and-agencies.
    [Show full text]
  • Federal Procurement of Artificial Intelligence: Perils and Possibilities
    Federal Procurement of Artificial Intelligence: Perils and Possibilities REPORT BY DAVID S. RUBENSTEIN DECEMBER 2020 ABOUT THE AUTHOR David S. Rubenstein is James R. Ahrens Chair in Constitutional Law, and Director of the Robert J. Dole Center for Law & Government, at Washburn University School of Law. Prior to teaching, Professor Rubenstein clerked for The Honorable Sonia Sotomayor when she was a judge on the United States Court of ABOUT THE GREAT Appeals for the Second Circuit, and for The Honorable DEMOCRACY INITIATIVE Barbara Jones in the United States District Court for the Southern District of New York. Prior to clerking, The Great Democracy Initiative he served for three years as Assistant United States develops policy blueprints that Attorney in the Southern District of New York, and was a offer solutions to the most pressing litigation associate for five years at King & Spalding LLP. problems of our time. From taming the concentration of power in ACKNOWLEDGEMENTS our economy to fundamentally reforming our broken government, The author is grateful to Daniel Ho, Raj Nayak, Suzanne GDI aims to generate policy ideas Kahn, and Eric Jacobs for their incisive comments and that confront the forces that have feedback; to Matt Hughes for tight editing; to Anna rigged our society in favor of the Smith for logistical support; and to Kaitlyn Bull, Ande powerful and connected. Davis, Penny Fell, Barbara Ginsberg, Creighton Miller, and Zach Smith, for invaluable research assistance; and to Leah for everything always. All errors and omissions
    [Show full text]
  • What Is the Resource Footprint of a Computer Science Department? Place, People, and Pedagogy
    Data & Policy (2020), 2: e14 doi:10.1017/dap.2020.12 TRANSLATIONAL ARTICLE What is the resource footprint of a computer science department? Place, people, and Pedagogy I. S. Mian, D. Twisleton and D. A. Timm Department of Computer Science, University College London, London, United Kingdom *Corresponding author. Email: [email protected] Received: 03 December 2019; Revised: 19 June 2020; Accepted: 27 June 2020 Keywords: rejuvenate and (re)integrate the natural and built environments; rematerialising the information society; resource- constrained computing, computation, and communication; responsible research and innovation; zero waste institution; environmental accounting; waste reduction; data centre management; IT infrastructure lifecycle; environmental policy Abstract Internet and Communication Technology/electrical and electronic equipment (ICT/EEE) form the bedrock of today’s knowledge economy. This increasingly interconnected web of products, processes, services, and infrastructure is often invisible to the user, as are the resource costs behind them. This ecosystem of machine-to-machine and cyber- physical-system technologies has a myriad of (in)direct impacts on the lithosphere, biosphere, atmosphere, and hydrosphere. As key determinants of tomorrow’s digital world, academic institutions are critical sites for exploring ways to mitigate and/or eliminate negative impacts. This Report is a self-deliberation provoked by the question How do we create more resilient and healthier computer science departments: living laboratories for teaching and learning about resource-constrained computing, computation, and communication? Our response for University College London (UCL) Computer Science is to reflect on how, when, and where resources—energy, (raw) materials including water, space, and time—are consumed by the building (place), its occupants (people), and their activities (pedagogy).
    [Show full text]
  • AI in Adjudication and Administration
    University of Pennsylvania Carey Law School Penn Law: Legal Scholarship Repository Faculty Scholarship at Penn Law 7-15-2021 AI in Adjudication and Administration Cary Coglianese University of Pennsylvania Carey Law School Lavi M. Ben Dor University of Pennsylvania Follow this and additional works at: https://scholarship.law.upenn.edu/faculty_scholarship Part of the Administrative Law Commons, Courts Commons, Criminal Law Commons, Law Enforcement and Corrections Commons, Public Administration Commons, Public Law and Legal Theory Commons, and the State and Local Government Law Commons Repository Citation Coglianese, Cary and Ben Dor, Lavi M., "AI in Adjudication and Administration" (2021). Faculty Scholarship at Penn Law. 2118. https://scholarship.law.upenn.edu/faculty_scholarship/2118 This Article is brought to you for free and open access by Penn Law: Legal Scholarship Repository. It has been accepted for inclusion in Faculty Scholarship at Penn Law by an authorized administrator of Penn Law: Legal Scholarship Repository. For more information, please contact [email protected]. AI in Adjudication and Administration Cary Coglianese & Lavi M. Ben Dor University of Pennsylvania Law School Forthcoming in the Brooklyn Law Review Abstract The use of artificial intelligence has expanded rapidly in recent years across many aspects of the economy. For federal, state, and local governments in the United States, interest in artificial intelligence has manifested in the use of a series of digital tools, including the occasional deployment of machine learning, to aid in the performance of a variety of governmental functions. In this Article, we canvass the current uses of such digital tools and machine-learning technologies by the judiciary and administrative agencies in the United States.
    [Show full text]
  • AI Watch Artificial Intelligence in Public Services
    Science for Policy Report AI Watch Artificial Intelligence in public services Overview of the use and impact of AI in public services in the EU EUR 30255 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Gianluca Misuraca Senior Scientist in Digital Government Transformation and AI in the public sector European Commission’s Joint Research Centre, Digital Economy Unit Edificio EXPO, Calle Inca Garcilaso, 3 – 41092 Seville, Spain +34 95-448.87.18 [email protected] AI-Watch functional mailbox [email protected] EU Science Hub https://ec.europa.eu/jrc JRC120399 EUR 30255 EN PDF ISBN 978-92-76-19540-5 ISSN 1831-9424 doi:10.2760/039619 Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Robo-Bureaucrat and the Administrative Separation of Powers
    de•novoC ARDOZO L AW R EVIEW ROBO-BUREAUCRAT AND THE ADMINISTRATIVE SEPARATION OF POWERS Matthew B. Seipel† TABLE OF CONTENTS INTRODUCTION ........................................................................................................ 99 I. A NEW THREAT TO THE ADMINISTRATIVE SEPARATION OF POWERS ............. 102 A. Unilateral Advancement of Agency Leaders’ Agenda ........................ 102 B. Marginalization & Eroson of the Civil Service .................................. 103 C. Restraint on Public Participation ....................................................... 107 II. COUNTERING THE THREAT ............................................................................. 108 CONCLUSION .......................................................................................................... 110 INTRODUCTION “Across the federal government, we are beginning to observe the dawn of a new chapter—perhaps even a digital revolution—in how † Regional Attorney, California Public Employment Relations Board; J.D., UCLA School of Law, 2017; B.A., UCLA, 2010. I would like to thank the editors of Cardozo Law Review de•novo for their excellent edits and feedback. I would also like to thank my wife, Farshideh, for her support and helpful comments on earlier drafts of this Essay. The views expressed are solely my own. 99 100 CARDOZO LAW REVIEW DE NOVO [2020 government does its work.”1 This “new chapter,” as described in a new report commissioned by the Administrative Conference of the United States (ACUS Report),2 is the use of artificial
    [Show full text]
  • Build Back Better Britain After Coronavirus: Policy Ideas for Liberal Democrats
    Build back better Britain after coronavirus: policy ideas for Liberal Democrats Edited by Layla Moran MP Build back better Britain after coronavirus: policy ideas for Liberal Democrats Published in 2020 by Neil Fawcett on behalf of Layla Moran MP C5 Grange Court Business Park, Barton Lane, Abingdon, OX14 3NB Designed and typeset in Freight Sans Pro and Calluna by Richard Rowley and Duncan Brack All contributors have written their pieces in their own individual capacity. Their inclusion in this booklet should not be taken to mean either that they agree with every proposal in it or that they are supporting Layla Moran’s candidacy for the Liberal Democrat leadership. PDF available for download from www.LaylaMoran.com/Build_Back_Better ii Contents Build back better ii Foreword v Layla Moran 1 Introduction 1 Layla Moran 2 Economic policy and the state 4 David Howarth 3 Economics and industry 10 Duncan Brack, Josh Babarinde, Vince Cable, Helen Cross, Alyssa Gilbert, Cara Jenkinson, Jannah Patchay, Sheila Ritchie Introduction 10 Industrial strategy and Liberalism 11 Recovery rewards: locking social innovation into Economy 2.0 14 Community-based prosperity 15 Modernising financial markets 17 Climate policy after coronavirus 19 Oil and gas 23 4 Equalities 26 Paul Noblet, Helen Belcher, Tara Copeland, Ade Fatukasi, Lynne Featherstone, Jannah Patchay, Rhys Taylor A more equal country 26 A new social contract 27 Time for a universal basic income 29 A natural home for BAME voters 31 A double burden 33 Childcare and opportunity 34 Dignity not discrimination
    [Show full text]
  • ACUS-AI-Executive-Summary.Pdf
    Executive Summary Artificial intelligence (AI) promises to transform how government agencies do their work. Rapid developments in AI have the potential to reduce the cost of core governance functions, improve the quality of decisions, and unleash the power of administrative data, thereby making government performance more eficient and efective. Agencies that use AI to realize these gains will also confront important questions about the proper design of algorithms and user interfaces, the respective scope of human and machine decision-making, the boundaries between public actions and private contracting, their own capacity to learn over time using AI, and whether the use of AI is even permitted. These are important issues for public debate and academic inquiry. Yet little is known about how agencies are currently using AI systems beyond a few headline- grabbing examples or surface-level descriptions. Moreover, even amidst growing public and scholarly discussion about how society might regulate government use of AI, little attention has been devoted to how agencies acquire such tools in the first place or oversee their use. In an efort to fill these gaps, the Administrative Conference • Adjudicating government benefits and privileges, from of the United States (ACUS) commissioned this report from disability benefits to intellectual property rights; researchers at Stanford University and New York University. • Monitoring and analyzing risks to public health and safety; The research team included a diverse set of lawyers, law Extracting students, computer scientists, and social scientists with the • useable information from the government’s capacity to analyze these cutting-edge issues from technical, massive data streams, from consumer complaints to legal, and policy angles.
    [Show full text]