Comparative Distribution and Diversity of Bats From
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cara Membaca Informasi Daftar Jenis Tumbuhan
Dilarang mereproduksi atau memperbanyak seluruh atau sebagian dari buku ini dalam bentuk atau cara apa pun tanpa izin tertulis dari penerbit. © Hak cipta dilindungi oleh Undang-Undang No. 28 Tahun 2014 All Rights Reserved Rugayah Siti Sunarti Diah Sulistiarini Arief Hidayat Mulyati Rahayu LIPI Press © 2015 Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Biologi Katalog dalam Terbitan (KDT) Daftar Jenis Tumbuhan di Pulau Wawonii, Sulawesi Tenggara/ Rugayah, Siti Sunarti, Diah Sulistiarini, Arief Hidayat, dan Mulyati Rahayu– Jakarta: LIPI Press, 2015. xvii + 363; 14,8 x 21 cm ISBN 978-979-799-845-5 1. Daftar Jenis 2. Tumbuhan 3. Pulau Wawonii 158 Copy editor : Kamariah Tambunan Proofreader : Fadly S. dan Risma Wahyu H. Penata isi : Astuti K. dan Ariadni Desainer Sampul : Dhevi E.I.R. Mahelingga Cetakan Pertama : Desember 2015 Diterbitkan oleh: LIPI Press, anggota Ikapi Jln. Gondangdia Lama 39, Menteng, Jakarta 10350 Telp. (021) 314 0228, 314 6942. Faks. (021) 314 4591 E-mail: [email protected] Website: penerbit.lipi.go.id LIPI Press @lipi_press DAFTAR ISI DAFTAR GAMBAR ............................................................................. vii PENGANTAR PENERBIT .................................................................. xi KATA PENGANTAR ............................................................................ xiii PRAKATA ............................................................................................. xv PENDAHULUAN ............................................................................... -
Arborescent Angiosperms of Mundanthurai Range in The
Check List 8(5): 951–962, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Arborescent Angiosperms of Mundanthurai Range in PECIES S the Kalakad-Mundanthurai Tiger Reserve (KMTR) of the OF southern Western Ghats, India ISTS L Paulraj Selva Singh Richard 1* and Selvaraj Abraham Muthukumar 2 1 Madras Christian College, Department of Botany, Chennai – 600 059, Tamil Nadu, India. 2 St. John’s College, Department of Botany, Tirunelveli, 627 002, Tamil Nadu, India. [email protected] * Corresponding author. E-mail: Abstract: The present study was carried out to document the diversity of arborescent angiosperm taxa of Mundanthurai representingRange in the 175Kalakad-Mundanthurai genera in 65 families Tiger were Reserve recorded. (KMTR) The most of the speciose southern families Western are Euphorbiaceae Ghats in India. (27 During spp.), the Rubiaceae floristic survey carried out from January 2008 to December 2010, a total of 247 species and intraspecific taxa of trees and shrubs to this region which includes Agasthiyamalaia pauciflora, Elaeocarpus venustus, Garcinia travancorica, Gluta travancorica, (17Goniothalamus spp.), Myrtaceae rhynchantherus, (14 spp.), Lauraceae Homalium (13 travancoricum, spp.) and Annonaceae Homaium (11 jainii, spp.). OropheaOf the 247 uniflora, taxa, 27 Phlogacanthus species are endemic albiflorus, only Polyalthia shendurunii, Symplocos macrocarpa and Symplocos sessilis . This clearly signifies that this range is relevant to the conservation of the local flora. Introduction India for conserving global biological diversity and also The Western Ghats is one of the biodiversity hotspots declared as Regional Centre of Endemism in the Indian of the world (Myers et al. -
Discovering Karima (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden Within Croton
RESEARCH ARTICLE Discovering Karima (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden within Croton Martin Cheek1*, Gill Challen1, Aiah Lebbie2, Hannah Banks1, Patricia Barberá3, Ricarda Riina3* 1 Science Department, Royal Botanic Gardens, Kew, Surrey, United Kingdom, 2 National Herbarium of Sierra Leone, Dept. of Biological Sciences, Njala University, PMB, Freetown, Sierra Leone, 3 Department of Biodiversity and Conservation, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo, Madrid, Spain * [email protected] (MC); [email protected] (RR) Abstract Croton scarciesii (Euphorbiaceae-Crotonoideae), a rheophytic shrub from West Africa, is OPEN ACCESS shown to have been misplaced in Croton for 120 years, having none of the diagnostic char- Citation: Cheek M, Challen G, Lebbie A, Banks H, acters of that genus, but rather a set of characters present in no known genus of the family. Barberá P, Riina R (2016) Discovering Karima Pollen analysis shows that the new genus Karima belongs to the inaperturate crotonoid (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden within Croton. PLoS group. Analysis of a concatenated molecular dataset combining trnL-F and rbcL sequences ONE 11(4): e0152110. doi:10.1371/journal. positioned Karima as sister to Neoholstia from south eastern tropical Africa in a well-sup- pone.0152110 ported clade comprised of genera of subtribes Grosserineae and Neoboutonieae of the ina- Editor: Nico Cellinese, University of Florida, UNITED perturate crotonoid genera. Several morphological characters support the relationship of STATES Karima with Neoholstia, yet separation is merited by numerous characters usually associ- Received: January 5, 2016 ated with generic rank in Euphorbiaceae. -
Labiatae) in India (Ph.D
Scientific Journey (from 1988 to till date) V. SAMPATH KUMAR Scientist, CNH, BSI, Howrah Taxonomic studies on the tribe Mentheae (Labiatae) in India (Ph.D. – Calcutta University) Research scholar of CNH, BSI under ‘Flora of India’ project from 1988 to 1993. Scientific Asst. from 1993 to 1997. Botanist from 1997 to 2001 (ANRC, PortBlair). Scientist (CDRI, Lucknow) from 2001 to 2002. Scientist in BSI since Sept. 2002. Served in Hqrs., Kolkata; DRC, Hyderabad; SRC, Coimbatore; RBG, Kew (as Indian Botanical Liaison officer); presently working at CNH, Howrah. Botanist Andaman & Nicobar Regional Centre, PortBlair (1997-2001) Study of floristic & ecological aspects of Ritchie’s Archipelago (incl. Rani Jhansi Marine National Park, 1998- 2000) and Kalpong Hydro-electric project site (2000-01). The Kalpong HEP study jointly made with Dr. P.V. Sreekumar, the then Scientist of ANRC. Flora of Andaman & Nicobar Islands (vol. II) Myrtaceae to Alangiaceae (16+3 = 19 families) (co-authored by L.N. Ray and P.S.N. Rao) Alangiaceae, Apiaceae, Araliaceae, Barringtoniaceae, Begoniaceae, Cactaceae, Caricaceae, Cornaceae, Cucurbitaceae, Datiscaceae, Lecythidaceae, Lythraceae, Melastomataceae, Memecylaceae, Myrtaceae, Onagraceae, Passifloraceae, Punicaceae, and Sonneratiaceae Mangroves of Andaman & Nicobar Islands 32 species recognized out of 35 reported (all species found in Andaman group; only15 from Nicobar group). Added – Xylocarpus gangeticus (Prain) Parkinson (not included by Dagar et al. (1991) and Dagar & Singh (1999); Banerjee (2002) in his Indian account) Excluded – Bruguiera sexangula (Lour.) Poiret, Cynometra ramiflora L. (not found in India), Rhizophora x lamarckii Mont., and Sonneratia apetala Buch.-Ham. Vernacular names of A & N Island Plants The plants’ vernacular names used by the tribes of these islands along with their uses were compiled and submitted (500 pp.). -
The Potential Risk of Tree Regeneration Failure in Species-Rich Taba Penanjung Lowland Rainforest, Bengkulu, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 5, September 2018 E-ISSN: 2085-4722 Pages: 1891-1901 DOI: 10.13057/biodiv/d190541 The potential risk of tree regeneration failure in species-rich Taba Penanjung lowland rainforest, Bengkulu, Indonesia AGUS SUSATYA Department of Forestry, Faculty of Agriculture, Universitas Bengkulu. Jl. WR Supratman, Kota Bengkulu 38371A, Bengkulu, Indonesia. Tel./fax. +62- 736-21170, email: [email protected] Manuscript received: 28 May 2018. Revision accepted: 22 September 2018. Abstract. Susatya A. 2018. The potential risk of tree regeneration failure in species-rich Taba Penanjung lowland rainforest, Bengkulu, Indonesia. Biodiversitas 19: 1891-1901. Tropical lowland rain forest is recognized by its high species richness with very few trees per species. It is also known for having tendency to outcrossing of its species with different floral sexualities, which requires the synchronization between flowering of its trees and the presence of pollinators. Such ecological attributes raise possible constraints for the forest trees to regenerate. The objective of the study was to assess the potential risk of failed regeneration for each tree species of the forest. Each of species with dbh of more than 5 cm in a one-ha plot was collected, identified, and its ecological criteria, including rarity, floral sexuality, seed size, and flowering phenology were determined. The potential risk of the failure of regeneration was calculated by summing all scores from Analytical Hierarchical Process of the criteria. The results indicated that the forest consisted of 118 species belonging to 69 genera and 37 families. Rare species accounted to 52.10% of the total species. -
<I>Euphorbiaceae</I>
Blumea 61, 2016: 64–82 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651916X691547 A revision of the Malesian genus Blumeodendron (Euphorbiaceae) M.A.D. Ottens-Treurniet1, P.C. van Welzen1,2 Key words Abstract The genus Blumeodendron (Euphorbiaceae) comprises nine species and is distributed from the Andaman Islands and Myanmar in the west through Malesia to the Bismarck Archipelago in the east. Two species are newly Blumeodendron described, B. gesinus, with ridged fruits, and B. endocarpum, with a thickened endocarp around each seed. Three Euphorbiaceae former synonyms, B. novoguineense (new name for Bennettia papuanum), B. philippinense and B. subrotundifolium, Malesia are reinstated as species. Two important characters were newly discovered, the presence of small lepidote hairs revision in all species and the indehiscent fruit of B. endocarpum. taxonomy Published on 29 April 2016 INTRODUCTION The variation within Blumeodendron is very high, especially in the former circumscription of the two widespread species. It is Blumeodendron (Müll.Arg.) Kurz is a tree genus in the Euphor typically a genus where it takes time to become familiar with biaceae, which ranges from the Andaman Islands and Myanmar the species before a sensible delimitation can be made. As a in the west through Malesia to the Bismarck Archipelago in the result, the species circumscriptions have changed dramatically. east. Blumeodendron belongs to the subfamily Acalyphoideae, The definition of the widespread B. kurzii and B. tokbrai is much tribe Pycnocomeae, subtribe Blumeodendrinae (Webster 1994, more restricted as B. borneense Pax & K.Hoffm. (with B. con 2014, Radcliffe-Smith 2001) and is part of clade A1 of the core color Gage as synonym), B. -
Key to the Families and Genera of Malesian <I>Euphorbiaceae</I> in the Wide Sense
Blumea 65, 2020: 53–60 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.01.05 Key to the families and genera of Malesian Euphorbiaceae in the wide sense P.C. van Welzen1,2 Key words Abstract Identification keys are provided to the different families in which the Euphorbiaceae are split after APG IV. Presently, Euphorbiaceae in the strict sense, Pandaceae, Peraceae, Phyllanthaceae, Picrodendraceae and Euphorbiaceae Putranjivaceae are distinguished as distinct families. Within the families, keys to the different genera occurring in the keys Malesian area, native and introduced, are presented. The keys are to be tested and responses are very welcome. Pandaceae Peraceae Published on 3 April 2020 Phyllanthaceae Picrodendraceae Putranjivaceae INTRODUCTION KEY TO THE EUPHORBIACEOUS FAMILIES The Euphorbiaceae in the wide sense (sensu lato, s.lat.) were 1. Ovary with a single ovule per locule . 2 always a heterogeneous group without any distinct combination 1. Ovary with two ovules per locule ................... 4 of characters. The most typical features are the presence of uni- 2. Fruits drupes. Flowers of both sexes with petals . sexual simple flowers and fruits that fall apart in various carpel ...................................2. Pandaceae fragments and seeds, leaving the characteristic columella on the 2. Fruits capsules, sometimes drupes or berries, then flowers plant. However, some groups, like the Pandaceae and Putranji of both sexes lacking petals.......................3 vaceae, were morphologically already known to be quite unlike 3. Herbs, shrubs, lianas, trees, mono- or dioecious. Flowers in the rest of the Euphorbiaceae s.lat. (e.g., Radcliffe-Smith 1987). cauliflorous, ramiflorous, axillary, or terminal inflorescences The Putranjivaceae formerly formed the tribe Drypeteae in the ................................1. -
Isolation and Structure Elucidation of Insecticidal Secondary Metabolites from Aglaia Species Collected in Vietnam
Isolation and Structure Elucidation of Insecticidal Secondary Metabolites from Aglaia species collected in Vietnam (Isolierung und Struktur-Identifizierung insektizid aktiver Naturstoffe aus Aglaia-Arten von Vietnam) Inaugural-Dissertation Zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Vorgelegt von Duong Ngoc Tu aus Hanoi, Vietnam Düsseldorf, 2005 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität, Düsseldorf Eingereicht am : 19.01. 2006 Referent: Prof. Dr. Peter Proksch Koreferent: Dr. Rainer Ebel, Juniorprofessor ii Erklärung Hiermit erkläre ich ehrenwörtlich, daß ich die vorliegende Dissertation “Isolierung und Struktur-Identifizierung insektizid aktiver Naturstoffe aus Aglaia–Arten von Vietnam´´ selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich habe diese Dissertation in gleicher oder ähnlicher Form in keinem anderen Prüfungsverfahren vorgelegt. Außerdem erkläre ich, daß ich bisher noch keine weiteren akademischen Grade erworben oder zu erwerben versucht habe. iii Acknowledgements First of all, I would like to express my sincere thanks to my “Doktorvater”, supervisor, Prof. Dr. Peter Proksch, who gave me the great opportunity to be involved in natural product research in his group with unwavering support, continuous encouragement, and direct expert guidance. I am deeply indebted to him for his kindness, generous considerasions, admirable advices, sympathyse and valuable helps to fulfil my work and made my stay in Düsseldorf warmly appreciated. I would also like to express my special thanks to Dr. Ru Angelie Edrada Ebel who took care of me very much from the beginning, helped me in isolation techniques as well as her expert guidance through many NMR courses and NMR spectra interpretation. -
A Taxonomic Revision of Trigonostemon (Euphorbiaceae) in Malesia
Blumea 62, 2018: 179–229 ISSN (Online) 2212-1676 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2018.62.03.04 A taxonomic revision of Trigonostemon (Euphorbiaceae) in Malesia R.-Y. Yu1, P.C. van Welzen1,2 Key words Abstract Trigonostemon is taxonomically revised for Malesia based on herbarium collections and field observa- tions. Thirty-eight species are recognized in Malesia, of which four of uncertain status and four newly described. Euphorbiaceae The previous infrageneric classifications are briefly reviewed, but none is accepted. Some useful characters are Malesia discussed. An identification key, nomenclature, descriptions, typification, geographic distributions and taxonomic morphological revision notes are provided. taxonomy Trigonostemon Published on 30 January 2018 INTRODUCTION of stamens, only the inner 2 whorls connate). Later, two other genera, Dimorphocalyx Thwaites (1861; staminate flowers Trigonostemon Blume is a genus in the Euphorbiaceae sub- with 2 whorls of stamens, only the inner whorl connate) and family Crotonoideae (phylogenetically supported based on Tylosepalum Kurz ex Teijsm. & Binn. (Teijsmann & Binnen dijk molecular data by Wurdack et al. 2005). Within the Croto- 1864; 3 connate stamens and a gland on the sepals), were noideae it is traditionally classified in tribe Trigonostemoneae described. All of them were morphologically rather similar (Webster 1975, 1994, Radcliffe-Smith 2001) or tribe Codiaeae and this triggered a discussion about the circumscription and subtribe Trigonostemoniae (Webster 2014), but none of these infrageneric classification of Trigonostemon. treatments has been confirmed by a molecular phylogeny. The Müller Argoviensis (1865, 1866) considered Trigonostemon in genus contains about 60 species ranging from India to China, a wide sense, a genus that did not only include species with throughout mainland SE Asia and Malesia to NE Australia and one whorl of 3 or 5 connate stamens, as Blume (1825) defined the W Pacific (Govaerts et al. -
Programming Code Were Also Written in PHP for Making Deduction of New Fact from Rules in the Knowledge Base
2016 APCBEES BALI CONFERENCES 2016 APCBEES BALI CONFERENCE ABSTRACT June 25-27, 2016 Patra Jasa Bali Resort & Villas Bali, Indonesia Sponsored and Published by Indexed by www.cbees.org - 1 - 2016 APCBEES BALI CONFERENCES Table of Contents 2016 APCBEES Bali Conference Introductions 5 Presentation Instructions 7 Keynote Speaker Introductions 8 Brief Schedule for Conferences 17 Detailed Schedule for Conferences 18 Session 1 S0002: Measurement of Antioxidant Activity and Structural Elucidation of Chemical Constituents 19 from Aglaia oligophylla Miq. Yunie Yeap Soon Yu, Nur Kartinee Kassim, Khalid Hamid Musa, and Aminah Abdullah S0005: Biochemical Properties of Emir Grape Polyphenol Oxidase as Affected by Harvest Year 20 M. Ümit Ünal and Aysun Şener S0007: The Levels of Serum Thyroid Hormone in Sturgeon Populations 21 Jiangqi Qu, Chengxia Jia, Pan Liu, Mu Yang, and Qingjing Zhang S0008: Low Socioeconomic Status among Adolescent Schoolgirls with Stunting 22 Sitti Patimah, Andi Imam Arundana, Ida Royani, and Abdul Razak Thaha S0009: Inulin-Enriched Low Fat Milk Improved Lipid Profile in Indonesian 23 Hypercholesterolemic Adults Fidelia, Lina Antono, Astri Kurniati, and Susana S0014: Formation and Cumulation of CO2 in the Bottles of the Fermented Milk Drinks 24 Bojana Danilović, Lorenzo Cocola, Massimo Fedel, Luca Poletto, and Dragiša Savić S0016: NUCHIFIVE (Nutrition Application for Children Under Five Years) 25 Intan Ayu Ningkiswari, Bintang Mareeta Dewi, and Feri Andriani S2003: Development of Gluten-Free Pasta (Sevaiya) Using Grape Pomace -
Botanical Assessment for Batu Punggul and Sg
Appendix I. Photo gallery A B C D E F Plate 1. Lycophyte and ferns in Timimbang –Botitian. A. Lycopediella cernua (Lycopodiaceae) B. Cyclosorus heterocarpus (Thelypteridaceae) C. Cyathea contaminans (Cyatheaceae) D. Taenitis blechnoides E. Lindsaea parallelogram (Lindsaeaceae) F. Tectaria singaporeana (Tectariaceae) Plate 2. Gnetum leptostachyum (Gnetaceae), one of the five Gnetum species found in Timimbang- Botitian. A B C D Plate 3. A. Monocot. A. Aglaonema simplex (Araceae). B. Smilax gigantea (Smilacaceae). C. Borassodendron borneensis (Arecaceae). D. Pholidocarpus maiadum (Arecaceae) A B C D Plate 4. The monocotyledon. A. Arenga undulatifolia (Arecaceae). B. Plagiostachys strobilifera (Zingiberaceae). C. Dracaena angustifolia (Asparagaceae). D. Calamus pilosellus (Arecaceae) A B C D E F Plate 5. The orchids (Orchidaceae). A. Acriopsis liliifolia B. Bulbophyllum microchilum C. Bulbophyllum praetervisum D. Coelogyne pulvurula E. Dendrobium bifarium F. Thecostele alata B F C A Plate 6. Among the dipterocarp in Timimbang-Botitian Frs. A. Deeply fissured bark of Hopea beccariana. B Dryobalanops keithii . C. Shorea symingtonii C D A B F E Plate 7 . The Dicotyledon. A. Caeseria grewioides var. gelonioides (Salicaceae) B. Antidesma tomentosum (Phyllanthaceae) C. Actinodaphne glomerata (Lauraceae). D. Ardisia forbesii (Primulaceae) E. Diospyros squamaefolia (Ebenaceae) F. Nepenthes rafflesiana (Nepenthaceae). Appendix II. List of vascular plant species recorded from Timimbang-Botitian FR. Arranged by plant group and family in aphabetical order. -
Vegetation Recovery of Logged-Over Dipterocarp Forests in Central Kalimantan, Indonesia
Floresta e Ambiente 2019; 26(3): e20171239 https://doi.org/10.1590/2179-8087.123917 ISSN 2179-8087 (online) Original Article Conservation of Nature Vegetation Recovery of Logged-over Dipterocarp Forests In Central Kalimantan, Indonesia Prijanto Pamoengkas1 , Ayi Zamzam1 , Aji Dwisutono1 1Department of Silviculture, Faculty of Forestry, Bogor Agricultural University – IPB, Bogor/West Java, Indonesia ABSTRACT Forest utilization usually has an impact on changes in forest structure and species composition. The species of trees selected and ecosystem management system that refer to biodiversity characteristics will be explained by better knowledge of Functional Species Group (FSG). The purpose of this study was to determine the composition of vegetation recovery based on FSG in production forest managed with silvicultural system known as Selective Cutting and Line Planting System (SCLP) and undisturbed forest known as Germplasm Preservation Areas (GPCA) in Central Kalimantan, Indonesia. The results showed that the proportion of climax group in the entire observation plots was greater than pioneer species group, i.e. climax 100 species and pioneer 59 species. Stand structure both climax and pioneer species group has inverse J shape curve. It means that the species composition of logged-over forest is still in balance condition, characterized with high index of diversity (H’ > 3). Keywords: functional species group, selective cutting, species composition, stand structure, biodiversity. Creative Commons License. All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License. 2/11 Pamoengkas P, Zamzam A, Dwisutono A Floresta e Ambiente 2019; 26(3): e20171239 1. INTRODUCTION of utilizing dipterocarps species using SCLP is for managing natural forests to increase the productivity Undisturbed lowland dipterocarp forests have clean of tropical rainforest and maintain the biodiversity.