Sedimentary Ancient DNA from Lake Skartjørna, Svalbard: Assessing The

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Ancient DNA from Lake Skartjørna, Svalbard: Assessing The HOL0010.1177/0959683615612563The HoloceneAlsos et al. 612563research-article2015 Research paper The Holocene 2016, Vol. 26(4) 627 –642 Sedimentary ancient DNA from Lake © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav Skartjørna, Svalbard: Assessing the DOI: 10.1177/0959683615612563 resilience of arctic flora to hol.sagepub.com Holocene climate change Inger Greve Alsos,1 Per Sjögren,1 Mary E Edwards,2,3 Jon Y Landvik,4 Ludovic Gielly,5,6 Matthias Forwick,7 Eric Coissac,5,6 Antony G Brown,2 Leif V Jakobsen,5 Marie K Føreid1 and Mikkel W Pedersen8 Abstract Reconstructing past vegetation and species diversity from arctic lake sediments can be challenging because of low pollen and plant macrofossil concentrations. Information may be enhanced by metabarcoding of sedimentary ancient DNA (sedaDNA). We developed a Holocene record from Lake Skartjørna, Svalbard, using sedaDNA, plant macrofossils and sediment properties, and compared it with published records. All but two genera of vascular plants identified as macrofossils in this or a previous study were identified with sedaDNA. Six additional vascular taxa were found, plus two algal and 12 bryophyte taxa, by sedaDNA analysis, which also detected more species per sample than macrofossil analysis. A shift from Salix polaris-dominated vegetation, with Koenigia islandica, Ranunculaceae and the relatively thermophilic species Arabis alpina and Betula, to Dryas octopetala-dominated vegetation ~6600–5500 cal. BP suggests a transition from moist conditions 1–2°C warmer than today to colder/drier conditions. This coincides with a decrease in runoff, inferred from core lithology, and an independent record of declining lacustrine productivity. This mid-Holocene change in terrestrial vegetation is broadly coincident with changes in records from marine sediments off the west coast of Svalbard. Over the Holocene sedaDNA records little floristic change, and it clearly shows species persisted near the lake during time intervals when they are not detected as macrofossils. The flora has shown resilience in the presence of a changing climate, and, if future warming is limited to 2°C or less, we might expect only minor floristic changes in this region. However, the Holocene record provides no analogues for greater warming. Keywords ancient DNA, Arctic, climate change, metabarcoding, plant macrofossils, vegetation reconstruction Received 26 March 2015; revised manuscript accepted 21 September 2015 Introduction Future global warming is expected to be strongest in the Arctic, Pollen analyses of arctic sediments can show compositional with summer temperatures likely 2–4°C (or more) higher than changes in herb-dominated tundra vegetation (e.g. Cwynar, 1982; today and sea-ice cover drastically reduced (Collins et al., 2013; Fredskild, 1973), but palynologists must deal with the low pollen Xu et al., 2013). Our understanding of likely responses to future concentrations that result from low pollen productivity (Lamb environmental change is aided by studies of the past, such as the and Edwards, 1988). Indeed, in the High Arctic, pollen concentra- reconstruction of long-term vegetation dynamics and species tions may be too low to provide sufficient material for reliable diversity patterns in relation to past climate change. While most reconstructions (Birks, 1991; Rozema et al., 2006). Pollen grains arctic vegetation reconstructions to date have been based on pol- are variably resolved taxonomically, particularly in the Arctic, len and macrofossils (e.g. Bennike, 2013; Bigelow, 2013; Kien- ast, 2013), the potential of a molecular approach has recently been 1 Tromsø Museum, University of Tromsø – The Arctic University of demonstrated (Anderson-Carpenter et al., 2011; Willerslev et al., Norway, Norway 2003, 2014). Analysis of sedimentary ancient DNA (sedaDNA) 2University of Southampton, Highfield Campus, UK 3 augments information on past species composition derived from University of Alaska Fairbanks, USA 4Norwegian University of Life Sciences, Norway conventional techniques (Giguet-Covex et al., 2014; Jørgensen 5University Grenoble Alpes, LECA, France et al., 2012; Pansu et al., 2015; Parducci et al., 2012b; Pawlowska 6LECA, CNRS, France et al., 2014). In the Arctic, cold conditions favour good preserva- 7 Department of Geology, University of Tromsø – The Arctic University tion of material, and small floras allow the development of com- of Norway, Norway prehensive molecular reference libraries (Sønstebø et al., 2010), 8Centre for GeoGenetics, Natural History Museum of Denmark, both of which contribute to effective results. However, further University of Copenhagen, Denmark exploration of the method is required (Pedersen et al., 2015), Corresponding author: particularly in relation to lake sediments, which are important Inger Greve Alsos, Tromsø Museum, University of Tromsø – The palaeo-archives in the Arctic (e.g. Kaufman et al., 2009; Arctic University of Norway, NO-9037 Tromsø, Norway. Overpeck et al., 1997). Email: [email protected] Downloaded from hol.sagepub.com at Aberystwyth University on June 2, 2016 628 The Holocene 26(4) where taxa in several diverse groups are barely distinguishable Holocene and includes several species outside their present below family level (e.g. Poaceae, Cyperaceae, Salicaceae). In con- geographical distribution (Arabis alpina, Salix herbacea, Harri- trast, macrofossil records can be more floristically informative, as manella hypnoides; Birks, 1991). In addition, the depositional they are often identifiable to genus or species level, and they are environment of this site is well studied (Holmgren et al., 2010; also more representative of the local vegetation (Birks, 2003; Birks Landvik et al., 1987). The main goals for this study were to and Birks, 2000). However, deposition and preservation of identifi- (1) compare taxonomic resolution, taxonomic overlap and detec- able plant remains vary considerably among species and sites. tion success of the sedaDNA and plant macrofossil records; How vegetation is represented by sedaDNA is less well under- (2) use sedaDNA data, plant macrofossil and sediment analyses to stood. Yoccoz et al. (2012) demonstrated that the amount of DNA infer past environmental change; (3) consider what Holocene (i.e. sequence abundance) in modern soil samples was related to vegetation change can tell us about the impact on vegetation of local above-ground biomass. Noisy but significant linear relation- expected future warming in the High Arctic; and (4) explore ships showed an approximate 1:1 relationship for graminoids, whether sedaDNA increases our understanding of past flora and whereas woody taxa were under-represented and forbs over-rep- vegetation when combined with other proxy approaches. resented in the DNA. These patterns may reflect the absolute amount of DNA in the soil, as determined by litter turnover rate, lignin content and root:shoot ratio (Yoccoz et al., 2012). To date, Methods we have no information as to whether such a relationship holds Study site with DNA in lake sediments. Lake Skartjørna (previously spelled Skardtjørna) is located on the Several studies based on a range of depositional environments, west coast of Spitsbergen (61 m.a.s.l., Figure 1). It is dammed by different floras and varying levels of taxonomic resolution have a prominent raised beach ridge that forms the postglacial marine compared sedaDNA and pollen. The conclusions are not readily limit at 65 m.a.s.l., and it has been cut off from the sea since its generalized; results tend to show higher taxonomic resolution in formation about 13,000 cal. BP (Landvik et al., 1987). An almost sedaDNA but more taxa identified overall in pollen. A generally circular 7.5 m deep basin east of the centre constitutes the deepest low floristic overlap between pollen and sedaDNA (Jørgensen part of the lake. The lake area is 0.10 km2 and the total catchment et al., 2012; Parducci et al., 2012b, 2013; Pedersen et al., 2013) may is 1.24 km2 (Holmgren et al., 2010). Air photos from recent indicate that sedaDNA is of local origin (Haile et al., 2007, 2009; decades show the lake level fluctuating by 1–2 m (Figure 1). The Willerslev et al., 2007), whereas in the localities studied, pollen is site was visited for coring from lake ice in March 2013 and then probably derived from the regional vegetation. Indeed, compari- again in September 2015 to record the flora and geology of the sons of sedaDNA and plant macrofossils show higher taxonomic catchment area. The catchment of the lake is located on the South overlap, which would be expected if both reflect local sources facing thrustal scarp of the junction between the Southwestern (Jørgensen et al., 2012; Parducci et al., 2012b; Pedersen et al., 2013; Basement Province dominated by metamorphic rocks (phyllites Porter et al., 2013), with one exception (Parducci et al., 2015). and quartzite) and the post Caledonian orogeny lithologies that The sedaDNA technique potentially has several advantages: a make up the bedrock slopes draining into the lake (Hjelle et al., standardized and objective mode of identification, high taxo- 1986; Ohta et al., 1991; Dallmann, 2015). The northern bedrock nomic resolution and (when techniques are well established) slopes are composed of the Neoprotozoic Løvliebreen formation more time-efficient production of results. The detailed floristic of psammo-pelitic phyllite, while the southern slope comprises information retrieved (as with macrofossils) can contribute to, for limestone
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • A Revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1
    Revision of Schoenobryum 147 Tropical Bryology 24: 147-159, 2003 A revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1 Brian J. O’Shea 141 Fawnbrake Avenue, London SE24 0BG, U.K. Abstract. The nine species and two varieties of Schoenobryum reported for Africa were investigated, and no characters were found that uniquely identified any of the taxa to be other than the pantropical Schoenobryum concavifolium. The following nine names become new synonyms of S. concavifolium: Cryphaea madagassa, C. subintegra, Acrocryphaea robusta, A. latifolia, A. subrobusta, A. tisserantii, A. latifolia var. microspora, A. plicatula and A. subintegra var. idanreense; a lectotype is selected for Acrocryphaea latifolia var. microspora P.de la Varde. INTRODUCTION as the majority have not been examined since the type description, and many have never been A recent checklist of Sub-Saharan Africa illustrated. (O’Shea, 1999) included nine species and two varieties of Schoenobryum, most of quite limited The purpose of this paper is to provide an distribution. Recent collecting in both Malawi overview of the genus worldwide, and to review (O’Shea et al., 2001) and Uganda (Wigginton et the taxonomic position of the African taxa. al., 2001) has shown the genus to be not uncommon, although there was only one CRYPHAEACEAE SCHIMP. 1856. previously published collection from the two countries (O’Shea, 1993). Apart from one Cryphaeaceae Schimp., Coroll. Bryol. Eur. 97. African taxon occurring in nine countries, the 1856 [‘1855’]. Type: Cryphaea D.Mohr in other 10 occurred in an average of 1.7 countries. F.Weber This particular profile is typical of unrevised genera in Africa, and indicative of a possible A brief review of the circumscription and need for revision (O’Shea, 1997), particularly systematics of the family, and the distinctions from related families (e.g.
    [Show full text]
  • The Vegetation and Flora of Auyuittuq National Park Reserve, Baffin Island
    THE VEGETATION AND FLORA OF AUYUITTOQ NATIONAL PARK RESERVE, BAFFIN ISLAND ;JAMES E. HINES AND STEVE MOORE DEPARTMENT OF RENEWABLE RESOURCES GOVERNMENT OF THE NORTHWEST TERRITORIES YELLOWKNIFE I NORTHWEST TERRITORIES I XlA 2L9 1988 A project completed under contract to Environment Canada, Canadian Parks Service, Prairie and Northern Region, Winnipeg, Manitoba. 0 ~tona Renewable Resources File Report No. 74 Renewabl• R•sources ~ Government of tha N p .0. Box l 310 Ya\lowknif e, NT XlA 2L9 ii! ABSTRACT The purposes of this investigation were to describe the flora and major types of plant communities present in Auyuittuq National Park Reserve, Baffin Island, and to evaluate factors influencing the distribution of the local vegetation. Six major types of plant communities were recognized based on detailed descriptions of the physical environment, flora, and ground cover of shrubs, herbs, bryophytes, ·and lichens at 100 sites. Three highly interrelated variables (elevation, soil moisture, and texture of surficial deposits) seemed to be important in determining the distribution and abundance of plant communities. Continuous vegetation developed mainly at low elevations on mesic to wet, fine-textured deposits. Wet tundra, characterized by abundant cover of shrubs, grasses, sedges, and forbs, occurred most frequently on wet, fine-textured marine and fluvial sediments. Dwarf shrub-qram.inoid comm.unities were comprised of abundant shrubs, grasses, sedges and forbs and were found most frequently below elevations of 400 m on mesic till or colluvial deposits. Dwarf shrub comm.unities were characterized by abundant dwarf shrub and lichen cover. They developed at similar elevations and on similar types of surficial deposits as dwarf-shrub graminoid communities.
    [Show full text]
  • Winter Memory Throughout the Plant Kingdom: Different Paths to Flowering1[OPEN]
    Update on Vernalization Pathways Winter Memory throughout the Plant Kingdom: Different Paths to Flowering1[OPEN] Frédéric Bouché, Daniel P. Woods, and Richard M. Amasino* Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 (F.B., D.P.W., R.M.A.); and United States Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin 53726 (D.P.W., R.M.A.) ORCID IDs: 0000-0002-8017-0071 (F.B.); 0000-0002-1498-5707 (D.P.W.); 0000-0003-3068-5402 (R.M.A.). Plants have evolved a variety of mechanisms to syn- developmental program that prevents flowering in young chronize flowering with their environment to optimize seedlings and promotes the transition to reproductive de- reproductive success. Many species flower in spring when velopmentinolderplants(e.g.Yuetal.,2015).Inmany the photoperiod increases and the ambient tempera- species adapted to temperate climates, the perception tures become warmer. Winter annuals and biennials have of seasonal changes also involves the acquisition of the evolved repression mechanisms that prevent the transition competence to flower in response to an extended cold to reproductive development in the fall. These repressive period, a process referred to as vernalization (e.g. Chouard, processes can be overcome by the prolonged cold of 1960; Preston and Sandve, 2013; Fig. 1A). In addition, some winter through a process known as vernalization. The species acquire floral competence when exposed to the memory of the past winter is sometimes stored by epige- shorter photoperiod of winter (Purvis and Gregory, 1937; netic chromatin remodeling processes that provide com- Wellensiek, 1985), but the molecular mechanisms control- petence to flower, and plants usually require additional ling the so-called “short-day vernalization” are still un- inductive signals to flower in spring.
    [Show full text]
  • A Famous Visitor Teresamanera in 1832 Charles Darwin Came Here to Lessed with Fertile Soil and Known to Us Only by Their Fossils
    Volume 29, Number 2 Center for the Study of the First Americans Department of Anthropology April, 2014 Texas A&M University, 4352 TAMU, College Station, TX 77843-4352 ISSN 8755-6898 World Wide Web site http://centerfirstamericans.org and http://anthropology.tamu.edu 6&7 Ancient DNA from bone proves ancestry of First Americans and Native Americans Child burials discovered decades ago on two continents had to wait for genome analysis to unlock their secrets. 16 Dating the earliest petroglyphs in North America in the Nevada desert Tufa deposits from Pyramid Lake and dry Winnemucca Lake give geochemist Benson and anthro- pologist Hattori a gauge for measuring the age of striking “pit and groove” rock carvings. these footprints adds a note of ur- gency to this story. Tracks of birds and footprints of Megatherium at the Pehuen Co site. A famous visitor TERESAMANERA In 1832 Charles Darwin came here to LESSED WITH FERTILE SOIL and known to us only by their fossils. At the investigate the legendary Monte Her- lush grasses, the Pampas of Argen- southern extremity of the Argentinean moso cliffs, whose sediments con- tina is perhaps best known for its Pampas plain lies a 30-km sector of the tain fossil remains of autochthonous cattle that supply beef to markets all over Atlantic coast whose soils have yielded South American fauna. His visit is re- the globe. The Pampas grasslands roll an extraordinary assemblage of fossils called by Teresa Manera, professor at southward from the Rio de la Plata to the that give us a snapshot of the changing the National University of the South banks of the Rio Negro, westward toward paleoenvironment at four significant mo- in Bahía Blanca and honorary direc- the Andes, and northward to the southern ments over the past 5 million years, from tor of the Charles Darwin Municipal parts of Córdoba and Santa Fe provinces, the upper Tertiary through the arrival of Natural Science Museum.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Lichens and Vascular Plants in Duvefjorden Area on Nordaust- Landet, Svalbard
    CZECH POLAR REPORTS 9 (2): 182-199, 2019 Lichens and vascular plants in Duvefjorden area on Nordaust- landet, Svalbard Liudmila Konoreva1*, Mikhail Kozhin1,2, Sergey Chesnokov3, Soon Gyu Hong4 1Avrorin Polar-Alpine Botanical Garden-Institute of Kola Scientific Centre of RAS, 184250 Kirovsk, Murmansk Region, Russia 2Department of Geobotany, Faculty of Biology, Lomonosov Moscow State University, Leninskye Gory 1–12, GSP–1, 119234 Moscow, Russia 3Komarov Botanical Institute RAS, Professor Popov St. 2, 197376 St. Petersburg, Russia 4Division of Polar Life Sciences, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon 21900, Republic of Korea Abstract Floristic check-lists were compiled for the first time for Duvefjorden Bay on Nordaust- landet, Svalbard, based on field work in July 2012 and on data from literature and herbaria. The check-lists include 172 species of lichens and 51 species of vascular plants. Several species rare in Svalbard and in the Arctic were discovered: Candelariella borealis was new to Svalbard. 51 lichen species were newly recorded on Nordaustlandet and 131 lichen species were observed in the Duvefjorden area for the first time. Among lichen species rare in Svalbard and in the Arctic the following can be mentioned: Caloplaca magni-filii, C. nivalis, Lecidea silacea, Phaeophyscia nigricans, Polyblastia gothica, Protothelenella sphinctrinoidella, Rinodina conradii, Stenia geophana, and Tetramelas pulverulentus. Two species of vascular plants, Saxifraga svalbardensis and S. hyperborea, were found new to the Duvefjorden area. The investigated flora is represented mostly by species widespread in Svalbard and in the Arctic. Although Duvefjorden area is situated in the northernmost part of Svalbard, its flora is characterized by relatively high diversity of vascular plants and lichens.
    [Show full text]
  • Memory of the Vernalized State in Plants Including the Model Grass Brachypodium Distachyon
    PERSPECTIVE ARTICLE published: 25 March 2014 doi: 10.3389/fpls.2014.00099 Memory of the vernalized state in plants including the model grass Brachypodium distachyon Daniel P.Woods1,2,3 ,Thomas S. Ream1,2 † and Richard M. Amasino1,2 * 1 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA 2 U.S. Department of Energy–Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA 3 Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA Edited by: Plant species that have a vernalization requirement exhibit variation in the ability to George Coupland, Max Planck “remember” winter – i.e., variation in the stability of the vernalized state. Studies in Society, Germany Arabidopsis have demonstrated that molecular memory involves changes in the chromatin Reviewed by: state and expression of the flowering repressor FLOWERING LOCUS C, and have revealed Paula Casati, Centro de Estudios Fotosinteticos – Consejo Nacional de that single-gene differences can have large effects on the stability of the vernalized state. In Investigaciones Científicas y Técnicas, the perennial Arabidopsis relative Arabis alpina, the lack of memory of winter is critical for its Argentina perennial life history. Our studies of flowering behavior in the model grass Brachypodium Iain Robert Searle, The University of Adelaide, Australia distachyon reveal extensive variation in the vernalization requirement, and studies of a particular Brachypodium accession that has a qualitative requirement for both cold exposure *Correspondence: Richard M. Amasino, Department of and inductive day length to flower reveal that Brachypodium can exhibit a highly stable Biochemistry, University of vernalized state. Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA Keywords: vernalization, flowering, Brachypodium, epigenetics, life history e-mail: [email protected] †Present address: Thomas S.
    [Show full text]
  • Northern Hemisphere Biogeography of Cerastium (Caryophyllaceae): Insights from Phylogenetic Analysis of Noncoding Plastid Nucleotide Sequences1
    American Journal of Botany 91(6): 943±952. 2004. NORTHERN HEMISPHERE BIOGEOGRAPHY OF CERASTIUM (CARYOPHYLLACEAE): INSIGHTS FROM PHYLOGENETIC ANALYSIS OF NONCODING PLASTID NUCLEOTIDE SEQUENCES1 ANNE-CATHRINE SCHEEN,2,6 CHRISTIAN BROCHMANN,3 ANNE K. BRYSTING,3 REIDAR ELVEN,3 ASHLEY MORRIS,4 DOUGLAS E. SOLTIS,4 PAMELA S. SOLTIS,5 AND VICTOR A. ALBERT2 2Botanical Garden, Natural History Museums and Botanical Garden, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway; 3National Centre for Biosystematics, Natural History Museums and Botanical Garden, University of Oslo, P.O. Box 1172 Blindern, N-0318 Oslo, Norway; 4Department of Botany, University of Florida, P.O. Box 118526, Gainesville, Florida 32611-5826 USA; and 5Florida Museum of Natural History, P.O. Box 117800, University of Florida, Gainesville, Florida 32611-7800 USA Phylogenetic relationships and biogeography of the genus Cerastium were studied using sequences of three noncoding plastid DNA regions (trnL intron, trnL-trnF spacer, and psbA-trnH spacer). A total of 57 Cerastium taxa was analyzed using two species of the putative sister genus Stellaria as outgroups. Maximum parsimony analyses identi®ed four clades that largely corresponded to previously recognized infrageneric groups. The results suggest an Old World origin and at least two migration events into North America from the Old World. The ®rst event possibly took place across the Bering land bridge during the Miocene. Subsequent colonization of South America occurred after the North and South American continents joined during the Pliocene. A more recent migration event into North America probably across the northern Atlantic took place during the Quaternary, resulting in the current circumpolar distribution of the Arctic species.
    [Show full text]
  • The Flora of Jan Mayen
    NORSK POLARINSTITUTT SKRIFTER NR. 130 JOHANNES LID THE FLORA OF JAN MAYEN IlJustrated by DAGNY TANDE LID or1(f t ett} NORSK POLARINSTITUTT OSLO 1964 DET KONGELIGE DEPARTEMENT FOR INDUSTRI OG HÅNDVERK NORSK POLARINSTITUTT Observatoriegt. l, Oslo, Norway Short account of the publications of Norsk Polarinstitutt The two series, Norsk Polarinstitutt - SKRIFTER and Norsk Polarinstitutt - MEDDELELSER, were taken over from the institution Norges Svalbard- og Ishavs­ undersøkelser (NSIU), which was incorporated in Norsk Polarinstitutt when this was founded in 1948. A third series, Norsk Polarinstitutt - ÅRBOK, is published with one volum(� per year. SKRIFTER includes scientific papers, published in English, French or German. MEDDELELSER comprises shortcr papers, often being reprillts from other publi­ cations. They generally have a more popular form and are mostly published in Norwegian. SKRIFTER has previously been published under various tides: Nos. 1-11. Resultater av De norske statsunderstuttede Spitsbergen-ekspe. ditioner. No 12. Skrifter om Svalbard og Nordishavet. Nos. 13-81. Skrifter om Svalbard og Ishavet. 82-89. Norges Svalbard- og Ishavs-undersøkelser. Skrifter. 90- • Norsk Polarinstitutt Skrifter. In addition a special series is published: NORWEGIAN-BRITISH-SWEDISH ANTARCTIC EXPEDITION, 1949-52. SCIENTIFIC RESULTS. This series will comprise six volumes, four of which are now completed. Hydrographic and topographic surveys make an important part of the work carried out by Norsk Polarinstitutt. A list of the published charts and maps is printed on p. 3 and 4 of this cover. A complete list of publications, charts and maps is obtainable on request. ÅRBØKER Årbok 1960. 1962. Kr.lS.00. Årbok 1961. 1962. Kr. 24.00.
    [Show full text]
  • Yakima County Rare Plants County List
    Yakima County Rare Plants County List Scientific Name Common Name Habitat Family Name State Federal Status Status Meadows, open woods, rocky ridge Agoseris elata tall agoseris tops Asteraceae S Allium campanulatum Sierra onion High elevation Liliaceae T Anthoxanthum hirtum common northern sweet grass moist meadows, riparian areas Poaceae R1 shrub-steppe, deep sandy loams, gravelly loams, lithosols and cobbly Astragalus columbianus Columbia milk-vetch sand. Fabaceae S SC Shrub-steppe, open ridgetops and Astragalus misellus var. pauper Pauper milk-vetch upper slopes Fabaceae S Calochortus longebarbatus var. longebarbatus long-bearded sego lily Moist meadows, forest Liliaceae S SC gravelly basalt, sandy soils, shrub- Camissonia minor small evening primrose steppe Onagraceae S shrub-steppe, unstable soil or gravel in steep talus, dry washes, banks Camissonia pygmaea dwarf evening primrose and roadcuts. Onagraceae S Carex constanceana Constance's sedge Cyperaceae R1 Carex densa dense sedge intertidal marshland Cyperaceae T Carex heteroneura var. epapillosa smooth-fruit sedge Cyperaceae S seepage areas, wet meadows, Carex macrochaeta large-awned sedge streams,lakes Cyperaceae T Carex vernacula foetid sedge Cyperaceae R1 Castilleja cryptantha obscure paintbrush High elevation Orobanchaceae S SC Collomia macrocalyx bristle-flowered collomia Talus rock outcrops and lithosols Polemoniaceae S Crepis modocensis ssp. glareosa hawksbeard Asteraceae R1 Cryptantha gracilis narrow-stem cryptantha Steep talus slopes Boraginaceae S Cryptantha leucophaea
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]