Biological Journal of the Linnean Society. 101, 288-322

Total Page:16

File Type:pdf, Size:1020Kb

Biological Journal of the Linnean Society. 101, 288-322 Biological Journal of the Linnean Society, 2010, 101, 288–322. With 9 figures Molecular systematics of Selenops spiders (Araneae: Selenopidae) from North and Central America: implications for Caribbean biogeography SARAH C. CREWS1,2* and ROSEMARY G. GILLESPIE1 1University of California Berkeley, Department of Environmental Sciences Policy and Management, 137 Mulford Hall, Berkeley, CA 94720-3114, USA 2Berkeley City College, Department of Science and Biotechnology, 2050 Center Street, Berkeley, CA 94704, USA Received 16 February 2010; revised 3 May 2010; accepted for publication 3 May 2010bij_1494 288..322 The Caribbean region includes a geologically complex mix of islands, which have served as a backdrop for some significant studies of biogeography, mostly with vertebrates. Here, we use the tropical/subtropical spider genus Selenops (Selenopidae) to obtain a finer resolution of the role of geology in shaping patterns of species diversity. We obtained a broad geographic sample from over 200 localities from both the islands and American mainland. DNA sequence data were generated for three mitochondrial genes and one nuclear gene for eleven outgroup taxa and nearly 60 selenopid species. Phylogenetic analysis of the data revealed several biogeographic patterns common to other lineages that have diversified in the region, the most significant being: (1) a distinct biogeographic break between Northern and Southern Lesser Antilles, although with a slight shift in the location of the disjunction; (2) diversification within the islands of Jamaica and Hispaniola; (3) higher diversity of species in the Greater Antilles relative to the Lesser Antilles. However, a strikingly unique pattern in Caribbean Selenops is that Cuban species are not basal in the Caribbean clade. Analyses to test competing hypotheses of vicariance and dispersal support colonization through GAARlandia, an Eocene–Oligocene land span extending from South America to the Greater Antilles, rather than over-water dispersal. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 288–322. ADDITIONAL KEYWORDS: Bayesian phylogenetics – island biogeography – likelihood analysis of geographic range evolution. INTRODUCTION insights into the complex interaction between coloni- zation and diversification. In particular, the Carib- Remote islands form the basis for many biological bean has served as the setting for the establishment studies because of their ability to act as a laboratory, of most of the central tenets in the equilibrium theory with repeated sets of ecological and/or evolutionary of island biogeography (Munroe, 1948), the argu- experiments occurring within a circumscribed time ments being formulated independently by MacArthur frame (Cronk, 1997; Losos et al., 1998; Gillespie & and Wilson (1963, 1967) much later (Lomolino & Roderick, 2002; Gillespie, 2004; Ricklefs & Berming- Brown, 2009). More recent research on the islands ham, 2008). While the Hawaiian Islands have served has allowed an understanding of the interplay as a model system for processes of in situ diversifica- between ecological and evolutionary processes in tion, the long history of studies on the biota of the shaping species diversity (Losos & Schluter, 2000; Caribbean has provided some of the most important Schoener, Spiller & Losos, 2001). The primary feature of the Caribbean region that makes it particularly useful for examining the inter- *Corresponding author. E-mail: [email protected] action between colonization and diversification is its 288 © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 288–322 SYSTEMATICS AND BIOGEOGRAPHY OF SELENOPS 289 long and complex geological history. The Caribbean South America to the Greater Antilles during the Basin began forming nearly 140 Mya. Islands in the Eocene–Oligocene transition 35–33 Mya. The land basin consist of four different types: (1) land-bridge span, although probably short-lived, may have pro- islands which were connected to each other or to the vided an avenue for terrestrial organisms to colonize mainland at times of lower sea level; (2) continental the Greater Antilles from South America. Among islands which broke off from the mainland through mammals, molecular phylogenies of primates and tectonic displacement; (3) uplifted limestone islands; hystricognath rodents are consistent with the model, and (4) volcanic islands (MacPhee & Iturralde-Vinent, while sloths and insectivorans are not (Dávalos, 2005; Robertson, 2009). Despite their limited isola- 2004). The pattern in plants is similarly mixed. tion, the age and geologic complexity of the area have Molecular phylogenetic data from the genera Croton provided ‘well-defined paths of entry by which immi- (Euphorbiaceae) (van Ee et al., 2008) and Styrax (Sty- grants may reach’ the islands (Munroe, 1948). More- racaceae) (Fritsch, 2003) show that the timing of over, the islands have served as the setting for divergence of lineages is consistent with the GAAR- adaptive radiation among lineages with limited dis- landia hypothesis. However, similar data from persal ability, in particular lizards of the genus Anolis endemic legume radiations in the Greater Antilles, (Losos, 1992, 1994, 2009), frogs of the genus Eleuth- although initially thought to indicate ancient splitting erodactylus (Hedges, 1989; Heinicke, Duellman & between lineages consistent with the GAARlandia Hedges, 2007), some lineages of insects [e.g. beetles hypothesis (Lavin et al., 2001), show more recent (Liebherr, 1988b), flies (Wilder & Hollocher, 2003)] diversification (Lavin & Beyra-Matos, 2008), which is and plants [e.g. lineages within the Melastomaceae likely to hold also for lineages of Asteraceae (Michelangeli et al., 2008) and Asteraceae (Francisco- (Francisco-Ortega et al., 2008). Ortega et al., 2008)]. Although studies to date have Clearly, the timing and frequency of dispersal and provided insights into how the individual lineages vicariance, and the interplay between the two, varies have colonized and subsequently diversified within across biotic assemblages. The challenge, then, is to the island system, notable controversies remain, understand the circumstances dictating the relative including the source of colonists and the means by roles of each and how they interact. Arthropods, which they colonized the islands, biogeographic pat- because they can provide a fine-scale resolution of terns within lineages and whether these patterns biogeographic patterns (Ferrier et al, 2004), are ideal might be expected to be shared across multiple lin- candidates for elucidating the nature of these rela- eages (Guyer & Savage, 1986; Williams, 1989; tionships. Although the biogeography of terrestrial Hedges, Hass & Maxon, 1992; Crother & Guyer, 1996; invertebrates in the Caribbean has been examined in Hedges, 1996a,b). some detail (see Liebherr, 1988a and chapters A particular focus of debate has been the role of therein), few recent studies have been attempted, vicariance vs. dispersal in shaping the Caribbean with little molecular information on the timing and biota. Hedges and colleagues (Hedges et al., 1992; nature of the interplay between colonization and Hedges, 1996a,b; Hedges & Heinicke, 2007; Heinicke diversification. However, there are some notable et al., 2007), working with herpetofauna, have sug- exceptions (Davies & Bermingham, 2002; Wilder & gested that the absence of lineages older than the Hollocher, 2003; Brisson, Wilder & Hollocher, 2006). break-up of the proto-Antilles (a contiguous land In particular, recent studies on spiders (Sicariidae: mass between North and South America) precludes a Loxosceles) support the GAARlandia hypothesis in the vicariant origin and they argue for the initial coloni- colonization of the lineage of North from South zation of most taxa via over-water dispersal on America (Binford et al., 2008), while crickets show a flotsam. A similarly dominant role for dispersal has more mixed pattern of both vicariance and dispersal, been suggested for multiple lineages of plants, such coupled with intra-island diversification (Oneal, as Miconieae (Michelangeli et al., 2008). In contrast, 2009). other studies have suggested that vicariance has In this study, we combine molecular and morpho- played a larger role than dispersal in the initial logical methods to examine the phylogenetic relation- colonization of the Caribbean; for example, in lizards ships and biogeographic history of the cursorial and (Crother & Guyer, 1996; Iturralde-Vinent & MacPhee, dispersal-limited spider genus Selenops (Araneae: 1999; MacPhee & Iturralde-Vinent, 2005) and some Selenopidae) in the Caribbean. These primarily tropi- plants [e.g. Euphorbiaceae (van Ee et al., 2008)]. cal and subtropical spiders (Muma, 1953; Corronca, A related controversy focuses on the hypothesis of 1998; Alayón, 2005) are distinctive in that they are GAARlandia (Greater Antilles + Aves Ridge), first extremely dorsoventrally flattened and exceedingly proposed by Iturralde-Vinent & MacPhee (1999), who fast. They are found in a variety of habitats and used geological data and fossil evidence to demon- microhabitats (Crews, Wienskoski & Gillespie, 2008). strate the likely existence of a land span connecting Although the genera and species groups have © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101, 288–322 290 S. C. CREWS and R. G. GILLESPIE Figure 1. Map of the study area. The Americas; the boxed region shows the primary study area. undergone
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • The Short-Range Endemic Invertebrate Fauna of the Ravensthorpe Range
    THE SHORT-RANGE ENDEMIC INVERTEBRATE FAUNA OF THE RAVENSTHORPE RANGE MARK S. HARVEY MEI CHEN LENG Department of Terrestrial Zoology Western Australian Museum June 2008 2 Executive Summary An intensive survey of short-range endemic invertebrates in the Ravensthorpe Range at 79 sites revealed a small but significant fauna of myriapods and arachnids. Four species of short-range endemic invertebrates were found: • The millipede Antichiropus sp. R • The millipede Atelomastix sp. C • The millipede Atelomastix sp. P • The pseudoscorpion Amblyolpium sp. “WA1” Atelomastix sp. C is the only species found to be endemic to the Ravensthorpe Range and was found at 14 sites. Antichiropus sp. R, Atelomastix sp. P and Amblyolpium sp. “WA1” are also found at nearby locations. Sites of high importance include: site 40 with 7 species; sites 7 and 48 each with 5 species; and sites 18 and 44 each with 4 species. WA Museum - Ravensthorpe Range Survey 3 Introduction Australia contains a multitude of terrestrial invertebrate fauna species, with many yet to be discovered and described. Arthropods alone were recently estimated to consist of approximately more than 250,000 species (Yeates et al. 2004). The majority of these belong to the arthropod classes Insecta and Arachnida, and although many have relatively wide distributions across the landscape, some are highly restricted in range with special ecological requirements. These taxa, termed short-range endemics (Harvey 2002b), are taxa categorised as having poor dispersal abilities and/or requiring very specific habitats, usually with naturally small distributional ranges of less than 10,000 km2 and the following ecological and life-history traits: • poor powers of dispersal; • confinement to discontinuous habitats; • usually highly seasonal, only active during cooler, wetter periods; and • low levels of fecundity.
    [Show full text]
  • A Preliminary Checklist of Spiders (Araneae: Arachnida) in Chinnar Wildlife Sanctuary, Western Ghats, India
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 April 2016 | 8(4): 8703–8713 A preliminary checklist of spiders (Araneae: Arachnida) in Chinnar Wildlife Sanctuary, Western Ghats, India 1 2 ISSN 0974-7907 (Online) C.K. Adarsh & P.O. Nameer Communication Short ISSN 0974-7893 (Print) 1,2 Centre for Wildlife Sciences, College of Forestry, Kerala Agricultural University, Thrissur, Kerala 680656, India 1 [email protected], 2 [email protected] (corresponding author) OPEN ACCESS Abstract: A preliminary study was conducted to document spider the spiders are regarded as poisonous creatures, and the diversity in Chinnar Wildlife Sanctuary, Idukki District, Kerala State in general perception about them among the people are southern India. The study was conducted from October to November 2012. A total of 101 species of spiders belonging to 65 genera from negative. But the fact is that very few spiders are actually 29 families were identified from the sanctuary. This accounted for poisonous and harmful to human beings (Mathew et 6.98% of Indian spider species, 17.81% of Indian spider genera and 48.33% of the spider families of India. The dominant families were al. 2009). However, the services these creature do to Lycosidae (11 species) and Araneidae (10). Two endemic genera of mankind by way of controlling pest species have been Indian spiders such as Annandaliella and Neoheterophrictus were well documented (Riechert & Lockley 1984; Tanaka found at Chinnar, each representing one species each, and belonging to the family Theraphosidae. A guild structure analysis of the spiders 1989; Bishop & Riechert 1990). Being a less charismatic revealed seven feeding guilds such as orb weavers, stalkers, ground species and the scarcity of biologists studying spiders, runners, foliage runners, sheet web builders, space web builders and studies on the spiders of India in general and Western ambushers.
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Curriculum Vitae NEFTALÍ RÍOS LÓPEZ Catedrático Asociado
    Curriculum Vitae NEFTALÍ RÍOS LÓPEZ Catedrático Asociado Universidad de Puerto Rico en Humacao Call Box 860, Humacao, Puerto Rico, 00792 Correo Electrónico: [email protected] PERSONAL INFORMATION Date of Birth: June 24, 1969 Residential Postal Address: Bairoa Golden Gate 1, E-7 Calle C, Caguas, Puerto Rico 00727 EDUCATION 2007 Ph.D., Department of Biology, University of Puerto Rico–Río Piedras Campus. Thesis: ‘The Structuring of Herpetofaunal Assemblages in Human-Altered Coastal Ecosystems’. Research Mentor Dr. J. P. Richard Thomas. 1999 M.S. in Science, Department of Biology, University of Puerto Rico–Río Piedras Campus. Thesis: ‘Variation in Reproductive Biology, Physiology, and Morphology of Eleutherodactylus coqui (Anura: Leptodactylidae) Along an Altitudinal Gradient’. Research Mentor Dr. Rafael L. Joglar. 1995 B.S. Biology, Natural Sciences College, University of Puerto Rico–Río Piedras Campus. GRADUATE AND SUBJECT-SPECIFIC COURSES Topics in Tropical Ecology; Population Ecology; Community Ecology; Bioconservation and Advanced Ecology; Landscape Ecology: Diversity, Patterns, and Processes; Ecosystem Ecology: Decomposition Processes; Ecotoxicology; Topics in Ecophysiology; Biology of Fresh Water and Land Invertebrates from Puerto Rico; Herpetology; Animal Behavior; Taxonomy of Flowering Plants; Scientific Writing; Biometry; Multivariate Analysis of Ecological Communities. WORKSHOPS/PROFESSIONAL TRAINING Certified, Amphibian Ark’s Captive Care and Management of Amphibians–Husbandry Workshop. Sponsored by Amphibian Ark, Toledo Zoo, and Parque Zoológico Nacional–Dominican Republic. 2012. Aerial surveys of marine mammals and sea turtles. Certified by the Florida Marine Research Institute, Florida Fish & Wildlife Conservation Commission. 2000. COMPUTER SKILLS Mac and PC systems: word processors, spreadsheet, and data management; statistical packages (Statistix 7.0, PC–ORD 4); graphics, image editing, and presentations (SigmaPlot 4.0, Power Point, Keynote); acoustic analyses (Adobe Audition, Audacity); web pages.
    [Show full text]
  • Spider Diversity Along Altitudinal Gradient in Milam Valley Nanda Devi Biosphere Reserve, Western Himalaya
    1206 Indian Forester [October 2011] 1207 I PAPILIONIDAE SPIDER DIVERSITY ALONG ALTITUDINAL GRADIENT IN MILAM VALLEY NANDA DEVI BIOSPHERE RESERVE, WESTERN HIMALAYA 53 Common lineblue Prosotas nora (C.Felder) C 54 Pea blue Lampides boeticus (Linnaeus) VC SHAZIA QUASIN AND V.P.UNIYAL 55 Large oak blue Arhopoda amantes (Hewitson) C 56 Plum judy Abisara echerius (Stoll) VC Wildlife Institute of India, Chandrabani, Dehradun 248001 Uttarakhand. 57 Forget-me-not Catochrysops Strabo (Fabricius) C V Fam HESPIRIIDAE Introduction area falls under Nanda Devi Biosphere Reserve, the 58 Rice swift Borbo cinnare (Wallace) VC th World Heritage Site. Milam Glacier originates from the 59 Indian skipper Spialia galba (Fabricius) C Spiders are diverse groups of animals attaining 7 60 Common banded demon Notocrypta paralyos (Wood-Mason & de Niceville) C number in diversity (Nyffeler and Benz, 1980). They are slopes of Trishul peak and is the source of the Milam River 61 Dark palm dart Telicota ancilla (Herrich-Schaffer) R abundant generalist predators in terrestrial habitats and and a tributary of the Pindar River. Some areas along this 62 Common dartlet Oriens goloides (Moore) C are themselves an important food source for other valley towards Milam were semi-arid in nature. The area * New Record, VC-Very Common, C- Common, R-Rare animals and are a valuable component of ecosystem is rich and diverse in both floral and fauna species. The major vegetation types ranges from tropical moist Acknowledgements function (Wise, 1993). The knowledge on diversity and distribution of spiders in India is sparse as compared to deciduous Forests to alpine moist and semi arid pastures.
    [Show full text]
  • On the Huntsman Spider Genera Sparianthina Banks, 1929 and Anaptomecus Simon, 1903 from South and Central America (Araneae, Sparassidae)
    A peer-reviewed open-access journal ZooKeysOn %%: the 1-14 huntsman (2009) spider genera Sparianthina Banks 1929 and Anaptomecus Simon 1903 99 doi: 10.3897/zookeys.%%.@@@ RESEARCH ARTICLE www.pensoftonline.net/zookeys Launched to accelerate biodiversity research On the huntsman spider genera Sparianthina Banks, 1929 and Anaptomecus Simon, 1903 from South and Central America (Araneae, Sparassidae) Peter Jäger¹, Cristina Anne Rheims², Facundo Martín Labarque³ 1 Senckenberg Research Institute, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 2 Labora- tório de Artrópodes, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil 3 División Aracnología, Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Ar- gentina urn:lsid:zoobank.org:author: Corresponding author: Peter Jäger ([email protected]) Academic editor: Jason Dunlop | Received 3 April 2009 | Accepted 16 June 2009 | Published @@ August 2009 urn:lsid:zoobank.org:pub: Citation: Jäger P, Rheims CA, Labarque FM (2009) On the huntsman spider genera Sparianthina Banks, 1929 and Anaptomecus Simon, 1903 from South and Central America (Araneae, Sparassidae). In: Stoev P, Dunlop J, Lazarov S (Eds) A life caught in a spider's web. Papers in arachnology in honour of Christo Deltshev. ZooKeys %%: 1-14. doi: 10.3897/ zookeys.%%.@@@ Abstract Th e huntsman spider genera Sparianthina Banks, 1929 and Anaptomecus Simon, 1903 are reviewed. Th e type species of Sparianthina, Sparianthina selenopoides Banks, 1929, is redescribed, illustrated, and re- corded from Costa Rica for the fi rst time; a lectotype and paralectotype are designated. Th ree species are transferred to the genus: Sparianthina pumilla (Keyserling, 1880) comb. n.
    [Show full text]
  • Puerto Rico Comprehensive Wildlife Conservation Strategy 2005
    Comprehensive Wildlife Conservation Strategy Puerto Rico PUERTO RICO COMPREHENSIVE WILDLIFE CONSERVATION STRATEGY 2005 Miguel A. García José A. Cruz-Burgos Eduardo Ventosa-Febles Ricardo López-Ortiz ii Comprehensive Wildlife Conservation Strategy Puerto Rico ACKNOWLEDGMENTS Financial support for the completion of this initiative was provided to the Puerto Rico Department of Natural and Environmental Resources (DNER) by U.S. Fish and Wildlife Service (USFWS) Federal Assistance Office. Special thanks to Mr. Michael L. Piccirilli, Ms. Nicole Jiménez-Cooper, Ms. Emily Jo Williams, and Ms. Christine Willis from the USFWS, Region 4, for their support through the preparation of this document. Thanks to the colleagues that participated in the Comprehensive Wildlife Conservation Strategy (CWCS) Steering Committee: Mr. Ramón F. Martínez, Mr. José Berríos, Mrs. Aida Rosario, Mr. José Chabert, and Dr. Craig Lilyestrom for their collaboration in different aspects of this strategy. Other colleagues from DNER also contributed significantly to complete this document within the limited time schedule: Ms. María Camacho, Mr. Ramón L. Rivera, Ms. Griselle Rodríguez Ferrer, Mr. Alberto Puente, Mr. José Sustache, Ms. María M. Santiago, Mrs. María de Lourdes Olmeda, Mr. Gustavo Olivieri, Mrs. Vanessa Gautier, Ms. Hana Y. López-Torres, Mrs. Carmen Cardona, and Mr. Iván Llerandi-Román. Also, special thanks to Mr. Juan Luis Martínez from the University of Puerto Rico, for designing the cover of this document. A number of collaborators participated in earlier revisions of this CWCS: Mr. Fernando Nuñez-García, Mr. José Berríos, Dr. Craig Lilyestrom, Mr. Miguel Figuerola and Mr. Leopoldo Miranda. A special recognition goes to the authors and collaborators of the supporting documents, particularly, Regulation No.
    [Show full text]
  • The Complete Mitochondrial Genome of Endemic Giant Tarantula
    www.nature.com/scientificreports OPEN The Complete Mitochondrial Genome of endemic giant tarantula, Lyrognathus crotalus (Araneae: Theraphosidae) and comparative analysis Vikas Kumar, Kaomud Tyagi *, Rajasree Chakraborty, Priya Prasad, Shantanu Kundu, Inderjeet Tyagi & Kailash Chandra The complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of fve tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identifed, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identifed. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L.
    [Show full text]