El Colegio de la Frontera Sur

Diversidad de arañas del suelo en cuatro tipos de vegetación

del Soconusco, Chiapas, México

TESIS

presentada como requisito parcial para optar al grado de Maestría en Ciencias en Recursos Naturales y Desarrollo Rural por

David Chamé Vázquez

2015

DEDICATORIA

A mi familia, de quien he aprendido a nunca rendirme, a levantarme una y otra vez no importando las veces que las dificultades nos hayan abatido y continuar en la persecución de nuestros sueños.

"Once more into the fray

Into the last good fight I'll ever know.

Live and die on this day.

Live and die on this day."

GMSG

Sin ti la vida sería una equivocación

AGRADECIMIENTOS

Al Consejo de Ciencia y Tecnología por la beca proporcionada para continuar con mis estudios de posgrado.

Al Dr. Guillermo Ibarra por sus enseñanzas, perseverancia y apoyo durante toda la tesis.

A la Dra. María Luisa Jiménez y al M en C. Héctor Montaño quienes contribuyeron en la dirección de la tesis y por sus atinados comentarios y sugerencias.

A Gabriela Angulo, Eduardo Chamé, Héctor Montaño y Gloria M. Suárez por su ayuda en el trabajo de campo y laboratorio lo que permitió culminar esta tesis.

Al M. en C. Juan Cisneros Hernández, Dra. Ariane Liliane Jeanne Dor Roques y

Dra. Lislie Solís Montero por sus comentarios y sugerencias que ayudaron a mejorar el presente documento.

Al M. en C. Francisco Javier Valle Mora por su asesoría estadística.

A G. Angulo, K. Bernal, E.F. Campuzano, L. Gallegos, F. Gómez, S. D. Moreno y G.

Sánchez por su desinteresada amistad y apoyo durante mi estancia en la colección.

INDICE

Página

Introducción 1

Capítulo de artículo enviado 4

Conclusiones 48

Literatura citada 49

INTRODUCCIÓN

La notable diversidad de ecosistemas y especies del estado de Chiapas es producto de su posición geográfica, amplitud latitudinal, complejidad fisiográfica e historia geológica

(González-Espinosa y Ramírez-Marcial, 2013). La región Soconusco está ubicada en el sureste del Estado de Chiapas, comprende 15 municipios y es importante desde el punto de vista socioeconómico y en recursos naturales. La región es ambientalmente heterogénea, está compuesta principalmente de llanuras y sierras, con elevaciones de hasta 4,080 msnm, sus suelos de profundos a delgados, pueden ser salitrosos o con rocas de origen volcánico. Los climas son cálidos, semi-cálidos y templados, todos con lluvias abundantes en verano (Gobierno de Chiapas, 2011). Esta inmensa heterogeneidad ambiental permite la existencia de múltiples comunidades vegetales y el desarrollo de diversas actividades agropecuarias, como la producción de cacao, café, plátano, mango, caña de azúcar, maíz, palma de aceite, entre otros (Fernández-Bello,

2008).

Las arañas son un componente importante de la diversidad biológica del

Soconusco, por su riqueza de especies y su amplia distribución, tanto en los hábitats naturales como en los modificados por el ser humano. Las arañas como depredadores, son elementos comunes y de gran importancia en el equilibrio ecológico de poblaciones de invertebrados en los bosques tropicales (Coddington y Levi, 1991). En sentido amplio las arañas han tomado relevancia como organismos controladores de plagas en agroecosistemas (Riechert y Bishop, 1990; Ibarra, et al., 2001). En otras regiones del continente americano algunas especies de Ctenidae, Lycosidae y Sparassidae han

1

demostrado su utilidad y han sido utilizadas como organismos indicadores de disturbio humano (Bonaldo y Dias, 2010; Rego, Venticinque y Brescovit, 2005).

A pesar de su importancia y utilidad en estudios ecológicos existen pocos trabajos que indaguen a las arañas del suelo. En México, los trabajos conocidos se han realizado en algunos ecosistemas naturales como en selva baja caducifolia (Nieto-Castañeda,

2000); en bosque de Pinus-Quercus (Medina, 2002), en humedales de Baja California

(Nieto-Castañeda, 2004), en matorral desértico (Jiménez y Navarrete, 2010), en bosque mesófilo de montaña (Chamé-Vázquez, 2011), así como en agroecosistemas como cacaotales (Ruiz, 2004).

En México sólo existe un trabajo sobre la diversidad de arañas en un paisaje fragmentado en el sureste del país. Pinkus-Rendón, León-Cortés e Ibarra-Núñez (2006) estudiaron las arañas de un paisaje compuesto por 18 tipos de hábitats, y observaron que la riqueza de especies y la densidad de las arañas difirieron entre hábitats, con los valores de riqueza más altos en hábitats prístinos. Además, señalaron a la cobertura del bosque y la forma de vida de las plantas como las variables más importantes que afectaron la diversidad de arañas de la vegetación, pero no se encontró ninguna correlación entre las arañas del suelo y las variables ambientales analizadas. A diferencia del trabajo anterior, otros estudios han destacado la influencia de otros factores relevantes en la distribución de las arañas del suelo. El tipo de hojarasca, el grado de cobertura arbórea, el tipo de vegetación y la humedad a nivel del suelo afectan al ensamble de arañas, de acuerdo a la temporada del año (Ziesche y Roth, 2008). Sereda y colaboradores (2012) observaron que la distribución de cuatro especies dominantes de

2

arañas, en un ambiente heterogéneo del suelo del bosque, estaba determinada por la cobertura de la hojarasca y cobertura de musgo. Entre otros factores determinantes también se han señalado: la proporción de área desprovista o cubierta con hojarasca, la cantidad de ramas o piedras, la forma de las hojas y profundidad de la hojarasca (Bultman y Uetz, 1982; Stevenson y Dindal, 1982; Uetz, 1975) y el tipo de suelo (Gasnier y Höfer,

2001).

Dado que la diversidad y composición de los ensambles de arañas del suelo pueden depender de las características estructurales del suelo y de la vegetación, estudios en regiones donde el paisaje es muy heterogéneo podrían brindar información relevante sobre las variables de mayor importancia que intervienen en la integración de los ensambles de arañas. Por ello, en este estudio analizamos las diferencias en la diversidad y composición de los ensambles de arañas en cuatro tipos de vegetación en la región Soconusco.

3

CAPITULO DE ARTÍCULO ENVIADO

Carta de recepción de la revista “Agricultural and Forest Entomology” para el artículo “Soil diversity in four plant communities in the Soconusco region, Chiapas, .”

4

1 Title: Soil spiders diversity in four plant communities in the Soconusco region, Chiapas,

2 Mexico.

3

4

5 Authors’ names: David Chamé-Vázquez, Guillermo Ibarra-Núñez

6

7

8 Authors’ affiliations: El Colegio de la Frontera Sur (ECOSUR). Unidad Tapachula.

9 Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas 30700, México.

10

11

12 Contact information: Guillermo Ibarra-Núñez; [email protected]; tel (52) (962)

13 6289800 ext. 5420; Fax (52) (962) 6289800 ext. 5001

14

15 Runing title: Soil spiders diversity in four plant communities

16

17 Keywords: agroecosystem, Araneae, assemblage structure, seasonality, soil ,

18 species diversity

19

5

20 Abstract:

21 1. Environmental heterogeneity is one of the most important factors that explain

22 patterns of species diversity and composition.

23 2. We characterized the structure of soil spider assemblages in a landscape

24 dominated by agroecosystems such as: coffee, cocoa, mango and a medium

25 evergreen forest. Spiders were sampled using pitfall traps and leaf litter samples

26 processed in Berlese funnels.

27 3. We found 139 morphospecies, 105 genera and 39 families. We found differences

28 in diversity among sites and seasons (wet and dry seasons). The coffee

29 agroecosystem had the lowest (q=0) diversity and the mango plantation had the

30 highest (q=1) diversity. Coffee plantation was the only site without differences

31 between seasons. Abundance differed between sites (cacao site had more

32 individuals than mango site) but not between seasons. Structure of the spider

33 assemblage in the coffee plantation had the lowest similarity to the other sites,

34 while cocoa and medium evergreen forest were the more similar sites.

35 4. We could not establish relationships among the environmental factors evaluated

36 in this study and the diversity patterns of spider assemblages. Further research is

37 required to advance our knowledge about the factors that influence how soil

38 spider communities are structured in complex tropical landscapes.

39

40

6

41 Introduction

42 is defined as the variety of living organisms on earth and implies three

43 traditional levels: intraspecific, interspecific and ecosystem diversity (Dirzo & Mendoza,

44 2008; Swingland, 2001). A historic, partial and descriptive measurement of the diversity

45 has typically been the number of species present of a site or habitat. However, the

46 simple task of count the number of species at a site requires a huge effort (Dirzo &

47 Mendoza, 2008; Swingland, 2001).

48

49 Anthropogenic activities such as natural resource exploitation and habitat modification or

50 destruction are the principal causes of biodiversity loss (Dirzo & Mendoza, 2008). These

51 activities may cause species extinction, including those species that have never been

52 discovered, named and without any knowledge of their function in the ecosystem

53 (Wennekes et al., 2012). In this context, the importance of conducting studies that

54 explain diversity patterns, spatial and seasonal variations has been emphasized,

55 particularly as there is no consensus on the theories that explain diversity gradients and

56 how communities are structured (Hsieh & Linsenmair, 2012; Wennekes et al., 2012).

57

58 Environmental heterogeneity is one of the most important factors that explain distribution

59 patterns of species diversity and this relationship can be either positive or negative

60 (Stein et al., 2014). Heterogeneity is defined as a non-random, unequal distribution of

61 the objects that can take many forms and combinations; therefore, the analysis of this

62 pattern is fundamental for the understanding of ecological processes and complex

63 systems functionality (Farina, 2006; Kolasa & Rollo, 1991). Environmental heterogeneity

7

64 is characteristic of a landscape mosaic, it exists at any scale and it is divided into three

65 categories: spatial, temporal and functional (Farina, 2006).

66

67 Spiders, as a predators group, are common and play an important role in the ecological

68 equilibrium of invertebrate populations in tropical forests (Coddington & Levi, 1991).

69 Furthermore, spiders are natural enemies of agroecosystem pest populations (Riechert

70 & Bishop, 1990; Ibarra et al., 2001) and are biological indicators of anthropogenic

71 disturbance (Bonaldo & Dias, 2010; Rego et al., 2005), thus they are potentially

72 sensitive to environmental heterogeneity.

73

74 Other studies indicate that the quantity and quality of leaf litter, degree of tree cover,

75 vegetation type, soil humidity, and moss cover influence on soil spider distribution

76 (Sereda et al., 2012; Ziesche & Roth, 2008). Other factors of the soil such as proportion

77 of bare soil or covered by leaf litter, branches or stones, leaf shape, leaf litter depth

78 (Bultman & Uetz, 1982; Stevenson & Dindal, 1982; Uetz, 1975), soil type (Gasnier &

79 Hofer, 2001) as well as seasonality (Hsieh & Linsenmair, 2012) also determine soil

80 spider distribution.

81

82 Despite their importance and value in ecological studies, few studies have focused on

83 soil spiders in Mexico (Ibarra-Núñez et al., 2011). In addition, the majority of research

84 has been conducted in natural ecosystems and little is known about spider abundance

85 and diversity in agroecosystems. These studies usually focus on quantify the spider

86 diversity only in one type of ecosystem at a time, with the exception of one study that

87 evaluated spider diversity in a fragmented landscape (Pinkus-Rendón et al., 2006).

8

88 Given that the diversity and composition of spider assemblages can depend on the

89 structural characteristics of plant communities, studies undertaken in regions where the

90 landscape presents a high degree of heterogeneity can provide us relevant information

91 about the variables that determine the spider assemblages. In the present study, we

92 analysed the differences in the diversity and composition of spider assemblages in four

93 plant communities, in the Soconusco region of the state of Chiapas located at southeast

94 of Mexico. We also analysed seasonal changes in spider assemblages and the

95 relationship with tree cover and microclimate conditions at each site.

96

97 Materials and Methods

98 Study Area

99 The Soconusco region is located in the southeast of the state of Chiapas, Mexico. It

100 presents altitudes range from sea level on the coastal plain to 4,064 m.a.s.l. on the

101 Sierra Madre mountain. There is a diversity of climates along this altitudinal gradient:

102 warm subhumid climate with summer rains at lower levels, a warm humid climate with

103 abundant summer rains at intermediate foothills and a temperate climate at the highest

104 mountainous parts. Precipitation in this region fluctuate between 1,200 - 3,000 mm

105 during the rainy season (from May to October), and between 5 - 800 mm during the dry

106 season (from November to April). The types of plant communities are medium and high-

107 stature evergreen forest, low deciduous forest, pine-oak forest and cloud forest.

108 Besides, there is also a wide variety of agroecosystems that include: cocoa, coffee,

109 banana, mango, sugar cane, corn and oil palm among others (Fernández-Bello, 2008).

110 This study was carried out at four sites within the Soconusco region, each one

111 representing a plant community of economic importance for the region: coffee (CF),

9

112 cocoa (CA) and mango (MA) and a remnant of the original vegetation: medium

113 evergreen forest (SM). The CF site is located in the community of Alpujarras in the

114 municipality of Cacahoatán (15°4'20.76"N and 92°9'57.00"W, at an altitude of 1,069

115 m.a.s.l.). The MA site is located in the village of Eisleben in the municipality of

116 Tapachula (14°44'36.10"N and 92°17'0.40"W, at 47 m.a.s.l.). The CA site is located in

117 the town of Huehuetan in the municipality of the same name (15°0'1.80"N and

118 92°26'52.26"W, at 20 m.a.s.l.), and finally the SM site is located on the outskirts of the

119 city of Tapachula (14°54'24.84"N and 92°18'29.40"W, at 124 m.a.s.l.). The sites are

120 separated by a minimum distance of 18 km (Figure 1). Each site differed in vegetation

121 stratification (horizontal and vertical) and composition. The CF is a shade coffee

122 plantation of Coffea arabica L. which shrubs reach a height of 1 to 2 metres. The trees

123 that provide shade are mainly Inga spp. Both coffee and shade trees are subject to

124 periodical pruning. In the CA site there is a medium stratum composed of cacao trees (2

125 to 5 m height) that grow under the shade of fruit and timber trees. The management of

126 this site includes 2 or more pruning cycles during each year, weeding and irrigation via

127 artificial channels. The MA is a plantation of mango (Mangifera indica L.) with scarce

128 understorey and herbaceous layers, although in this plantation those layers are more

129 abundant when it compared to a mechanized mango plantation. The SM site presents

130 herbaceous, shrub and tree layers. In addition, this site had a higher diversity of tree

131 species composition. This site is surrounded by a cattle pasture matrix while sites CA

132 and CF present a less contrasting contiguous matrixes. Another important characteristic

133 of the SM site is a greater heterogeneity of leaf litter composition as well as variation of

134 leaf litter depth. In contrast, site MA had a homogeneous and shallow leaf litter layer.

10

135 While sites CF and CA display a deeper and more heterogeneous leaf litter layer than

136 site MA.

137

138 Climatic Variables and Canopy Cover

139 During the study period, temperature and relative humidity were measured slightly

140 above ground level every 30 minutes using a datalogger (LASCAR model EL-USB-2) at

141 each site. The estimation of tree cover percentage was carried out using planar

142 photography according to Korhonen & Heikkinen (2009). The percentage was the mean

143 of 40 photographs per site (five photographs on each side of each transect) that were

144 taken during May, 2014. The images were processed using MATLAB version 8.0 and a

145 modification of the Canopy Analysis script (Lobet et al., 2013).

146

147 Spider sampling

148 Four transects, each one with 50 m of length and separated at least by 25 m were

149 established at each site. We sampled every month in two periods: the dry season

150 (February-March) and rainy season (June-July-August), in order to assess seasonal

151 variations in spider assemblages.

152

153 Five pitfall traps were placed in each transect (removed after 72 hours) and 3 leaf litter

154 samples were taken. Each trap, buried at ground level, had 8 cm of diameter and

155 contained 200 ml of an aqueous solution of 50% propylene glycol. A fixed cover was

156 placed 3 cm above the trap to reduce plant residues and rain. Each leaf litter sample

157 comprised a 50 x 50 cm of area, alternating the side of the transect where the sample

158 was taken each sampling date in order to avoid previously sampled zones (previously

11

159 marked with plastic tape). Each sample of leaf litter was processed in a Berlese funnel

160 over a period of two to three days to extract the spiders. The collected specimens were

161 placed in containers with 80% alcohol and subsequently quantified and identified to

162 species or morphospecies level. Species determination was carried out initially using

163 family and keys (Jocque & Dippenaar-Schoeman, 2007; Ubick et al., 2005) and

164 then specialized literature. Specimens were deposited in the Colección de Arácnidos del

165 Sureste de México (CASEM) at the El Colegio de la Frontera Sur (ECOSUR). The

166 spiders were collected under the scientific collection license number FAUT-0198 from

167 the Dirección de General de Vida Silvestre, SEMARNAT (SGPA/DGVS/00102/14 13

168 January 2014).

169

170 Data Analysis

171 The majority of the statistical analyses were performed with R software (R Core Team

172 2014). In order to compare the percentage of tree canopy cover between sites, we used

173 a Kruskal-Wallis test followed by multiple comparisons using the “kruskal” function in the

174 “agricolae” software package (Mendiburu, 2014). Prior to the analysis, an angular

175 transformation was applied to the percentage values. In order to compare temperature

176 and humidity among sites, a multivariate analysis of variance (MANOVA) and an

177 analysis of canonical variables were applied using the “candisc” package (Friendly &

178 Fox, 2013).

179

180 We determined species diversity and composition by site, season and as a whole. To

181 estimate the sampling completeness of each type of vegetation, the non-parametric

182 Chao 1 estimator was applied using the “estimateR” function in the “vegan” software

12

183 package (Oksanen et al., 2015). The Chao 1 estimator uses the number of singletons

184 (number of species represented by one individual) and doubletons (number of species

185 represented by two individuals) to estimate the number of missing or unobserved

186 species. Other studies consider it this estimator to be robust (Hsieh & Linsenmair, 2012;

187 Sørensen et al., 2002).

188

189 Diversity among sites and seasons was evaluated by rarefaction and extrapolation

190 curves, using Hill’s first two numbers (a family of diversity measures to quantify diversity

191 in units of equivalent numbers of equally abundant species), according to Chao et al.

192 (2014). The final comparisons were made using the double of the reference sample

193 size, in other words the number of individuals with the lower abundance was used as a

194 reference (Chao et al., 2014). The curves were generated by implementing iNext in R

195 (Hsieh et al., 2014).

196

197 The relative abundance of spider families at each site were compared (families with 20

198 or fewer individuals were grouped into one category). A nested analysis of variance

199 (ANOVA) and a post hoc test (Tukey multiple comparisons) were used to determine any

200 differences in abundance among sites and between seasons. Prior to the ANOVA test,

201 the abundances were log transformed in order to meet the assumptions of the analysis.

202 Assemblage structure, based on species abundance, was analyzed by graphic

203 categorization. This was implemented by creating dispersion graphics for each site,

204 divided into four sections by using the frequency percentage mean on the X axis and 2%

205 of the total species abundance on the Y axis (Barba et al., 2010; Maya-Morales et al.,

206 2012).

13

207 To examine similarity in the composition and structure of the spider assemblages for

208 different vegetation types, NMDS (nonmetric multidimensional scaling) was used as a

209 multivariate technique, for which a similarity matrix was previously calculated using the

210 Bray-Curtis index. Subsequently, the NMDS was calculated 100 times using different

211 initial configurations to obtain the minimum stress, using the “bestnmds” function within

212 the “labdsv” software package (Bordcar et al., 2011; Roberts, 2013)

213

214 Results

215 Environmental Variables

216 We found differences in mean temperature and humidity among sites (MANOVA, Pillai’s

217 trace=0.97, F=141.2, df= 3,888, P<0.05). The analysis of canonical variables (Table 1,

218 Fig. 2), revealed that the CF site clearly differed from the remaining sites, with the lowest

219 mean daily temperature and the highest mean daily relative humidity. The percentage of

220 tree cover also differed among sites (X2 = 8.32, df=3, P<0.05); multiple comparisons

221 revealed a difference between the MA and SM sites (Table 2).

222

223 Abundance and Species Composition

224 In total, 3406 spiders were collected from all sites during both seasons. As 326

225 specimens corresponded to early development phases and consequently lacked the

226 necessary morphological characteristics for correct identification to species level, these

227 were excluded from the subsequent analysis.

228

229 Of the 3080 identified spiders, approximately 65% (2011) were juveniles, 22% (685)

230 females and 12% (384) males, representing 139 species, 105 genera and 39 families, of

14

231 which there are possibly 12 new species and a new genus belonging to the Linyphiidae

232 family (Appendix 1). Salticidae is the family with the highest number of species (24),

233 followed by (21), Linyphiidae (13) and (10). The most abundant

234 families were Lycosidae (503 specimens), followed by (452),

235 Linyphiidae (388), Theridiidae (320) and Oonopidae (285). The most abundant species

236 in the entire study was a ochyroceratid spider: Theotima minutissimus (Petrunkevitch,

237 1929) with 445 specimens.

238

239 Species Richness and Sampling Completeness

240 Observed values of species richness were: the SM site presented the highest number of

241 species (63 spp), followed by MA (58), CA (57) and finally CF (32). The percentage of

242 singletons was highest at the CA site (37%) followed by the SM site (35%), MA (33%)

243 and finally CF (9%). The richness estimations indicated an expected number of 32.6

244 species for the CF site, 76.1 for CA, 79.4 for MA and 88.7 for SM. The completeness

245 values of the samples were greater than 70% in all sites (SM=71%, MA=73%, CA=74%

246 and CF=98%) indicating a comprehensive inventory according to the levels suggested

247 by Cardoso (2009).

248

249 Diversity Comparisons

250 When the obtained diversity values by rarefaction were compared (q=0) it was observed

251 that only the CF site, the least diverse, differed from the others, (Fig. 3a). When

252 considering the relative abundance of the species (q=1), there were no differences

253 between the CF and CA sites (Fig. 3b), both recorded the lowest levels of diversity. The

254 MA site presented an estimated diversity (q=1) equal to a theoretical community of

15

255 23.28 species, where each species had the same abundance. This site was 1.3 times

256 more diverse than the SM site, 1.9 times more diverse than the CA site and 2.25 times

257 more diversity than CF site (Fig. 3b). In contrast, SM presented 1.7 times the diversity

258 found at site CF and 1.5 times the diversity at site CA, while site CF presented only 0.88

259 of the diversity recorded at site CA.

260

261 When comparing estimated diversity (q=0) between the dry and rainy seasons, only

262 sites CA and SM had higher diversity during the dry season (Fig. 4a). Considering

263 abundance (q=1) and the differences observed for q=0, site MA recorded greater

264 diversity during the dry season than rainy season (three times more than in the rainy

265 season in site SM, more than twice in CA and 1.7 times in MA, Fig 4b).

266

267 When the sites were compared according to season, sites CA and MA differed in

268 diversity (q=0 y q=1) during the wet season (Fig. 5a). During the dry season, site CF had

269 lower diversity (q=0 y q=1) than the remaining sites; however, for diversity of order 1,

270 site CA differs from site SM but not from site MA (Fig. 5b).

271

272 Abundance and Graphic Categorization

273 The numbers of individuals per site were: 517 in MA, 525 in CF, 890 in SM and 1148 in

274 CA. No differences in seasonal abundance were found but there were differences

275 between sites (nested ANOVA: Season F=0.0268, df=1, P>0.05; Site F=15.22, df=3,

276 P<0.05; Site: Transect F=6.12, df=12, P>0.05); only spider abundance at the CA site

277 differed from the MA site. Differences were observed in abundance distribution by family

278 at each site (Fig. 6). For example, the Ochyroceratidae is the dominant family at the CA

16

279 site, Lycosidae at the CF site, at the MA site and Linyphiidae at the SM

280 site.

281

282 Graphic categorization revealed differences between sites. Each site possess a

283 particular structure when taking into account the frequency and abundance of each

284 species (Fig. 7). Castianeira sp4 was the only constant species (i.e. very frequent but

285 not very abundant) at the CF site. This site presented seven dominants species with the

286 remaining species categorized as rare (low frequency and low abundance).

287 Furthermore, site CF does not share any of its dominant species with the remaining

288 sites. However, when the other sites are compared, these shared several dominant

289 species and contained a higher number of constant species. Spider assemblage

290 structure differed among sites as is shown in the ordination graphic, where transects

291 from the same site clearly resemble more each other than those of the other sites (Fig.

292 8). The spider assemblage structure of the CF site is clearly very different from the

293 remaining sites, while CA and SM had a higher similarity.

294

295 Discussion

296 Differences in temperature and humidity among sites are attributed to changes in

297 altitude (Körner, 2007). We observed this pattern as CF site recorded the lowest

298 temperature and the highest humidity that differed from the rest of the sites. This

299 differences are probably due to variations in altitude; while CF site is at approximately

300 1,069 m.a.s.l., the remaining sites do not pass 129 m.a.s.l. The only difference in

301 canopy cover was between sites MA and SM; this does not imply any similitude in all

302 other variables of canopy structure since two o more sites could have no differences in

17

303 the amount of canopy cover but could present differences in structural heterogeneity

304 (canopy composition, above ground height, density and foliage thickness) as a result of

305 the dynamic history of the forest stand (Lieberman et al., 1989).

306

307 According to methodology used in this study to estimate climate and canopy cover data

308 we can’t relate these with the diversity and abundance patterns observed. However, two

309 studies conducted in the same region of this study discuss the relationship between

310 environmental and structural variables in specific spider communities. Pinkus-Rendón et

311 al. (2006) did not found a relationship between tree cover, plant life forms, leaf litter

312 depth, proportion of bare soil, grass, leaf litter and soil spider diversity or abundance

313 during any of the seasons evaluated; however, they found a positive relationship during

314 the wet season between epigeal spider, tree cover and plant life form diversity. Hajian-

315 Forooshani et al. (2014) presented evidence that tree cover, coffee grove tree density,

316 and altitude influence the diversity and abundance of spiders from tree canopy. In

317 addition, many studies have highlighted a relationship between environmental or

318 seasonal heterogeneity and the structure of soil spider assemblages (Ziesche & Roth,

319 2008; Sereda et al., 2012; Bultman & Uetz, 1982; Mineo et al., 2010).

320

321 The values for completeness provide sufficient sustenance for the analysis derived from

322 the data obtained. Cardoso (2009) considers that achieving 100% of completeness is

323 impractical for because the sampling required an immense effort. Other

324 studies have obtained completeness values similar to ours (Azevedo et al., 2014;

325 Coddington et al., 2009; Hsieh & Linsenmair, 2011; Maya-Morales et al., 2012;

326 Sørensen et al., 2002). However, the percentage of obtained singletons (with the

18

327 exception of the CF site), correspond to the mean of other studies on diversity

328 (Azevedo et al., 2014; Coddington et al., 2009; Hsieh & Linsenmair, 2011). This

329 indicates an undersampling bias for these sites where singletons represent

330 approximately a third of all the spider community species. It has been suggested that

331 rarity measured as frequency is a consequence of phenological or edge effects (Scharff

332 et al., 2003) and it is possible that some of these effects are also responsible for the

333 high number of singletons found at the three sites previously mentioned. The CF site

334 had the highest sampling integrity (indicated by the percentage of completeness and

335 singletons) but had the lowest abundance and lowest richness of all sites. We could not

336 explain these differences nor how much are them related with differences among sites

337 as agronomic management, lanscape contrast and altitude among others.

338

339 High species richness of the families Salticidae, Theridiidae and Linyphiidae has also

340 been observed by other authors for different habitats in tropical regions (Ibarra-Núñez et

341 al., 2011; Dias et al., 2005; Indicatti et al., 2005; Rodrigues et al., 2010). Moreover, most

342 families in each assemblage are represented by few species and individuals, a

343 characteristic mentioned in other studies within the tropical region (Ibarra-Núñez et al.,

344 2011; Mineo et al., 2010; Indicati et al., 2005).

345

346 When we considered the spider assemblages of each site, the low species richness and

347 diversity observed in site CF, are possibly related to the altitude. Hajian-Forooshani et

348 al. (2014) observed that altitude was the most important variable that contributed to

349 differences in richness of canopy spiders but they considered also the impact of habitat

350 type and landscape heterogeneity in those groups of spiders that appear to be

19

351 insensitive to altitudinal gradients. The highest estimated diversity (q=1) of site MA,

352 could be related to the presence of shrub and herbaceous strata that increased ground-

353 level heterogeneity. This is particularly relevant, especially because several authors

354 ascribe the formation of different spider communities to different plant community

355 structure (Bowden & Buddle, 2010; Foord et al., 2008; Jiménez-Valverde & Lobo, 2007).

356

357 Reductions in diversity at the sites CA and SM (q=0) and CA, SM y MA (q=1) during the

358 rainy season, without any variations in respective abundances, are difficult to explain. A

359 possible explanation is an increase in humidity at both the soil and leaf litter levels as

360 one of the factors that caused this difference. However, this would affect abundance

361 first, something that we did not found this study. The reasons for seasonal variations in

362 diversity at the above sites are unknown; however, the fact that seasonality does not

363 appear to affect diversity at the CF site is even more intriguing. A posible explanation

364 may be that this site is traditionally managed with coffee bushes grown in the shade

365 provided by several tree species, resulting in a much less variable microclimate than a

366 monoculture agroecosystem subject to direct sunlight (Barradas & Fanjul, 1986). The

367 steeper slopes at the CF site could also contribute to a less variable microclimate, as

368 steeper slopes allow greater soil drainage, moderating extreme variation in humidity in

369 contrast with the other sites. Other studies have indicated a discernible change in

370 species diversity between seasons for soil spiders (Mineo et al., 2010), understorey

371 spiders (Maya-Morales et al., 2012) and canopy spiders (Hsieh & Linsenmair, 2012).

372

373 Although our results suggest that there is no difference in total abundance between

374 seasons, differences between sites were evident. Contrary to our results, other studies

20

375 demonstrated a seasonal variation in abundance. For example Mineo et al. (2010)

376 observed an increase in soil spider abundance during the rainy season in three Brazilian

377 savannahs, while in a study of cloud forest in Mexico, Maya-Morales et al. (2012) did not

378 observe any seasonal variations in abundance of understorey spiders in a perturbed

379 site, while in a preserved site there was more abundance during the dry season. The

380 depth of leaf litter could explain why CA site had higher abundance than MA site.

381 Theotima minutissimus, a small weaver spider was the dominant species in the CA site

382 with the deepest litter layer, contrasting with the dominance of the running spiders

383 Goeldia mexicana and Teminius hirsutus in the shallow leaf litter of the MA site. Wagner

384 et al. (2003) observed a vertical stratification of abundance that depended on hunting

385 strategies, where running and weaver spiders were abundant in the upper and

386 medium/lower strata respectively and a concurrent spider size decreased along a

387 continuum from the upper to the lower strata. In addition, climate factors or those related

388 to vegetation or landscape structure could influence the observed differences in

389 abundance at each site.

390

391 We obtained more specimens from the leaf litter processed using Berlese funnels (2411

392 specimens) than with the pitfall traps (669 specimens), although the latter is considered

393 the typical sampling technique used in studies of soil spiders (Patrick & Hansen, 2013).

394 Nevertheless, Sabu and Shiju (2010) considered both sampling techniques as

395 complementary for capturing ground-dwelling arthropods. Other studies consider only

396 adult specimens to analyze diversity, but in this study we included also juveniles as

397 Jimenez-Valverde & Lobo (2006) assert that the inclusion of juveniles allows a reliable

398 estimation in diversity studies (Jimenez-Valverde & Lobo, 2006).

21

399 In the structure of spider assemblages (i.e. abundance and species composition), the

400 CF site had one constant species and does not share any dominant species with the

401 remaining sites, although it shares other species. The sites CA, MA and SM shared

402 dominant species such as Ctenus calcaratus and Dictyna sp1, and also shared some

403 constants and rare species. For example, the Lycosidae family is present at all sites,

404 with two dominant species in three sites: Pirata sp1 (CF), Schizocosa sp1 (SM and CA);

405 however, this family is rare at the MA site. The higher similarity among transects of the

406 same site and the higher similarity among CA, SM and MA could be explained by the

407 distance among transects and sites, since environmental similarity among sites

408 decreases as the distance among them increases and the spatial configuration of the

409 landscape and time could sort the species by differences on dispersal abilities (Nekola &

410 White, 1999).

411

412 Undoubtedly, we are still far from understanding the factors that are involved in

413 community structuring, elements that certainly differ according to taxonomic group

414 (Fukami, 2009). In this study, similitudes and differences in species assemblages could

415 be related to specific environmental conditions that are present at each site. Samu,

416 Sunderland & Szinetár (1999) indicate the existence of many scale-dependent variables

417 that affect survival, reproduction and dispersion of spiders in agroecosystems.

418 Furthermore, other studies have suggested the importance of the life-history of each

419 species (Jimenez & Navarrete, 2010) and disturbance (Ibarra-Núñez & Chamé-Vázquez

420 unpublished data) in order to explain the structure of assemblages. Undoubtedly, the

421 factors that appear to regulate the space-time patterns of soil biota are principally

22

422 related to environmental heterogeneity, since this heterogeneity provides possibilities for

423 resource or habitat specialization, in other words niche-partitioning (Berg, 2009).

424 However, some studies indicate that the spatial distribution of some spider species

425 could be explained also by biological interactions, as inter and intraspecific predation

426 (Dor & Hénaut, 2011; Wise, 1993).

427

428 Although our study possesses many limitations, such as the fact that a satisfactorily

429 relationship could not be established between several variables and the spider

430 assemblages, ours the results showed patterns of family richness that are consistent

431 with other studies carried out in tropical regions. Furthermore, forest mass heterogeneity

432 has a definite influence on the structure of spider assemblages while seasonal and

433 landscape heterogeneity shapes spider diversity and abundance. In effect, the lowest

434 diversity presented by the CF site is probably determined by altitude. Certainly, aspects

435 of future research should focus on both the unravelling of spatial and seasonal

436 heterogeneity into separate elements and taking into consideration the effect of spatial

437 scale, to comprehend to what extent do multiple factors structure spider communities.

438

23

439 Acknowledgements

440 We are grateful to G. Angulo, E.R. Chamé, H. Montaño and G.M. Suárez (ECOSUR) for

441 their help during the sampling and sorting of spiders. J. Valle-Mora (ECOSUR) provided

442 support for the statistical analysis. M.L. Jimenez (CIBNOR), J. Cisneros, A.L.J. Dor, H.

443 Montaño and L. Solís (ECOSUR) contributed with numerous comments that helped

444 improve the final version of this manuscript. The authors want to thanks to Consejo

445 Nacional de Ciencia y Tecnología for the scholarship to DCV.

24

Literature cited

Azevedo, G.H.F., Faleiro, B.T., Magalhães, I.L.F., Benedetti, A.R., Oliveira, U., Pena-

Barbosa, J.P.P., Santos, M.T.T., Vilela, P.F., de Maria, M. & Santos, A. J. (2014)

Effectiveness of sampling methods and further sampling for accessing spider

diversity: a case study in a Brazilian Atlantic rainforest fragment. Insect

Conservation and Diversity, 7, 381-391.

Barba, E, Juárez-Flores, J. & Estrada-Loreto, F. (2010) Distribución y abundancia de

crustáceos en humedales de Tabasco, México. Revista Mexicana de

Biodiversidad, 81(Suppl),153-163.

Barradas, V.L. & Fanjul, L. (1986) Microclimatic chacterization of shaded and open-

grown coffee (Coffea arabica L.) plantations in Mexico. Agricultural and Forest

Meteorology, 38, 101-112.

Berg, M.P. (2009) Spatio-temporal structure in soil communities and ecosystem

processes. Community Ecology: Processes, Models, and Applications (ed. by

Verhoef, H.A. & P.J. Morin), pp.69-80. Oxford University Press, New York.

Bonaldo, A.B. & Dias, S.C. (2010) A structured inventory of spiders (Arachnida,

Araneae) in natural and artificial forest gaps at Porto Urucu, Western Brazilian

Amazonia. Acta Amazonica, 40(2), 357-372.

Borcard, D., Gillet, F. & Legendre, P. (2011) Numerical Ecology with R. Springer-Verlag

New York: New York.

Bowden, J.J. & Buddle, C.M. (2010) Determinants of Ground-Dwelling Spider

Assemblages at a Regional Scale in the Yukon Territory, . Ecoscience,

17(3), 287-297.

25

Bultman, T.L. & Uetz, G.W. (1982) Abundance and community structure of forest floor

spiders following litter manipulation. Oecologia, 55(1), 34-41.

Cardoso, P. (2009) Standardization and optimization of arthropod inventories-the case

of Iberian spiders. Biodiversity and Conservation, 18, 3949-3962.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M.

(2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling

and estimation in species diversity studies. Ecological Monographs, 84, 45-67.

Coddington, J.A. & Levi, H.W. (1991) Systematics and Evolution of Spiders (Araneae).

Annual Review of Ecology and Systematics, 22(1), 565-592.

Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M. & Hormiga, G. (2009)

Undersampling bias: the null hypothesis for singleton species in tropical arthropod

surveys. Journal of Ecology, 78, 573-584.

Dias, M.D.F.D.R., Brescovit, A.D. & Menezes, M. De (2005) Aranhas de solo

(Arachnida: Araneae) em diferentes fragmentos florestais no sul da Bahia, Brasil.

Biota Neotropica, 5,141-150.

Dirzo, R. & Mendoza, E. (2008) Biodiversity. Encyclopedia of Ecology. (ed. by E.

Jorgensen & Fath, B.). Elsevier, Amsterdam.

Dor, A. & Hénaut, Y. (2011) Are cannibalism and tarantula predation factors in the

spatial distribution of the wolf spider Lycosa subfusca (Araneae Lycosidae)?

Ethology Ecology & Evolution, 23, 375-387.

Farina, A. (2006) Principles and Methods in Landscape Ecology.Springer Netherlands,

Dordrecht.

Fernández-Bello, E. (2008) La producción agropecuaria en el Soconusco e intercambio

con Centroamérica. La Frontera Sur. Reflexiones sobre el Soconusco, Chiapas, y

26

sus problemas ambientales, poblacionales y productivos. (ed. by J. E. Sánchez &

R. Jarquin). pp. 185–200. Senado de la República-ECOSUR, Mexico.

Foord, S.H., Mafadza, M.M., Dippenaar-Schoeman, A.S. & Van Rensburg, B.J. (2008)

Micro-scale heterogeneity of spiders (Arachnida: Araneae) in the Soutpansberg,

South Africa: a comparative survey and inventory in representative habitats.

African Zoology, 43(2), 156-174.

Friendly, M. & Fox, J. (2013) candisc: Visualizing Generalized Canonical Discriminant

and Canonical Correlation Analysis. R package

version 0.6-5. http://CRAN.R-project.org/package=candisc

Fukami, T. (2009) Community assembly dynamics in space. Community Ecology:

Processes, Models, and Applications (ed. by Verhoef, H.A. & P.J. Morin), pp.45-

54. Oxford University Press, New York.

Gasnier, T.R. & Höfer, H. (2001) Patterns of abundance of four species of wandering

spiders (Ctenidae, Ctenus) in a forest in central Amazonia. Journal of

Arachnology, 29(1), 95-103.

Hajian-Forooshani, Z., Gonthier, D. J., Marín, L., Iverson, A. L., & Perfecto, I. (2014)

Changes in species diversity of arboreal spiders in Mexican coffee

agroecosystems: untangling the web of local and landscape influences driving

diversity. PeerJ, 2, e623.

Hsieh, T.C., Ma, K.H. & Chao, A. (2014) iNEXT: An R package for interpolation and

extrapolation in measuring species diversity. [WWW document]. URL

http://chao.stat.nthu.edu.tw/blog/software-download/inext-r-package/ [accessed

on 5 January 2015].

27

Hsieh, Y.L. & Linsenmair, K.E. (2011) Underestimated spider diversity in a temperate

beech forest. Biodiversity and Conservation, 20(13), 2953-2965.

Hsieh, Y.L. & Linsenmair, K.E. (2012) Seasonal dynamics of arboreal spider diversity in

a temperate forest. Ecology and Evolution, 2(4), 768-777.

Ibarra-Núñez, G., García, J.A., Moreno, M.A., López, J.A., y Lachaud, J.P. (2001) Prey

analysis in the diet of some ponerine (Hymenoptera: Formicidae) and web-

building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology,

37(3B), 723-755.

Ibarra-Núñez, G., Maya-Morales, J. & Chame-Vázquez, D. (2011) Las arañas del

bosque mesófilo de montaña de la Reserva de la Biosfera Volcán. Revista

Mexicana de Biodiversidad, 82, 1183-1193.

Indicatti, R.P.; Candiani, D., Brescovit, A.D. & Japyassu, H. F. (2005) Diversidade de

aranhas (Arachnida, Araneae) de solo na bacia do reservatório do Guarapiranga,

São Paulo, São Paulo, Brasil. Biota Neotropica, 5(1a), 151-162.

Jimenez, M.L. & Navarrete, J.G. (2010) Fauna de arañas del suelo de una comunidad

árida-tropical en Baja California Sur, México. Revista Mexicana de Biodiversidad,

81, 417-426.

Jiménez-Valverde, A. & Lobo, J.M. (2006) Establishing reliable sampling protocols for

spider (Araneae, Araneidae & Thomisidae) assemblages: estimation of species

richness, seasonal coverage and effect of juvelines on species richness and

composition. Acta Oecologica, 30, 21-32.

Jiménez-Valverde, A. & Lobo, J.M. (2007) Determinants of local spider (Araneidae and

Thomisidae) species richness on a regional scale: Climate and altitude vs. habitat

structure. Ecological Entomology, 32, 113–122.

28

Jocque, R. & Dippenaar-Schoeman, A.S. (2007) Spider Families of the World. Royal

Museum for Central Africa, Tervuren.

Kolasa, J. & Rollo, C.D. (1991) Introduction: the heterogeneity of heterogeneity: a

glossary. Ecological Heterogeneity (ed. by Kolasa, J. & S.T.A. Pickett), pp.1-23.

Springer-Verlag, New York.

Korhonen, L. & Heikkinen, J. (2009) Automated analysis of in situ canopy images for the

estimation of forest canopy cover. Forest Science, 55(4), 323-334.

Körner, C. (2007) The use of “altitude” in ecological research. Trends in Ecology &

Evolution, 22(11), 569-74.

Lieberman, M., Lieberman, D. & Peralta, R. (1989) Forest are not just swiss cheese:

canopy stereogeometry of non-gaps in tropical forests. Ecology, 70(3), 550–552.

Lobet G., Draye X. & Périlleux C. (2013) An online database for plant image analysis

software tools. Plant Methods, 9 (38) [WWW document]. URL

http://www.plantmethods.com/content/9/1/38 [accessed on 20 March 2014]

Maya-Morales, J., Ibarra-Núñez, G., León-Cortés, J. L. & Infante, F. (2012) Understory

spider diversity in two remnants of tropical montane cloud forest in Chiapas,

México. Journal of Insect Conservation, 16, 25-38.

Mendiburu, F. (2014) Agricolae: Statistical Procedures for Agricultural Research. R

package version 1.2-1. http://CRAN.R-project.org/package=agricolae

Mineo, M.F., Del-Claro, K. & Brescovit, A.D. (2010) Seasonal variation of ground

spiders in a Brazilian Savanna. Zoologia (Curitiba), 27(3), 353-362.

Nekola, J.C. & White, P.S. (1999) The distance decay of similarity in biogeography and

ecology. Journal of Biogeography, 26(4), 867-878.

29

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B.,

Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. (2015) vegan:

Community Ecology. Package. R package version 2.2-1. http://CRAN.R-

project.org/package=vegan

Patrick, L.B. & Hansen, A. (2013) Comparing ramp and pitfall traps for capturing

wandering spiders. Journal of , 41(3), 404-406.

Pinkus-Rendón, M.A., León-Cortés, J.L. & Ibarra-Núñez, G. (2006) Spider diversity in a

tropical hábitat gradient in Chiapas, Mexico. Diversity and Distributions, 12, 61-

69.

R Core Team. 2014. R: A language and environment for statistical computing. version

3.2.0. http://cran.r-project.org/

Rego, F.N.A.A., Venticinque, E.M. & Brescovit, A.D. (2005) Densidades de aranhas

errantes (Ctenidae e Sparassidae, Araneae) em uma floresta fragmentada. Biota

Neotropica, 5(1A), 45-52.

Riechert, S.E. & Bishop, L. (1990) Prey control by an assemblage of generalist

predators: spiders in garden test systems. Ecology, 71, 1441-1450.

Roberts, D.W. (2013) labdsv: Ordination and Multivariate Analysis for Ecology. R

package version 1.6-1. http://CRAN.R-project.org/package=labdsv

Rodrigues, E.N.L., Mendoca Jr, M.S., Rosado, J.L.O. & Loeck, A.E. (2010) Soil spiders

in differing environments: Eucalyptus plantations and grasslands in the Pampa

biome, southern . Revista Colombiana de Entomología, 36(2), 277-284.

Sabu T.K. & Shiju, R.T. (2010) Efficacy of pitfall trapping, Winkler and Berlese extraction

methods for measuring ground-dwelling arthropods in moist-deciduous forests in

the Western Ghats. Journal of Insect Science, 10(98), 1-17

30

Samu, F., Sunderland, K.D. & Szinetár, C. (1999) Scale-Dependent Dispersal and

Distribution Patterns of Spiders in Agricultural Systems: A Review. Journal of

Arachnology, 27(1), 325-332

Scharff, N., Coddington, J.A., Griswold, C.E., Hormiga, G. & Bjørn, P.D.P. (2003) When

To Quit? Estimating Spider Species Richness in a Northern European Deciduous

Forest. Journal of Arachnology, 31, 246-273.

Sereda, E., Blick, T., Dorowb, W.H.O., Woltersa, V., & Birkhofer, K. (2012) Spatial

distribution of spiders and epedaphic Collembola in an environmentally

heterogeneous forest floor hábitat. Pedobiologia, 55, 241-245

Sørensen, L.L., Coddington, J.A., & Scharff, N. (2002) Inventorying and estimating

spider diversity using semi-quantitative sampling methods in an afrotropical

montane forest. Environmental Entomology, 31, 319-330.

Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal

driver of species richness across taxa, biomes and spatial scales. Ecology

Letters, 17, 866-880.

Stevenson, B.G. & Dindal, D.L. (1982) Effect of leaf shape on forest litter spiders:

community organization and microhabitat selection of immature Enoplognatha

ovata (Clerck) (Theridiidae). Journal of Arachnology, 10(2), 165-178.

Swingland, I. R. (2001) Biodiversity, Definition of. Encyclopedia of Biodiversity (ed by

S.A. Levin), pp. 377-391.Academic Press, San Diego.

Ubick, D., Paquin, P., Cushing, P.E. & Roth, V. (2005) Spiders of : an

identification manual. American Arachnological Society, s.l.

31

Uetz, G.W. (1975) Temporal and spatial variation in species diversity of wandering

spiders (Araneae) in deciduous forest litter. Environmental Entomology, 4(5), 719-

724.

Wagner, J.D., Toft, S. & Wise, D.H. (2003) Spatial Stratification in litter depth by forest-

floor spiders. Journal of Arachnology, 31(1), 28-39.

Wennekes, P.L., Rosindell, J. & Etienne, R.S. (2012) The Neutral-Niche Debate: A

Philosophical Perspective. Acta Biotheoretica, 60, 257-271.

Wise, D.H. (1993) Spider in Ecological Webs. Cambridge University Press, Cambridge.

Ziesche, T.M. & Roth, M. (2008) Influence of environmental parameters on small-scale

distribution of soil-dwelling spiders in forests: What makes the difference, tree

species or microhabitat?. Forest Ecology and Management, 255, 738-752.

32

Tables Table 1. Unstandardized coefficients, structure and total variation explained by each canonical variable (Can) obtained in a canonical discriminant analysis used to separate mean temperature and mean humidity among sites.

Variable Can1 Can2 Mean daily temperature* -1.384 (-0.972) -0.170 (0.230) Mean daily humidity* -0.122 (0.408) -0.141 (-0.912) % of variance** 99.60 0.39 Eigenvalue 12.90 0.05 Squared canonical correlation 0.92 0.04 * canonical structure in parentheses ** proportion of discriminating ability

Table 2. Mean, standard deviation (sd) and rank mean of canopy cover per site. Significant differences are indicated by different lowercase letters (results of multiple comparisons after a Kruskal-Wallis test). Site abbreviations: cocoa (CA), coffee (CF), mango (MA) and a remnant of the original vegetation: medium-height evergreen forest (SM).

site mean sd mean rank CA 58.13 13.95 74.97ab CF 58.23 13.84 77.72ab MA 64.62 11.66 98.32a SM 57.50 12.38 70.97b

33

Figure legends

Figure 1. Location of the study sites within the Soconusco region. Site abbreviations: cocoa (CA), coffee (CF), mango (MA) and a remnant of the original vegetation: medium- height evergreen forest (SM).

Figure 2. Boxplot of canonical scores results of canonical discriminant analysis used to separate mean temperature and mean humidity among sites.

Figure 3. Sample-size-based rarefaction (solid lines) and extrapolation (dashed lines) of spider species diversity among sites, based on the Hill numbers. The 95% confidence intervals were obtained by a bootstrap method based on 50 replications. The reference sample of 1034 individuals is denoted by a vertical line. a) Comparison of spider species diversity for Hill numbers of order q=0. b) Comparison of spider species diversity for Hill numbers of order q=1.

Figure 4. Comparison of the sample-size-based rarefaction of spider species diversity between seasons for each site (dry vs rainy), based on the Hill numbers. The 95% confidence intervals (as error bars) were obtained by a bootstrap method based on 50 replications. a) Comparison of spider species diversity for Hill numbers of order q=0. b) Comparison of spider species diversity for Hill numbers of order q=1.

Figure 5. Comparison of the sample-size-based rarefaction of spider species diversity among sites for each season, based on the Hill numbers. The 95% confidence intervals (as error bars) were obtained by a bootstrap method based on 50 replications. a) Comparison of spider species diversity in rainy season for Hill numbers of order q=0 and q=1. b) Comparison of spider species diversity in dry season for Hill numbers of order q=0 and q=1.

Figure 6. Number of individuals belonging to each family of spider across sites. Site abbreviations: cocoa (CA), coffee (CF), mango (MA) and medium-height evergreen forest (SM).

Figure 7. Dispersion plot for each site, divided into four sections using the mean frequency percentage and the 2% of species abundance. a) cocoa (CA). b) coffee (CF). c) mango (MA). d) medium-height evergreen forest (SM). Numbers in parentheses indicate the amount of species per section. Numbers in the dominants section correspond to those noted for each species in the appendix.

Fig. 8. Ordination plot of four transect for each vegetation type, based on multidimensional scaling of the spider assemblages result of 100 iterations, stress: 6.6%. Site abbreviations: cocoa (CA), coffee (CF), mango (MA) and medium-height evergreen forest (SM).

34

Fig. 1

35

Fig. 2

36

Fig. 3b Fig.

Fig. 3a Fig. 3a

37

Fig. 4b

Fig. 4a

38

Fig. 5b Fig. 5a

39

Fig. 6

40

Fig. 7a Fig. 7b

Fig. 7c Fig. 7d

41

Fig. 8

42

Appendix List of spider species collected per season (R: Rainy and D: Dry season) within Soconusco region in Chiapas, Mexico. Site abbreviations: cocoa (CA), coffee (CF), mango (MA) and medium-height evergreen forest (SM).

CA CF MA SM Code Family/Species R D R D R D R D Anyphaenidae 1 Anyphaena sp. 1 ------1 2 Anyphaena sp. 2 - 1 ------3 Anyphaeninae sp. 1 - - - - - 1 - - Araneidae 4 Edricus productus O. Pickard-Cambridge, 1896 ------1 - 5 Gen. sp. 1 1 ------6 Mangora sp. 1 - - - - 1 1 - - 7 Mangora sp. 2 ------5 8 Pronous sp. 1 - 1 - - - - - 1 Caponiidae 9 Nops sp. 1 1 ------Clubionidae 10 Clubiona sp. 1 - 1 - - - - - 1 11 Elaver sp. 1 - 1 ------ 12 Castianeira sp. 1 ------4 13 Castianeira sp. 2 ------1 14 Castianeira sp. 3 2 2 2 - 1 1 - 2 15 Castianeira sp. 4 5 2 3 5 3 - 2 4 16 Castianeira sp. 5 ------1 17 Castianeira sp. 6 - - 1 - - - - - 18 Creugas sp. 1 ------2 - 19 Creugas sp. 2 1 ------20 Mazax pax Reiskind, 1969 23 5 - - 1 3 8 4 Ctenidae 21 Acanthoctenus sp. 1 1 ------22 Ctenus calcaratus F. O. P.-Cambridge, 1900 31 23 - - 2 13 11 13 23 Ctenus sp. 1 - - 12 12 - - - - 24 Cupiennius sp. 1 5 2 - - - - - 2 Ctenizidae 25 Ummidia zebrina (F. O. Pickard-Cambridge, 1897) ------4 - Deinopidae 26 Deinopis longipes F. O. Pickard-Cambridge, 1902 - - - - - 1 - -

43

CA CF MA SM Code Family/Species R D R D R D R D Dictynidae 27 Dictyna sp. 1 18 7 - - 1 35 7 47 28 Mallos sp. 1 - - - - - 1 - - 29 Tivyna sp. 1 ------1 30 Ischnothele digitata (O. Pickard-Cambridge, 1892) - 1 - - - 1 - - Gnaphosidae 31 Camillina sp. 1 - 2 - - - - 1 4 32 Cesonia lugubris (O. P.-Cambridge, 1896) 22 9 - - 6 3 1 16 33 Gnaphosa sp. 1 ------1 Hahniidae 34 Neoantistea sp. 1 29 40 - - - - 4 2 Leptonetidae 35 Darkoneta sp. 1 ------1 1 Linyphiidae 36 Agyneta sp. 1 13 6 - - - - 20 6 37 Agyneta sp. 2 - - 2 3 - - - - 38 Agyneta sp. 3 18 11 ------39 Agyneta sp. 4 - - - - - 7 - - 40 Gen. 1 sp. 1 ------203 33 41 Gen. 1 sp. 2 - - - - 4 5 - - 42 Gen. 2 sp. 1 ------1 - 43 Gen. 6 sp. 1 - - 1 1 - - - - 44 Gen. 7 sp. 1 - - - - 1 - - - 45 Gen. 8 sp. 1 ------1 46 Pocobletus coroniger Simon, 1894 - 1 - - - 21 - 2 47 Tenneseellum sp. 1 - - 3 - - - - - 48 Walckenaeria sp. 1 5 9 1 4 1 5 - - Lycosidae 49 Hogna sp. 1 - - - - - 1 - - 50 Pirata sp. 1 - - 93 103 - - - - 51 Schizocosa sp. 1 139 43 1 9 - - 61 40 52 Trochosa sp. 1 - 2 - - - 4 - 1 53 Trochosa sp. 2 - - 6 - - - - - Mimetidae 54 Mimetus sp. 1 - - - - 1 - - - 55 Teminius hirsutus (Petrunkevitch, 1925) - - - - 6 71 - 1 Mysmenidae 56 Calodipoena sp. 1 - 1 3 - - 6 2 6

44

CA CF MA SM Code Family/Species R D R D R D R D Nesticidae 57 pallida (Emerton, 1875) 3 ------Ochyroceratidae 58 Ochyrocera sp. 1 - - 5 2 - - - - 59 Theotima minutissimus (Petrunkevitch, 1929) 338 85 - - - - 22 - Oecobiidae 60 Oecobius cellariorum (Dugès, 1836) - - - 1 - 4 - - Oonopidae 61 Brignolia parumpunctata (Simon, 1893) 43 35 - - 32 16 3 9 62 Costarina sp. 1 - - 5 10 - - 3 - 63 Escaphiella sp. 1 1 ------1 64 Gen. sp. 1 ------5 7 65 Gen. 2 sp. 1 ------2 - 66 Gen. 3 sp. 1 1 1 - - 3 1 - - 67 Gen. 4 sp. 1 - - 2 - - - - - 68 Ischnothyreus peltifer (Simon, 1891) 30 16 - - 9 9 2 2 69 stenaspis Simon, 1891 6 9 2 4 - - 8 6 70 Yumates sp. 1 2 ------Oxyopidae 71 Oxyopes chiapas Brady, 1975 - 2 - - 2 5 - - Pholcidae 72 Anopsicus sp. 1 ------97 28 73 Anopsicus sp. 2 - - 4 1 - - - - 74 Anopsicus sp. 3 - - - 1 - - - - 75 Metagonia asintal Huber, 1998 1 3 - - - 2 1 11 Phrurolithidae 76 Piabuna sp. 1 - - 22 15 - - - - Pisauridae 77 Tinus sp. 1 - 2 - - 2 1 - - Salticidae 78 Aillutticus sp. 1 1 4 ------79 Akela charlottae Peckham & Peckham, 1896 9 6 - - 1 1 - - 80 Corythalia sp. 1 - - - - - 1 - - 81 Corythalia sp. 2 - - 6 1 - - - - 82 Cylistella sp. 1 ------1 83 Dendriphantini sp. 1 - - - - - 1 - - 84 Euophryinae sp. 1 ------1 - 85 Freya longispina (F. O. Pickard-Cambridge, 1901) 1 - - - 1 - - - 86 Freya regia (Peckham & Peckham, 1896) - 3 ------87 Gen. sp. 1 - - - - 3 11 - - 88 Gen. 2 sp. 1 - - - - 2 2 - -

45

CA CF MA SM Code Family/Species R D R D R D R D Salticidae 89 Gen. 5 sp. 1 - - - - 1 1 - - 90 Gen. 7 sp. 1 - - - - 1 4 - - 91 Gen. 8 sp. 1 - 2 ------92 Gen. 9 sp. 1 ------1 3 93 Gen. 10 sp. 1 ------1 94 Habronattus sp. 1 4 1 - - - 12 - 7 95 Lyssomanes sp. 1 ------1 96 Marpissinae sp. 1 ------1 97 Metacyrba venusta (Chickering, 1946) 1 - - - 2 2 - - 98 Mexigonus sp. 1 - - 4 6 - - - - 99 Thiodina sp. 1 - - - - - 1 - - 100 Zygoballus tibialis F. O. Pickard-Cambridge, 1901 - - - - - 3 - - 101 Zygoballus maculatus F. O. Pickard-Cambridge, 1901 - 1 ------Scytodidae 102 Scytodes sp. 1 ------4 36 103 Scytodes sp. 2 - - - - 1 - - - Sparassidae 104 Olios sp. 1 - - - - - 1 - - Tengellidae 105 Gen. sp. 1 ------8 12 Tetragnathidae 106 Glenognatha spherella Chamberlain & Ivie, 1936 2 1 4 11 - - 1 1 107 Leucauge venusta (Walckenaer, 1841) - 1 - - - 1 1 - Theraphosidae 108 Theraphosinae sp. 1 1 - 3 - - - 2 2 Theridiidae 109 Chrosiothes sp. 1 - 2 ------110 Dipoena anas Levi, 1963 - 1 ------111 Dipoena lana Levi, 1953 1 1 ------112 Enoplognatha sp. 1 - - - - 2 1 - - 113 lineatipes O. Pickard-Cambridge, 1893 1 - - - - 3 - - 114 Euryopis spinigera O. Pickard-Cambridge, 1895 4 19 - - - 11 1 6 115 Gen. 1 sp. 1 - - - - 1 - - - 116 Gen. 1 sp. 2 - - - - 1 - - - 117 Gen. 1 sp. 3 - - - - - 2 - - 118 Gen. 1 sp. 4 ------1 1 119 Gen. 1 sp. 5 - - 1 1 - - - - 120 Gen. 2 sp. 1 - - - - - 1 - - 121 Stemmops bicolor O. Pickard-Cambridge, 1894 - - 3 3 - - - -

46

CA CF MA SM Code Family/Species R D R D R D R D 122 Stemmops questus Levi, 1955 8 3 1 2 4 2 7 - 123 Theridion sp. 1 - - 5 3 - - - - 124 Thymoites boquete (Levi, 1959) - 2 69 44 - - - - 125 Thymoites delicatulus (Levi, 1959) ------1 126 Thymoites maderae (Gertsch & Archer, 1942) - 4 - - - 49 - 7 127 Thymoites notabilis (Levi, 1959) ------4 26 128 Thymoites sp. 1 - - 2 2 - - - - 129 Thymoites sp. 2 1 - - - - - 1 5 Theridiosomatidae 130 Epeirotypus sp. 1 ------1 Thomisidae 131 Synema sp. 1 - - - - - 3 - 1 Titanoecidae 132 Goeldia mexicana (O. P.-Cambridge, 1896) - - - - 52 30 - 8 Trachelidae 133 Trachelas bispinosus F. O. P.-Cambridge, 1899 - - 4 7 - - - - 134 Trachelas sp. 1 - - - - - 1 - - Uloboridae 135 Ariston sp. 1 - - - - - 1 - - 136 Philoponella semiplumosa (Simon, 1893) - - - - - 4 - - 137 Uloborus campestratus Simon, 1893 - 1 ------138 Uloborus sp. 1 - - - - - 2 - - Zodariidae 139 Ishania sp. 1 - - 2 2 - - - - 773 375 272 253 148 369 504 386

47

CONCLUSIONES

 La comunidad de arañas presentes en los cuatro sitios se compone de 139

morfoespecies, 105 géneros y 39 familias. Las familias más diversas en todo el

estudio fueron Salticidae seguida de Theridiidae, Linyphiidae y Oonopidae. Sin

duda estas familias aportan muchas especies a los ensambles de arañas en la

región tropical. Es notable la abundancia de la familia Ochyroceratidae en el sitio

CA y en todo el estudio (Theotima minutissimus resultó ser la especie más

abundante en todo el estudio con 445 ejemplares). Otras familias abundantes

fueron Lycosidae, Linyphiidae, Theridiidae y Oonopidae.

 Las diferencias observadas en la diversidad y abundancia en los ensambles de

arañas sugieren que algunas variables de los tipos de vegetación estudiados

influyen sobre ellas. Los cambios detectados en la diversidad entre temporadas

indicarían que algunos factores climáticos afectan también a los ensambles de

arañas. El sitio CF fue el menos diverso (q=0), no presentó alguna diferencia en

su diversidad entre lluvias y secas, además fue el más diferente en cuanto a su

composición de especies.

 No obstante con el fin de analizar los múltiples factores que estructuran las

comunidades de arañas se requieren estudios con diseños de muestreo que

permitan descomponer la heterogeneidad espacial y temporal y al mismo tiempo

que consideren el efecto de la escala.

48

LITERATURA CITADA

Bonaldo, A.B. y Dias, S.C., 2010. A structured inventory of spiders (Arachnida, Araneae)

in natural and artificial forest gaps at Porto Urucu, Western Brazilian Amazonia. Acta

Amazonica, 40(2), pp.357-372.

Bultman, T.L. y Uetz, G.W., 1982. Abundance and community structure of forest floor

spiders following litter manipulation. Oecologia, 55(1), pp.34-41.

Chamé-Vázquez, D., 2011. Arañas de Suelo del Bosque Mesófilo de Montaña,

Conservado y Alterado en el Soconusco, Chiapas, México. Tesis de licenciatura.

Universidad de Ciencias y Artes de Chiapas.

Coddington, J.A. y Levi, H.W., 1991. Systematics and Evolution of Spiders (Araneae).

Annual Review of Ecology and Systematics, 22(1), pp.565-592.

Fernández-Bello, E., 2008. La producción agropecuaria en el Soconusco e intercambio

con Centroamérica. En: J. E. Sánchez & R. Jarquin, eds. La frontera sur. Reflexiones

sobre el Soconusco, Chiapas, y sus problemas ambientales, poblacionales y

productivos. Mexico: Senado de la República-ECOSUR, pp. 185–200.

Gasnier, T.R. y Höfer, H., 2001. Patterns of abundance of four species of wandering

spiders (Ctenidae, Ctenus) in a forest in central Amazonia. Journal of Arachnology,

29(1), pp.95-103.

Gobierno de Chiapas, 2011. Programa regional de desarrollo: región X Soconusco. [pdf]

s.l.: s.n. Disponible en: < http://www.haciendachiapas.gob.mx/planeacion/planes_

desarrollo_muni.asp> [Consultado 20 Noviembre 2013].

49

González-Espinosa, M. y Ramírez-Marcial, N., 2013. Comunidades vegetales terrestres.

En: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO),

ed. 2013. La biodiversidad en Chiapas: Estudio de Estado. Mexico, DF: Comisión

Nacional para el Conocimiento y Uso de la Biodiversidad y Gobierno del Estado de

Chiapas. pp.21-42

Ibarra-Núñez, G., García, J.A., Moreno, M.A., López, J.A., y Lachaud, J.P., 2001. Prey

analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-

building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology,

37(3B), pp.723-755.

Jiménez, M.L. y Navarrete, J.G., 2010. Fauna de arañas del suelo de una comunidad

árida-tropical en Baja California Sur, México. Revista Mexicana de Biodiversidad, 81,

pp.417–426.

Medina, S.F., 2002. Las arañas y su distribución temporal en un bosque de San Martín

Cachihuapan, Municipio de Villa del Carbón, Estado de México. Tesis de

Licenciatura. Facultad de Estudios Superiores, Iztacala. UNAM.

Nieto-Castañeda, I.G., 2000. Inventario de arañas de algunas localidades de los estados

de Puebla y Morelos en la parte alta del Balsas. Tesis de licenciatura. Facultad de

Estudios Superiores Zaragoza, UNAM.

Nieto-Castañeda, I.G., 2004. Arañas edáficas (Caponiidae, Gnaphosidae, Lycosidae,

Oonopidae: Arachnida Araneae) asociadas a los humedales de Baja California Sur,

México. Tesis de Maestría. Centro de Investigaciones Biológicas del Noroeste, S.C.

Pinkus-Rendón, M.A., León-Cortés, J.L. e Ibarra-Núñez, G., 2006. Spider diversity in a

tropical habitat gradient in Chiapas, Mexico. Diversity and Distributions, 12, pp.61–

69.

50

Rego, F.N.A.A., Venticinque, E.M. y Brescovit, A.D., 2005. Densidades de aranhas

errantes (Ctenidae e Sparassidae, Araneae) em uma floresta fragmentada. Biota

Neotropica, 5(1A), pp.45-52.

Riechert, S.E. y Bishop, L., 1990, Prey control by an assemblage of generalist predators:

spiders in garden test systems. Ecology, 71, pp.1441-1450.

Ruiz, A., 2004. Diversidad de arañas de suelo en una plantación de cacao, Mpio. Tuxtla

Chico, Chiapas, México. Tesis de licenciatura. Universidad de Ciencias y Artes de

Chiapas.

Sereda, E., Blick, T., Dorowb, W.H.O., Woltersa, V. y Birkhofer, K., 2012. Spatial

distribution of spiders and epedaphic Collembola in an environmentally

heterogeneous forest floor habitat. Pedobiologia, 55, pp.241–245.

Stevenson, B.G. y Dindal, D.L., 1982. Effect of leaf shape on forest litter spiders:

community organization and microhabitat selection of immature Enoplognatha ovata

(Clerck) (Theridiidae). Journal of Arachnology, 10(2), pp.165-178.

Uetz, G.W., 1975. Temporal and spatial variation in species diversity of wandering spiders

(Araneae) in deciduous forest litter. Environmental Entomology, 4(5), pp.719-724.

Ziesche, T.M. y Roth, M., 2008. Influence of environmental parameters on small-scale

distribution of soil-dwelling spiders in forests: What makes the difference, tree species

or microhabitat?. Forest Ecology and Management, 255, pp.738-752.

51