Transcriptome Analysis of Nicotine-Exposed Cells from the Brainstem of Neonate Spontaneously Hypertensive and Wistar Kyoto Rats

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptome Analysis of Nicotine-Exposed Cells from the Brainstem of Neonate Spontaneously Hypertensive and Wistar Kyoto Rats The Pharmacogenomics Journal (2010) 10, 134–160 & 2010 Nature Publishing Group All rights reserved 1470-269X/10 $32.00 www.nature.com/tpj ORIGINAL ARTICLE Transcriptome analysis of nicotine-exposed cells from the brainstem of neonate spontaneously hypertensive and Wistar Kyoto rats MFR Ferrari1, EM Reis2, In this study, the effects of nicotine on global gene expression of cultured 3 cells from the brainstem of spontaneously hypertensive rat (SHR) and JPP Matsumoto and normotensive Wistar Kyoto (WKY) rats were evaluated using whole-genome 3 DR Fior-Chadi oligoarrays. We found that nicotine may act differentially on the gene expression profiles of SHR and WKY. The influence of strain was present in 1Departamento de Neurologia, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, 321 genes that were differentially expressed in SHR as compared with WKY SP, Brazil; 2Departamento de Bioquı´mica, brainstem cells independently of the nicotine treatment. A total of 146 genes Instituto de Quimica, Universidade de Sao Paulo, had their expression altered in both strains after nicotine exposure. Sao Paulo, SP, Brazil and 3Departamento de Interaction between nicotine treatment and the strain was observed to Fisiologia, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil affect the expression of 229 genes that participate in cellular pathways related to neurotransmitter secretion, intracellular trafficking and cell Correspondence: communication, and are possibly involved in the phenotypic differentiation Dr MFR Ferrari, Departamento de Neurologia, between SHR and WKY rats, including hypertension. Further characterization Faculdade de Medicina, Universidade de Sao of their function in hypertension development is warranted. Paulo, Av. Dr Arnaldo, 455, sala 2119, 2 andar, Sao Paulo, SP 01246-903, Brazil. The Pharmacogenomics Journal (2010) 10, 134–160; doi:10.1038/tpj.2009.42; E-mails: [email protected] or [email protected] published online 15 September 2009 Keywords: microarray; hypertension; nicotine; gene expression; primary cell culture; brainstem Introduction The central nervous system may influence the development of hypertension,1 which is a multifactorial disease involving the participation of differentially expressed genes in the brain of hypertensive and normotensive subjects.2 Neurogenic hypertension might be a consequence of the abnormal function of the autonomic nervous system, which may be caused by a number of external and/or intrinsic factors such as the renin–angiotensin system, insulin resistance, dietary salt sensitivity, stress and genetic factors,3 as well as nicotine exposure.4 Spontaneously hypertensive rats (SHR) are a good model to study neurogenic hypertension because they share similarities to human essential hypertension,5 such as the development of hypertension in the early adult life.6 We have earlier reported that nicotine treatment is able to intensify and accelerate the development of hypertension in prehypertensive SHR, without having much effect on normotensive Wistar Kyoto (WKY) rats,7 which may be of relevance to the understanding of the mechanisms involved in the onset of hypertension. Brain nuclei predominantly involved in central cardiovascular control are Received 6 February 2009; revised 31 July 2009; accepted 14 August 2009; published located especially in the brainstem. These areas are also recognized to have a online 15 September 2009 relevant function in the development of hypertension.8,9 Nicotine regulates gene expression of brainstem cells MFR Ferrari et al 135 The nucleus of the solitary tract (NTS), located at the time in fresh medium without nicotine were used as control. dorsal portion of the medulla oblongata, is the major The three plates of each group were polled to obtain one integrative site of cardiovascular information.10,11 Although sample. The experiment was repeated three times using peripheral afferent input is very important for the baro- different pools of animals. At the end of the treatment, cells receptor reflex, the NTS also receives a vast array of from SHR or WKY animals, treated or untreated with projections coming from the spinal cord, the lower nicotine, were lysed for total RNA extraction. brainstem and from the forebrain areas such as hypothala- mus, limbic system and cerebral cortex,12–14 which makes RNA extraction the cardiovascular control an elaborated circuitry. Total RNA was extracted according to the manufacturer’s Blood pressure control is also accomplished by other instructions using the RNAspin Mini Kit (GE Healthcare, brainstem sites such as the rostro- and caudo-ventrolateral UK). The RNA was purified and treated with DNAse before medulla oblongata (RVLM and CVLM), dorsal motor the assessment of its concentration and quality by spectro- nucleus of the vagus, area postrema and locus coeruleus photometry and agarose gel electrophoresis, respectively. (in pons).8,15–17 We have recently shown that nicotine is able to interfere Target labeling and microarray hybridizations with the glutamatergic and angiotensinergic neurotransmis- Global measurements of gene expression in cells from sion system preferentially in SHR as compared with WKY normotensive and hypertensive rats after the exposition to rats,7,18 indicating a possible function of nicotine in nicotine and their controls were obtained using the interacting with neurotransmitter systems, which might CodeLink Expression Bioarray System (GE Healthcare), contribute to the development of hypertension. which interrogates 34 000 annotated genes and expressed Glutamatergic and angiotensinergic are not the only sequence tags expressed in the rat genome. Three different neurotransmitter systems altered in SHR, but other systems samples of the each group were used in microarray are also possibly involved in strain differences between SHR hybridization constituting three biological replicates. and WKY rats, related or not related to the development of Target labeling and hybridization was performed strictly hypertension.19–21 as recommended by the array manufacturer (GE Health- High-density oligoarrays allow the simultaneous measure- care). In brief, the purified and high-quality total RNA was ment of global gene expression levels and is a valuable tool used in reverse transcription reactions to convert messenger to study pathologies associated to the central nervous RNA (mRNA) in double-stranded cDNA before biotin system.22–24 labeling. cRNA was synthesized by in vitro transcription of In this study, we aimed to evaluate the effects of nicotine cDNA and simultaneously labeled with biotin-NTP mix. The exposure on gene expression of cultured neurons and glia samples were filtered to recover biotinylated cRNA. Assess- from pons and medulla oblongata of newborn SHR and ment of cRNA concentration, purity and quality was carried WKY rats using whole-genome oligoarrays. out using the Agilent 2100 Bioanalyzer (Agilent Technolo- gies, CA, USA). All the samples presented high quality and purity (260/280 ratio of 2.0). Materials and methods Labeled cRNA targets were fragmented at 94 1C for 20 min before hybridization with arrays at 37 1C during 18 h. After Cell cultures and nicotine treatment the hybridization, the bioarrays were washed and bound All the procedures were approved by the Institutional targets were detected after incubation with Cy5-Streptavidin Committee for animal care of the Institute of Biosciences, (GE Healthcare). The bioarrays were washed, dried and University of Sao Paulo. Cell culture methodology was protected from light. All samples were processed in parallel described in details elsewhere.25 Briefly, pons and medulla and the arrays were incubated simultaneously using oblongata of 1-day old SHR and WKY rats (n ¼ 20 for each the same working solution to limit technical variation strain) from the animal facilities of the Department of across the experiments. After the hybridization, bioarrays Physiology, Institute of Biosciences, University of Sao Paulo were scanned immediately in a GenePix 4000B scanner were dissected out and dissociated in cold isotonic salt (Molecular Dynamics, USA). solution, pH 7.4. Cells were suspended in Neurobasal A media (Invitrogen) supplemented with L-glutamine Analysis of microarray data (250 mmol l–1, Sigma), glutamax (250 mmol l–1, Gibco), B27 CodeLink Expression Analysis software (GE Healthcare) was (2%, Gibco) and gentamicin (40 mg l–1, Gibco). Viable cells used to extract background-subtracted spot intensities from were counted and plated on poly-D-lysine-coated culture microarray images. Measurements that were below the dishes (35 mm, Nunclon, USA) at the concentration of intensity of negative controls plus 2 s.d. were excluded 1800 cells mm–2. Cultures were kept in a humidified incu- and 23 814 genes with valid measurements in all three bator with 5% CO2/95% air, at 37 1C, for 9 days before biological replicates of brainstem cells from normotensive or nicotine exposure. hypertensive animals cultured in the presence or absence of Cultured cells (n ¼ 3 from each strain) were treated with nicotine were further analyzed. To make experiments 10 mM of nicotine (Sigma), diluted in fresh culture medium, comparable, intensity data from different hybridizations over 24 h. Cell cultures (n ¼ 3) kept for the same period of were normalized by the quantile method.26 A two-way The Pharmacogenomics Journal Nicotine regulates gene expression of brainstem cells MFR Ferrari et al 136 analysis of variance (ANOVA) was applied (PowerArray 6.25 ml of DEPC water
Recommended publications
  • New CDH3 Mutation in the First Spanish Case of Hypotrichosis with Juvenile Macular Dystrophy, a Case Report
    Blanco-Kelly et al. BMC Medical Genetics (2017) 18:1 DOI 10.1186/s12881-016-0364-5 CASEREPORT Open Access New CDH3 mutation in the first Spanish case of hypotrichosis with juvenile macular dystrophy, a case report Fiona Blanco-Kelly1,2, Luciana Rodrigues-Jacy da Silva1, Iker Sanchez-Navarro1, Rosa Riveiro-Alvarez1,2, Miguel Angel Lopez-Martinez1, Marta Corton1,2 and Carmen Ayuso1,2,3* Abstract Background: CDH3 on 16q22.1 is responsible for two rare autosomal recessive disorders with hypotrichosis and progressive macular dystrophy: Hypotrichosis with Juvenile Macular Dystrophy and Ectodermal Dysplasia, Ectrodactyly and Macular Dystrophy. We present a new case of Hypotrichosis with Juvenile Macular Dystrophy. Case presentation: A Spanish male born in 1998 from non-consanguineous healthy parents with a suspected diagnosis of Keratosis Follicularis Spinulosa Decalvans and Retinitis Pigmentosa Inversa referred to our Genetics Department (IIS-Fundación Jiménez Díaz). Molecular study of ABCA4 was performed, and a heterozygous missense p.Val2050Leu variant in ABCA4 was found. Clinical revision reclassified this patient as Hypotrichosis with Juvenile Macular Dystrophy. Therefore, further CDH3 sequencing was performed showing a novel maternal missense change p.Val205Met (probably pathogenic by in silico analysis), and a previously reported paternal frameshift c.830del;p.Gly277Alafs*20, thus supporting the clinical diagnosis.. Conclusions: This is not only the first Spanish case with this clinical and molecular diagnosis, but a new mutation has been described in CDH3. Moreover, this work reflects the importance of joint assessment of clinical signs and evaluation of pedigree for a correct genetic study approach and diagnostic. Keywords: Macular dystrophy, CDH3, Hypotrichosis, Syndromic retinal dystrophy, Case report Background Dysplasia, Ectrodactyly and Macular Dystrophy (EEM, The CDH3 gene, on16q22.1, encodes for P-cadherin, OMIM: 225280) [18].
    [Show full text]
  • Injury by Mechanical Ventilation Gene Transcription and Promotion Of
    Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation This information is current as William A. Altemeier, Gustavo Matute-Bello, Sina A. of September 29, 2021. Gharib, Robb W. Glenny, Thomas R. Martin and W. Conrad Liles J Immunol 2005; 175:3369-3376; ; doi: 10.4049/jimmunol.175.5.3369 http://www.jimmunol.org/content/175/5/3369 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2005/08/23/175.5.3369.DC1 Material http://www.jimmunol.org/ References This article cites 37 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/175/5/3369.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 29, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Modulation of Lipopolysaccharide-Induced Gene Transcription and Promotion of Lung Injury by Mechanical Ventilation1 William A.
    [Show full text]
  • Protein Interaction Network of Alternatively Spliced Isoforms from Brain Links Genetic Risk Factors for Autism
    ARTICLE Received 24 Aug 2013 | Accepted 14 Mar 2014 | Published 11 Apr 2014 DOI: 10.1038/ncomms4650 OPEN Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism Roser Corominas1,*, Xinping Yang2,3,*, Guan Ning Lin1,*, Shuli Kang1,*, Yun Shen2,3, Lila Ghamsari2,3,w, Martin Broly2,3, Maria Rodriguez2,3, Stanley Tam2,3, Shelly A. Trigg2,3,w, Changyu Fan2,3, Song Yi2,3, Murat Tasan4, Irma Lemmens5, Xingyan Kuang6, Nan Zhao6, Dheeraj Malhotra7, Jacob J. Michaelson7,w, Vladimir Vacic8, Michael A. Calderwood2,3, Frederick P. Roth2,3,4, Jan Tavernier5, Steve Horvath9, Kourosh Salehi-Ashtiani2,3,w, Dmitry Korkin6, Jonathan Sebat7, David E. Hill2,3, Tong Hao2,3, Marc Vidal2,3 & Lilia M. Iakoucheva1 Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.
    [Show full text]
  • Blimp1 Regulates the Transition of Neonatal to Adult Intestinal Epithelium
    UCLA UCLA Previously Published Works Title Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Permalink https://escholarship.org/uc/item/01x184nd Journal Nature communications, 2(1) ISSN 2041-1723 Authors Muncan, Vanesa Heijmans, Jarom Krasinski, Stephen D et al. Publication Date 2011-08-30 DOI 10.1038/ncomms1463 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 11 May 2011 | Accepted 28 Jul 2011 | Published 30 Aug 2011 DOI: 10.1038/ncomms1463 Blimp1 regulates the transition of neonatal to adult intestinal epithelium Vanesa Muncan1,2,3, Jarom Heijmans1,2,3, Stephen D. Krasinski4, Nikè V. Büller1,2,3, Manon E. Wildenberg1,2,3, Sander Meisner1, Marijana Radonjic5, Kelly A. Stapleton4, Wout H. Lamers1, Izak Biemond3, Marius A. van den Bergh Weerman6, Dónal O’Carroll7, James C. Hardwick3, Daniel W. Hommes3 & Gijs R. van den Brink1,2,3 In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mother’s milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • High-Throughput Mutagenesis Reveals Functional Determinants for DNA Targeting by Activation-Induced Deaminase Kiran S
    9964–9975 Nucleic Acids Research, 2014, Vol. 42, No. 15 Published online 26 July 2014 doi: 10.1093/nar/gku689 High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase Kiran S. Gajula1, Peter J. Huwe2,†, Charlie Y. Mo3,†, Daniel J. Crawford1, James T. Stivers4, Ravi Radhakrishnan2 and Rahul M. Kohli1,3,* 1Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and 4Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Received June 7, 2014; Revised July 16, 2014; Accepted July 16, 2014 ABSTRACT tional scanning and may find general utility for high- throughput analysis of protein function. Antibody maturation is a critical immune process governed by the enzyme activation-induced deam- inase (AID), a member of the AID/APOBEC DNA INTRODUCTION deaminase family. AID/APOBEC deaminases prefer- Enzyme families often share a central well-structured cat- entially target cytosine within distinct preferred se- alytic core, with different specificities among family mem- quence motifs in DNA, with specificity largely con- bers encoded by variable regions surrounding the active ferred by a small 9–11 residue protein loop that dif- site core (1,2). This mechanism for fulfilling the need for fers among family members. Here, we aimed to deter- specialization while maintaining core function is evident in / mine the key functional characteristics of this protein the family of AID APOBEC cytosine deaminase enzymes, loop in AID and to thereby inform our understanding which play an important role in adaptive and innate immu- nity.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • ADAMTSL3 As a Candidate Gene for Schizophrenia: Gene Sequencing and Ultra-High Density Association Analysis by Imputation
    Schizophrenia Research 127 (2011) 28–34 Contents lists available at ScienceDirect Schizophrenia Research journal homepage: www.elsevier.com/locate/schres ADAMTSL3 as a candidate gene for schizophrenia: Gene sequencing and ultra-high density association analysis by imputation David J. Dow a, Julie Huxley-Jones b, Jamie M. Hall a, Clyde Francks b, Peter R. Maycox a, James N.C. Kew a, Israel S. Gloger a, Nalini A.L. Mehta a, Fiona M. Kelly a, Pierandrea Muglia b, Gerome Breen c, Sarah Jugurnauth c, Inti Pederoso c, David St.Clair d, Dan Rujescu e, Michael R. Barnes b,c,⁎ a Molecular Discovery Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Third Avenue, Harlow, CM19 5AW, UK b Computational Biology and Genetics, Quantitative Sciences, Drug Discovery, GlaxoSmithKline Pharmaceuticals, Gunnels Wood Road, Stevenage, SG1 2NY, UK c Division of Psychological Medicine and Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College, London, UK d Department of Mental Health, University of Aberdeen, Aberdeen, United Kingdom e Division of Molecular and Clinical Neurobiology, Department of Psychiatry, Ludwig-Maximilians-University, Munich, Germany article info abstract Article history: We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below Received 27 July 2010 genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the Received in revised form 29 November 2010 function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs- Accepted 11 December 2010 like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used Available online 15 January 2011 complementary approaches to further evaluate the association.
    [Show full text]
  • A Comprehensive Analysis of the Expression of Crystallins in Mouse Retina Jinghua Xi Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2003 A comprehensive analysis of the expression of crystallins in mouse retina Jinghua Xi Washington University School of Medicine in St. Louis Rafal Farjo University of Michigan - Ann Arbor Shigeo Yoshida University of Michigan - Ann Arbor Timothy S. Kern Case Western Reserve University Anand Swaroop University of Michigan - Ann Arbor See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Xi, Jinghua; Farjo, Rafal; Yoshida, Shigeo; Kern, Timothy S.; Swaroop, Anand; and Andley, Usha P., ,"A comprehensive analysis of the expression of crystallins in mouse retina." Molecular Vision.9,. 410-419. (2003). https://digitalcommons.wustl.edu/open_access_pubs/1801 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Jinghua Xi, Rafal Farjo, Shigeo Yoshida, Timothy S. Kern, Anand Swaroop, and Usha P. Andley This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/1801 Molecular Vision 2003; 9:410-9 <http://www.molvis.org/molvis/v9/a53> © 2003 Molecular Vision Received 28 May 2003 | Accepted 19 August 2003 | Published 28 August 2003 A comprehensive analysis of the expression of crystallins in mouse retina Jinghua Xi,1 Rafal Farjo,3 Shigeo Yoshida,3 Timothy S. Kern,5 Anand Swaroop,3,4 Usha P. Andley1,2 Departments of 1Ophthalmology and Visual Sciences and 2Biochemistry and Molecular Biophysics, Washington University School of Medicine, St.
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Transcriptomic Signature and Metabolic Programming of Bovine Classical and Nonclassical Monocytes Indicate Distinct Functional Specializations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.30.362731; this version posted November 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptomic signature and metabolic programming of bovine classical and nonclassical monocytes indicate distinct functional specializations Stephanie C. Talker1,2, G. Tuba Barut1,2, Reto Rufener3, Lilly von Münchow4, Artur Summerfield1,2 1Institute of Virology and Immunology, Bern and Mittelhäusern, Switzerland 2Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 3Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland 4 Bucher Biotec AG, Basel, Switzerland *Correspondence: Corresponding Author [email protected] Keywords: monocyte subsets, transcriptome, metabolism, cattle Abstract Similar to human monocytes, bovine monocytes can be split into CD14+CD16- classical and CD14-CD16+ nonclassical monocytes (cM and ncM, respectively). Here, we present an in-depth analysis of their steady-state transcriptomes, highlighting pronounced functional specializations. Gene transcription indicates that pro-inflammatory and antibacterial processes are associated with cM, while ncM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. In support of these functional differences, we found that oxidative phosphorylation prevails in ncM, whereas cM are clearly biased towards aerobic glycolysis. Furthermore, bovine monocyte subsets differed in their responsiveness to TLR ligands, supporting an antiviral role of ncM. Taken together, these data clearly indicate a variety of subset-specific functions in cM and ncM that are likely to be transferable to monocyte subsets of other species, including humans.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]