High-Throughput Mutagenesis Reveals Functional Determinants for DNA Targeting by Activation-Induced Deaminase Kiran S

Total Page:16

File Type:pdf, Size:1020Kb

High-Throughput Mutagenesis Reveals Functional Determinants for DNA Targeting by Activation-Induced Deaminase Kiran S 9964–9975 Nucleic Acids Research, 2014, Vol. 42, No. 15 Published online 26 July 2014 doi: 10.1093/nar/gku689 High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase Kiran S. Gajula1, Peter J. Huwe2,†, Charlie Y. Mo3,†, Daniel J. Crawford1, James T. Stivers4, Ravi Radhakrishnan2 and Rahul M. Kohli1,3,* 1Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and 4Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Received June 7, 2014; Revised July 16, 2014; Accepted July 16, 2014 ABSTRACT tional scanning and may find general utility for high- throughput analysis of protein function. Antibody maturation is a critical immune process governed by the enzyme activation-induced deam- inase (AID), a member of the AID/APOBEC DNA INTRODUCTION deaminase family. AID/APOBEC deaminases prefer- Enzyme families often share a central well-structured cat- entially target cytosine within distinct preferred se- alytic core, with different specificities among family mem- quence motifs in DNA, with specificity largely con- bers encoded by variable regions surrounding the active ferred by a small 9–11 residue protein loop that dif- site core (1,2). This mechanism for fulfilling the need for fers among family members. Here, we aimed to deter- specialization while maintaining core function is evident in / mine the key functional characteristics of this protein the family of AID APOBEC cytosine deaminase enzymes, loop in AID and to thereby inform our understanding which play an important role in adaptive and innate immu- nity. of the mode of DNA engagement. To this end, we Activation-induced deaminase (AID) is the central B-cell developed a methodology (Sat-Sel-Seq) that couples enzyme that governs two diversity-generating reactions that saturation mutagenesis at each position across the are essential for antibody maturation: somatic hypermuta- targeting loop, with iterative functional selection and tion (SHM) and class switch recombination (CSR) (3). In next-generation sequencing. This high-throughput SHM, deamination of cytosine bases within the variable re- mutational analysis revealed dominant characteris- gion of the immunoglobulin (Ig) locus populates the gene tics for residues within the loop and additionally with uracil bases. Error-prone repair of these uracil lesions yielded enzymatic variants that enhance deaminase generates variations within antibody complementarity de- activity. To rationalize these functional requirements, termining regions (CDRs) which can result in enhanced we performed molecular dynamics simulations that antigen binding and increase the effectiveness of adaptive suggest that AID and its hyperactive variants can en- immune responses. In CSR, deamination can alter the na- ture of the immune response that follows antigen binding. gage DNA in multiple specific modes. These find- CSR results from the introduction of uracil lesions into op- ings align with AID’s competing requirements for posite strands of DNA in the switch regions upstream of specificity and flexibility to efficiently drive antibody constant genes. Resolution of the resulting dsDNA breaks maturation. Beyond insights into the AID-DNA inter- juxtaposes the variable region encoding antigen specificity face, our Sat-Sel-Seq approach also serves to further with different constant regions to change the antibody from expand the repertoire of techniques for deep posi- IgM to an alternative isotype. The related APOBEC3 family enzymes (APOBEC3A-H in the human genome) play a role on the other arm of the immune system, contributing to in- *To whom correspondence should be addressed. Tel: +1 215 573 7523; Fax: +1 215 349 5111; Email: [email protected] †The authors wish it to be known that, in their opinion, the second and third authors contributed equally. Present Address: Rahul M. Kohli, Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. C The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2014, Vol. 42, No. 15 9965 nate immune responses to retroviruses, such as HIV (4). Tar- MATERIALS AND METHODS geted deamination of cytosines in viral genomic interme- Cloning, expression and purification of human AID diates can lead to degradation, prevent viral integration or result in highly mutated and non-functional viral genomes Synthetic oligonucleotides for cloning and assays were pur- (5–8). chased from Integrated DNA Technologies and sequences As part of their mechanism of targeted deamination, are available upon request. Alanine scanning loop variants AID/APOBEC enzymes engage cytosine in the context of were generated by overlap extension polymerase chain reac- its neighboring nucleotides within ssDNA. AID prefers to tion (PCR) as previously described (17). Inserts were cloned mutate WRC motifs (W = A/T, R = A/G), which are highly into the EcoRI-XhoI region of AID-expressing pET41b populated within both the target CDRs and switch regions vector (Novagen) also containing an N-terminal maltose- in the Ig locus (9). APOBEC3 enzymes are also directed to binding protein, with the human AID gene codon opti- various hotspot motifs for deamination, with well charac- mized for expression in Escherichia coli as previously de- terized targeting of CCC by A3G and TC for A3A as exam- scribed (17). Plasmids were co-transformed with the chap- ples (5,8,10,11). Targeting of preferred ‘hotspot’ sequences erone trigger factor for heterologous expression in E. coli by the deaminases can be essential to their physiological BL21 (DE3) pLysS (Novagen). Enzyme expression and pu- function, as altered hotspot targeting of AID compromises rification were carried out as previously described (26). SHM and CSR (12,13). Hotspot targeting has also been key to deciphering the role of APOBEC3 family members in Deamination assays and sequence preference profiles driving mutagenesis in cancerous cells, as the deaminases leave a distinctive mutational signature with clustered mu- Similar to previously described protocols (17), the sub- tations enriched for a characteristic TC sequence context strate was a 27-mer oligonucleotide containing a single C (14,15). within an AGC context. For fluorescence-based assays, 1 Notably, engagement of target sequences by ␮M substrate containing a 3-fluorescein was incubated AID/APOBEC enzymes does not show the level of fi- with 1 ␮M enzyme, 1 unit uracil DNA glycosylase (UDG; delity seen with many other DNA modifying enzymes, such NEB) and 1 ␮g RNase A (Fermentas) in 20 mM Tris-Cl (pH as restriction enzymes. For AID, the differences between 8), 1 mM dithiothreitol (DTT), 1 mM ethylenediaminete- deamination of best (hotspot) and worst (coldspot) sub- traacetic acid (EDTA) for 3 h at 30◦C followed by heating strates is ∼12- to 30-fold, raising the question of how such to 95◦C for 20 min. For kinetic assays, the substrate was 32P loose specificity can be achieved (16,17). While the lack end-labeled by standard methods, gel purified and quanti- of a DNA-bound structure for any AID/APOBEC family fied using liquid scintillation counting. An end-labeled 40- member leaves many open questions (18–23), structure- mer was also generated as an internal standard. In the as- guided experiments by several groups have helped to say, 50–300 nM radioactive substrate was incubated with localize some of the determinants for deamination target- 15 nM standard oligonucleotide under reaction conditions ing. In particular, one highly divergent 9–11 amino acid described above for 1 h at 30◦C (within linear product for- protein loop situated between the ␤4strandand␣4 helix mation range). Abasic sites formed in the substrates were in AID was suggested to be a candidate for conferring cleaved by adding NaOH (100 mM final), an equal volume sequence preferences to the enzymes (8). In early studies, of formamide and heating to 95◦C for 20 min. Samples were selective point mutations in this loop altered the spectrum then separated on 20% Tris/Borate/EDTA (TBE), 7 M of deaminase activity (24). Even more strikingly, when the Urea polyacrylamide gels (45–50◦C). For assays with fluo- loop from one family member was replaced by the loop rescent substrate, gels were imaged using a Typhoon imager from a second family member, the sequence targeting of (GE healthcare) and the products quantified using Quan- the acceptor enzyme was noted to shift to that of the donor tityOne (Biorad). For kinetic assays, gels were imaged via (12,13,17,25). storage phosphor screen on the Typhoon imager, quantified Given the significance of the hotspot recognition loop in using custom MATLAB software, and the total amount of AID and the larger APOBEC family, we aimed to elucidate deamination was calculated using the known concentration the specific functional requirements of the residues
Recommended publications
  • The Battle Between Retroviruses and APOBEC3 Genes: Its Past and Present
    viruses Review The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present Keiya Uriu 1,2,†, Yusuke Kosugi 3,4,†, Jumpei Ito 1 and Kei Sato 1,2,* 1 Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; [email protected] (K.U.); [email protected] (J.I.) 2 Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan 3 Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; [email protected] 4 Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan * Correspondence: [email protected]; Tel.: +81-3-6409-2212 † These authors contributed equally to this work. Abstract: The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses. Keywords: APOBEC3; lentivirus; Vif; arms race; gene diversification; coevolution Citation: Uriu, K.; Kosugi, Y.; Ito, J.; Sato, K.
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • 1 APOBEC-Mediated Mutagenesis in Urothelial Carcinoma Is Associated
    bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response Alexander P. Glaser MD, Damiano Fantini PhD, Kalen J. Rimar MD, Joshua J. Meeks MD PhD APG, DF, KJR, JJM: Northwestern University, Department of Urology, Chicago, IL, 60607 Running title: APOBEC mutagenesis in bladder cancer *Corresponding author: Joshua J. Meeks, MD PhD 303 E. Chicago Ave. Tarry 16-703 Chicago, IL 60611 Email: [email protected] Keywords (4-6): • Urinary bladder neoplasms • APOBEC Deaminases • Mutagenesis • DNA damage • Interferon Abbreviations and Acronyms: TCGA – The Cancer Genome Atlas ssDNA – single stranded DNA APOBEC –apolipoprotein B mRNA editing catalytic polypeptide-like GCAC – Genome Data Analysis Center MAF – mutation annotation format “APOBEC-high” – tumors enriched for APOBEC mutagenesis “APOBEC-low” – tumors not enriched for APOBEC mutagenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Background: The APOBEC family of enzymes is responsible for a mutation signature characterized by a TCW>T/G mutation. APOBEC-mediated mutagenesis is implicated in a wide variety of tumors, including bladder cancer. In this study, we explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival.
    [Show full text]
  • Genetic and Biochemical Studies of Human Apobec Family of Proteins Priyanga Wijesinghe Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Genetic and biochemical studies of human apobec family of proteins Priyanga Wijesinghe Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Wijesinghe, Priyanga, "Genetic and biochemical studies of human apobec family of proteins" (2012). Wayne State University Dissertations. Paper 584. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. GENETIC AND BIOCHEMICAL STUDIES OF HUMAN APOBEC FAMILY OF PROTEINS by PRIYANGA WIJESINGHE DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR : CHEMISTRY (Biochemistry) Approved by: Advisor Date © COPYRIGHT BY PRIYANGA WIJESINGHE 2012 All Rights Reserved DEDICATION To my wife Thiloka and daughter Senuli ii ACKNOWLEDGMENTS I would like to thank my thesis advisor Dr. Ashok S. Bhagwat for his exceptional guidance, supervision and help during my graduate research career. I take this opportunity to thank my thesis committee Dr. Andrew L. Feig, Dr. Jeremy Kodanko and Dr. T.R. Reddy for their valuable comments and suggestions. Also, I would like to extend my thanks to Dr. Thomas Holland, Dr. David Rueda, and Dr. John SantaLucia. I must thank my present lab members Sophia Shalhout, Thisari Guruge, Shaqiao Wei, Anita Chalasani, Amanda Arnorld, Casey Jackson, Nadeem Kandalaft and Richard Evans for friendship and mutual support. Special thanks go to my former lab members Dr.
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]
  • Targeted Cancer Therapy Induces APOBEC Fuelling the Evolution of Drug Resistance Authors: Manasi K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423280; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Targeted cancer therapy induces APOBEC fuelling the evolution of drug resistance Authors: Manasi K. Mayekara†, Deborah R. Caswellb*†, Natalie I. Vokesc-d, Emily K. Lawe-h, Wei Wua, William Hillb, Eva Gronroosb, Andrew Rowanb, Maise Al Bakirb, Caroline E. McCoacha, Collin M. Blakelya, Nuri Alpay Temizi, Ai Naganob, D. Lucas Kerra, Julia K. Rotowj, Franziska Haderka, Michelle Dietzenk,r, Carlos Martinez Ruizk,r, Bruna Almeidal, Lauren Cecha, Beatrice Ginia, Joanna Przewrockab, Chris Moorem, Miguel Murillom, Bjorn Bakkerb, Brandon Ruleb, Cameron Durfeee-g, Shigeki Nanjoa, Lisa Tana, Lindsay K. Larsone-g, Prokopios P. Argyrise-h,n, William L. Browne-g, Johnny Yuo, Carlos Gomeza, Philippe Guia, Rachel I. Vogelf,p, Elizabeth A. Yua, Nicholas J. Thomasa, Subramanian Venkatesanb,r, Sebastijan Hoborb, Su Kit Chewr, Nnennaya Kanur, Nicholas McGranahank,r, Eliezer M. Van Allenq, Julian Downwardm, Reuben S. Harrise-h, Trever G. Bivonaa*, Charles Swantonb,r Affiliations: aDepartment of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA bCancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK cDepartment of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas dDepartment
    [Show full text]
  • Insights Into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions
    viruses Review Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions Xiaojiang S. Chen 1,2,3 1 Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; [email protected]; Tel.: +1-213-740-5487 2 Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA 3 Center of Excellence in NanoBiophysics/Structural Biology, University of Southern California, Los Angeles, CA 90089, USA Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single- stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage Citation: Chen, X.S. Insights into and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is the Structures and Multimeric Status more complicated than others, due to the associated complex RNA binding modes.
    [Show full text]
  • Editing and Chemical Modifications on Non-Coding Rnas in Cancer
    International Journal of Molecular Sciences Review Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance Ligia I. Torsin 1,† , George E. D. Petrescu 2,3,† , Alexandru A. Sabo 4, Baoqing Chen 5,6, Felix M. Brehar 2,3, Mihnea P. Dragomir 7,* and George A. Calin 8,9,* 1 Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania; [email protected] 2 Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; [email protected] (G.E.D.P.); [email protected] (F.M.B.) 3 Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania 4 Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany; [email protected] 5 State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; [email protected] 6 Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China 7 Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany 8 Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 9 Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA * Correspondence: [email protected] or [email protected] (M.P.D.); [email protected] (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.) † These authors contributed equally to this work.
    [Show full text]
  • Trypanosoma Brucei Trna Editing Deaminase: Conserved Deaminase Core, Unique Deaminase Features
    Trypanosoma brucei tRNA Editing Deaminase: Conserved Deaminase Core, Unique Deaminase Features DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jessica Lynn Spears Graduate Program in Microbiology The Ohio State University 2011 Dissertation Committee: Dr. Juan Alfonzo, Advisor Dr. Michael Ibba Dr. Chad Rappleye Dr. Venkat Gopalan Copyright by Jessica Lynn Spears 2011 Abstract Inosine, a guanosine analog, has been known to function in transfer RNAs (tRNAs) for decades. When inosine occurs at the wobble position of the tRNA, it functionally expands the decoding capability of a single tRNA because inosine can base pair with cytosine, adenosine, and uridine. Because inosine is not genomically encoded, essential enzyme(s) are responsible for deaminating adenosine to inosine by a conserved zinc-mediated hydrolytic deamination mechanism. Collectively called ADATs (Adenosine deaminase acting on tRNA), these enzymes are heterodimeric in eukaryotes and are comprised of subunits called ADAT2 and ADAT3. ADAT2 is presumed to be the catalytic subunit while ADAT3 is thought to be just a structural component. Although these enzymes are essential for cell viability and their products (inosine-containing tRNAs) have a direct effect on translation, little is known about ADAT2/3. Questions such as what is ADAT3’s role in enzyme activity, how many zinc ions are coordinated, how many tRNAs are bound per heterodimer per catalytic cycle and what is the nature of the tRNA binding domain were all open questions until this work. The focus of chapter two is on the specific contributions of each subunit to catalysis.
    [Show full text]
  • DNA Methylation Modifier LSH Inhibits P53 Ubiquitination And
    Chen et al. Epigenetics & Chromatin (2019) 12:59 https://doi.org/10.1186/s13072-019-0302-9 Epigenetics & Chromatin RESEARCH Open Access DNA methylation modifer LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism Ling Chen1,2,3,8, Ying Shi1,2, Na Liu1,2, Zuli Wang1,2, Rui Yang1,2, Bin Yan1,2,4, Xiaoli Liu1,2, Weiwei Lai1,2, Yating Liu1,2, Desheng Xiao5, Hu Zhou6, Yan Cheng7, Ya Cao1,2, Shuang Liu4, Zanxian Xia8,9* and Yongguang Tao1,2,3,4,5* Abstract Background: The stability of p53 is mainly controlled by ubiquitin-dependent degradation, which is triggered by the E3 ubiquitin ligase MDM2. The chromatin modifer lymphoid-specifc helicase (LSH) is essential for DNA methyla- tion and cancer progression as a transcriptional repressor. The potential interplay between chromatin modifers and transcription factors remains largely unknown. Results: Here, we present data suggesting that LSH regulates p53 in cis through two pathways: prevention protea- somal degradation through its deubiquitination, which is achieved by reducing the lysine 11-linked, lysine 48-linked polyubiquitin chains (K11 and K48) on p53; and revival of the transcriptional activity of p53 by forming a complex with PKM2 (pyruvate kinase 2). Furthermore, we confrmed that the LSH–PKM2 interaction occurred at the intersubunit interface region of the PKM2 C-terminal region and the coiled-coil domains (CC) and ATP-binding domains of LSH, and this interaction regulated p53-mediated transactivation in cis in lipid metabolism, especially lipid catabolism. Conclusion: These fndings suggest that LSH is a novel regulator of p53 through the proteasomal pathway, thereby providing an alternative mechanism of p53 involvement in lipid metabolism in cancer.
    [Show full text]
  • An Adenosine-To-Inosine Trna-Editing Enzyme That Can Perform C-To-U Deamination of DNA
    An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA Mary Anne T. Rubio*, Irena Pastar†, Kirk W. Gaston*, Frank L. Ragone*‡, Christian J. Janzen§, George A. M. Cross§, F. Nina Papavasiliou†¶, and Juan D. Alfonzo*‡ʈ *Department of Microbiology and the Ohio State RNA Group, and the ‡Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210; and †Laboratory of Lymphocyte Biology and §Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10021 Communicated by Norman R. Pace, University of Colorado, Boulder, CO, March 20, 2007 (received for review February 24, 2007) Adenosine-to-inosine editing in the anticodon of tRNAs is essential otide cytidine deaminases (CDAs) acting on RNA (like the for viability. Enzymes mediating tRNA adenosine deamination in APOBEC family of enzymes) or DNA (like AID, the activation- bacteria and yeast contain cytidine deaminase-conserved motifs, induced deaminase). tRNA-editing adenosine deaminases suggesting an evolutionary link between the two reactions. In [adenosine deaminases acting on tRNA (ADATs)] that target trypanosomatids, tRNAs undergo both cytidine-to-uridine and ade- the anticodon belong to the CDA superfamily and harbor its nosine-to-inosine editing, but the relationship between the two characteristic H(C)XE and PCXXC metal-binding signature reactions is unclear. Here we show that down-regulation of the sequences (4, 6–10). Thus, although anticodon-specific ADATs Trypanosoma brucei tRNA-editing enzyme by RNAi leads to a reduc- structurally resemble CDAs, they modify adenosine, suggesting tion in both C-to-U and A-to-I editing of tRNA in vivo.
    [Show full text]
  • Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses
    viruses Review Examination of the APOBEC3 Barrier to Cross Species Transmission of Primate Lentiviruses Amit Gaba , Ben Flath and Linda Chelico * Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SA S7H 0E5, Canada; [email protected] (A.G.); [email protected] (B.F.) * Correspondence: [email protected] Abstract: The transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host. However, due to ongoing viral evolution, sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling cross-species transmission. Here we examine the classical case of this paradigm by reviewing research on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine to promutagenic uridine on single-stranded viral (−)DNA if they escape the HIV/SIV antagonist protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans. Citation: Gaba, A.; Flath, B.; Chelico, Keywords: immunodeficiency virus; APOBEC3; restriction factor; Vif; protein-protein interactions; L.
    [Show full text]