Repositório Da Universidade De Lisboa

Total Page:16

File Type:pdf, Size:1020Kb

Repositório Da Universidade De Lisboa UNIVERSIDADE DE LISBOA FACULDADE DE FARMÁCIA DEPARTAMENTO DE MICROBIOLOGIA The structure-function relationship of HIV-1 Vif protein and its regulation Carla Iris Cadima Couto Tese orientada pelo Prof. Doutor João Gonçalves DOUTORAMENTO EM FARMÁCIA MICROBIOLOGIA 2008 As opiniões expressas neste trabalho são de exclusiva responsabilidade do seu autor. Carla Iris Cadima Couto was financially supported by a Ph.D scholarship SFRH/BD/18805/2004 from Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal. Preface The research work described in this dissertation was performed from October 2004 until September 2008 under the supervision of Prof. João Gonçalves at the CPM/URIA of the Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal. During the period of my research I spent three months (from September 2007 to December 2007) in Prof. Moshe Kotler laboratory at the Hadassah Medical School of the University of Jerusalém, Israel, and the work developed during this period is included in chapter 2 of this thesis and in a manuscript already submited. The results described in this thesis were included in manuscripts already submited for publication: Iris Cadima-Couto, Acilino Freitas-Vieira, Roni Nowarski, Elena Britan-Rosich, Moshe Kotler, and João Gonçalves. (2008). Modelling APOBEC3G intracellular steady-state shows a differential inhibition of HIV-1ΔVif. Journal of Biological Chemistry. (Submited) . Iris Cadima-Couto, Soraia Oliveira, Saraiva N, João Gonçalves. (2008). Cooperation of amino and carboxyl-terminal domains of Vif is essential for its role in A3G degradation. Journal of Biological Chemistry. (Submited) . Iris Cadima-Couto, Saraiva N, Gonçalves J. (2008). Assessment of HIV-1 Vif-APOBEC Interactions Based on a β-Lactamase Protein Fragment Complementation Assay. Retrovirology. (Submited) According to the “Decreto-Lei 388/70”, article 8 point nº 2, the data presented in this dissertation is the result of the authors work and it is clearly acknowledged in the text whenever data or reagents produced by others were used. The author participated in the planning and execution of the experimental procedures such as in the results interpretation and in manuscripts preparation. The opinions expressed in this publication are from the exclusive responsibility of the author and have not been previously submitted for any degree at this or other university. iii Acknowledgments/Agradecimentos Ao meu orientador, Professor João Gonçalves, pela sua orientação durante o desenvolvimento deste trabalho. Obrigada por todas as recomendações e por me ter dado liberdade na autogestão do meu tempo de trabalho no laboratório, que foi fundamental para que este trabalho tivesse sido concluído dentro dos prazos limites. Ao Professor José Moniz Pereira por permitir a realização desta tese na Faculdade de Farmácia da Universidade de Lisboa. À Fundação para a Ciência e Tecnologia pelo apoio financeiro no âmbito da bolsa de doutoramento, SFRH/BD/18805/2004. Ao Acilino por ter sido um excelente colega de trabalho, pelo seu companheirismo e amizade e por ter estado sempre presente durante os bons e maus momentos ao longo destes 4 anos. Obrigada por tudo! Aos meus restantes colegas de laboratório que me acompanharam ao longo deste trabalho: Ana Fonseca, Andreia, Cláudia, Filipa, Frederico, Maria João Leite, Maria João, Mariana, Paula, Rita, Sara, Sofia Coelho, Sofia CR, Soraia, Sylvie. A todos, obrigada! Obrigada a todos os meus restantes companheiros da unidade de microbiologia, com os quais partilhei as muitas horas no P3. À Madalena e ao João Vital pela sua simpatia e boa disposição. À Professora Aida Esteves, obrigada por ter disponibilizado o seu P3 durante um período do meu doutoramento. Obrigado também à Sandra, ao Rui, ao João e ao Ricardo, do grupo da Prof. Aida, por me terem sempre recebido tão bem. I am deeply grateful to Professor Moshe Kotler, from the University of Jerusalem, for receiving me so well in his lab, for his support and friendship and for making me feel at home away from home. I would also like to thank to all the members of Prof. Moshe lab: Roni and Elena, thank you so much for being so kind in your guidance during my work in the lab. Maia and Shira, thank for your friendship! iv À minha família, por me terem sempre apoiado em todas as decisões da minha vida. Obrigada aos meus amigos que acompanharam de perto todos os momentos do meu doutoramento….obrigada pela conversas, por todos os momentos de lazer que passámos e que foram essências durante este período. Finalmente, um especial agradecimento ao Rafael. Obrigada pelo teu constante apoio, paciência, e por nunca teres duvidado de que eu iria conseguir ultrapassar esta etapa da minha vida. Obrigada por me teres dado ânimo nos momentos mais difíceis deste doutoramento e por teres partilhado comigo todos os bons momentos. v Estrutura-Função da proteína Vif do HIV-1 e sua regulação SUMÁRIO O Vírus da Imunodeficiência Humana tipo 1 (HIV-1) é um retrovírus complexo que codifica uma proteína acessória, Vif (Viral Infectivity Factor), necessária para uma produtiva infecção. A presença de Vif na célula produtora de vírus é um dos factores essenciais para o aumento da infecciosidade viral, podendo esta ser aumentada até cerca de 1000 vezes. Há mais de uma década que é sabido que a proteína Vif é necessária para a replicação do HIV-1 em algumas células, chamadas não permissivas. No entanto em outras, chamadas permissivas, a replicação viral ocorre mesmo que na ausência de Vif. A razão para este facto permaneceu desconhecida até á descoberta, em 2002, da desaminase de citidina humana, human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) como sendo a proteína responsável por restringir a replicação de HIV-1 que não expressa Vif. Este factor de restrição celular encontra-se presente maioritariamente no baço, gónadas, monócitos e linfócitos periféricos. Na ausência de Vif, A3G, é encapsidado no virião em formação por um sistema dependente de Gag. Desta forma, A3G é transportado para a próxima célula alvo onde vai actuar no momento da transcrição reversa, desaminando a cadeia simples, negativa do cDNA viral. Este processo resulta na inactivação do processo replicativo por hipermutação do genoma ou mesmo pela degradação do cDNA viral por um mecanismo dependente da enzima DNA uracil glicosilase. Após a identificação de A3G e mais tarde de APOBEC3F (A3F), ficou claro que o mecanismo pelo qual o HIV-1 escapava á acção destes factores de restrição era através da proteína Vif. Vif actua inibindo a entrada de A3G e A3F nos viriões através da diminuição dos níveis celulares destes factores de restrição. Um dos mecanismos que a Vif utiliza implica a degradação proteossomal destas enzimas. Para isso, a Vif recruta uma série de proteínas celulares para formar um complexo Culina5- os desta forma para degradação proteossomal. vi Desta forma, torna-se essencial compreender de que forma a proteína A3G, documentada como sendo a que exerce maior actividade contra o HIV-1, pode ser estimulada na célula de maneira a poder escapar aos efeitos da Vif e consequentemente inibir a replicação viral. Assim, decidimos modelar o tempo de meia-vida do A3G como forma de monitorizar a sua acção na célula desde o momento em que é traduzido até á sua encapsidação no virião. Este mecanismo de modelação do tempo de meia-vida de uma proteína é conhecido pelo nome de “N-end Rule” e consiste na introdução de diferentes amino ácidos no inicio da região N-terminal de uma proteína resultando em diferentes tempos de meia-vida da mesma, de acordo com a identidade do resíduo introduzido. Ao interferir com a estabilidade desta proteína, fomos capazes de a direccionar para degradação no proteossoma duma forma independente da Vif. Os resultados apresentados neste trabalho confirmaram a importância do tempo de meia-vida do A3G para a manutenção da sua actividade antiviral. Ao diminuir os tempos de vida do A3G na célula, fomos capazes de determinar que o tempo de meia-vida mínimo do A3G para que este seja incorporado nos viriões é de aproximadamente 13 minutos. Neste caso, concluímos que a Vif terá que actuar nos estágios iniciais da vida do A3G de forma a impedir que este seja encapsidado nos viriões. A análise da actividade catalítica dos nossos diferentes A3Gs revelou que a sua actividade enzimática no citoplasma da célula não parece ser importante para a sua actividade antiviral e que a actividade catalítica destes variantes não aumenta de acordo com o aumento do tempo de meia-vida destes. Esta estratégia, permitiu-nos compreender de que forma o tempo de meia-vida do A3G pode influenciar a sua actividade antiviral, quer ao nível da sua encapsidação nos viriões como ao nível da sua actividade catalítica na célula. A identificação de padrões de interacção entre a Vif e o A3G é um dos maiores desafios para o desenvolvimento de novas terapias antivirais. Tem sido demonstrado que o impedimento da interacção Vif-A3G resulta num aumento da actividade antiviral deste último. Assim, decidimos estudar a interacção entre estas duas proteínas através de duas estratégias que, embora já tenham sido utilizadas em estudos semelhantes com outras proteínas, foram aqui usadas pela primeira vez no contexto da interacção Vif- A3G. vii A primeira estratégia consistiu na fusão de fragmentos da Vif e do A3G a domínios de interacção do factor de transcrição de levedura GCN4 (Zip), que forma homodimeros. A presença de Zip em fusão com estas proteínas obrigará estas a se encontrarem espacialmente permitindo-nos assim mutagenizar partes de ambas as proteínas e concluir acerca da importância de certos domínios na interacção. Esta estratégia permitiu-nos demonstrar a importância da região C-terminal da Vif na interacção com o A3G. Os resultados obtidos indicam que esta região da Vif, por si só, não é suficiente para induzir a degradação do A3G e sugerem que a interacção Vif-A3G deverá envolver um co-factor celular adicional que se deverá ligar á região N-terminal da Vif.
Recommended publications
  • High-Throughput Mutagenesis Reveals Functional Determinants for DNA Targeting by Activation-Induced Deaminase Kiran S
    9964–9975 Nucleic Acids Research, 2014, Vol. 42, No. 15 Published online 26 July 2014 doi: 10.1093/nar/gku689 High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase Kiran S. Gajula1, Peter J. Huwe2,†, Charlie Y. Mo3,†, Daniel J. Crawford1, James T. Stivers4, Ravi Radhakrishnan2 and Rahul M. Kohli1,3,* 1Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA, 2Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA, 3Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and 4Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Received June 7, 2014; Revised July 16, 2014; Accepted July 16, 2014 ABSTRACT tional scanning and may find general utility for high- throughput analysis of protein function. Antibody maturation is a critical immune process governed by the enzyme activation-induced deam- inase (AID), a member of the AID/APOBEC DNA INTRODUCTION deaminase family. AID/APOBEC deaminases prefer- Enzyme families often share a central well-structured cat- entially target cytosine within distinct preferred se- alytic core, with different specificities among family mem- quence motifs in DNA, with specificity largely con- bers encoded by variable regions surrounding the active ferred by a small 9–11 residue protein loop that dif- site core (1,2). This mechanism for fulfilling the need for fers among family members. Here, we aimed to deter- specialization while maintaining core function is evident in / mine the key functional characteristics of this protein the family of AID APOBEC cytosine deaminase enzymes, loop in AID and to thereby inform our understanding which play an important role in adaptive and innate immu- nity.
    [Show full text]
  • The Battle Between Retroviruses and APOBEC3 Genes: Its Past and Present
    viruses Review The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present Keiya Uriu 1,2,†, Yusuke Kosugi 3,4,†, Jumpei Ito 1 and Kei Sato 1,2,* 1 Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; [email protected] (K.U.); [email protected] (J.I.) 2 Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan 3 Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; [email protected] 4 Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan * Correspondence: [email protected]; Tel.: +81-3-6409-2212 † These authors contributed equally to this work. Abstract: The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses. Keywords: APOBEC3; lentivirus; Vif; arms race; gene diversification; coevolution Citation: Uriu, K.; Kosugi, Y.; Ito, J.; Sato, K.
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • 1 APOBEC-Mediated Mutagenesis in Urothelial Carcinoma Is Associated
    bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response Alexander P. Glaser MD, Damiano Fantini PhD, Kalen J. Rimar MD, Joshua J. Meeks MD PhD APG, DF, KJR, JJM: Northwestern University, Department of Urology, Chicago, IL, 60607 Running title: APOBEC mutagenesis in bladder cancer *Corresponding author: Joshua J. Meeks, MD PhD 303 E. Chicago Ave. Tarry 16-703 Chicago, IL 60611 Email: [email protected] Keywords (4-6): • Urinary bladder neoplasms • APOBEC Deaminases • Mutagenesis • DNA damage • Interferon Abbreviations and Acronyms: TCGA – The Cancer Genome Atlas ssDNA – single stranded DNA APOBEC –apolipoprotein B mRNA editing catalytic polypeptide-like GCAC – Genome Data Analysis Center MAF – mutation annotation format “APOBEC-high” – tumors enriched for APOBEC mutagenesis “APOBEC-low” – tumors not enriched for APOBEC mutagenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/123802; this version posted April 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Background: The APOBEC family of enzymes is responsible for a mutation signature characterized by a TCW>T/G mutation. APOBEC-mediated mutagenesis is implicated in a wide variety of tumors, including bladder cancer. In this study, we explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival.
    [Show full text]
  • Genetic and Biochemical Studies of Human Apobec Family of Proteins Priyanga Wijesinghe Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Genetic and biochemical studies of human apobec family of proteins Priyanga Wijesinghe Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Wijesinghe, Priyanga, "Genetic and biochemical studies of human apobec family of proteins" (2012). Wayne State University Dissertations. Paper 584. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. GENETIC AND BIOCHEMICAL STUDIES OF HUMAN APOBEC FAMILY OF PROTEINS by PRIYANGA WIJESINGHE DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR : CHEMISTRY (Biochemistry) Approved by: Advisor Date © COPYRIGHT BY PRIYANGA WIJESINGHE 2012 All Rights Reserved DEDICATION To my wife Thiloka and daughter Senuli ii ACKNOWLEDGMENTS I would like to thank my thesis advisor Dr. Ashok S. Bhagwat for his exceptional guidance, supervision and help during my graduate research career. I take this opportunity to thank my thesis committee Dr. Andrew L. Feig, Dr. Jeremy Kodanko and Dr. T.R. Reddy for their valuable comments and suggestions. Also, I would like to extend my thanks to Dr. Thomas Holland, Dr. David Rueda, and Dr. John SantaLucia. I must thank my present lab members Sophia Shalhout, Thisari Guruge, Shaqiao Wei, Anita Chalasani, Amanda Arnorld, Casey Jackson, Nadeem Kandalaft and Richard Evans for friendship and mutual support. Special thanks go to my former lab members Dr.
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]
  • Targeted Cancer Therapy Induces APOBEC Fuelling the Evolution of Drug Resistance Authors: Manasi K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423280; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Targeted cancer therapy induces APOBEC fuelling the evolution of drug resistance Authors: Manasi K. Mayekara†, Deborah R. Caswellb*†, Natalie I. Vokesc-d, Emily K. Lawe-h, Wei Wua, William Hillb, Eva Gronroosb, Andrew Rowanb, Maise Al Bakirb, Caroline E. McCoacha, Collin M. Blakelya, Nuri Alpay Temizi, Ai Naganob, D. Lucas Kerra, Julia K. Rotowj, Franziska Haderka, Michelle Dietzenk,r, Carlos Martinez Ruizk,r, Bruna Almeidal, Lauren Cecha, Beatrice Ginia, Joanna Przewrockab, Chris Moorem, Miguel Murillom, Bjorn Bakkerb, Brandon Ruleb, Cameron Durfeee-g, Shigeki Nanjoa, Lisa Tana, Lindsay K. Larsone-g, Prokopios P. Argyrise-h,n, William L. Browne-g, Johnny Yuo, Carlos Gomeza, Philippe Guia, Rachel I. Vogelf,p, Elizabeth A. Yua, Nicholas J. Thomasa, Subramanian Venkatesanb,r, Sebastijan Hoborb, Su Kit Chewr, Nnennaya Kanur, Nicholas McGranahank,r, Eliezer M. Van Allenq, Julian Downwardm, Reuben S. Harrise-h, Trever G. Bivonaa*, Charles Swantonb,r Affiliations: aDepartment of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA bCancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK cDepartment of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas dDepartment
    [Show full text]
  • Insights Into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions
    viruses Review Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions Xiaojiang S. Chen 1,2,3 1 Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; [email protected]; Tel.: +1-213-740-5487 2 Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA 3 Center of Excellence in NanoBiophysics/Structural Biology, University of Southern California, Los Angeles, CA 90089, USA Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single- stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage Citation: Chen, X.S. Insights into and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is the Structures and Multimeric Status more complicated than others, due to the associated complex RNA binding modes.
    [Show full text]
  • Editing and Chemical Modifications on Non-Coding Rnas in Cancer
    International Journal of Molecular Sciences Review Editing and Chemical Modifications on Non-Coding RNAs in Cancer: A New Tale with Clinical Significance Ligia I. Torsin 1,† , George E. D. Petrescu 2,3,† , Alexandru A. Sabo 4, Baoqing Chen 5,6, Felix M. Brehar 2,3, Mihnea P. Dragomir 7,* and George A. Calin 8,9,* 1 Department of Anesthesiology and Critical Care, Elias Clinical Emergency Hospital, 011461 Bucharest, Romania; [email protected] 2 Department of Neurosurgery, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; [email protected] (G.E.D.P.); [email protected] (F.M.B.) 3 Department of Neurosurgery, Bagdasar-Arseni Clinical Emergency Hospital, 041915 Bucharest, Romania 4 Zentrum für Kinder, Jugend und Frauenmedizin, Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, 70174 Stuttgart, Germany; [email protected] 5 State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; [email protected] 6 Guangdong Esophageal Cancer Research Institute, Guangzhou 510060, China 7 Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany 8 Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA 9 Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA * Correspondence: [email protected] or [email protected] (M.P.D.); [email protected] (G.A.C.); Tel.: +40-254-219-493 (M.P.D.); +1-713-792-5461 (G.A.C.) † These authors contributed equally to this work.
    [Show full text]
  • Trypanosoma Brucei Trna Editing Deaminase: Conserved Deaminase Core, Unique Deaminase Features
    Trypanosoma brucei tRNA Editing Deaminase: Conserved Deaminase Core, Unique Deaminase Features DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jessica Lynn Spears Graduate Program in Microbiology The Ohio State University 2011 Dissertation Committee: Dr. Juan Alfonzo, Advisor Dr. Michael Ibba Dr. Chad Rappleye Dr. Venkat Gopalan Copyright by Jessica Lynn Spears 2011 Abstract Inosine, a guanosine analog, has been known to function in transfer RNAs (tRNAs) for decades. When inosine occurs at the wobble position of the tRNA, it functionally expands the decoding capability of a single tRNA because inosine can base pair with cytosine, adenosine, and uridine. Because inosine is not genomically encoded, essential enzyme(s) are responsible for deaminating adenosine to inosine by a conserved zinc-mediated hydrolytic deamination mechanism. Collectively called ADATs (Adenosine deaminase acting on tRNA), these enzymes are heterodimeric in eukaryotes and are comprised of subunits called ADAT2 and ADAT3. ADAT2 is presumed to be the catalytic subunit while ADAT3 is thought to be just a structural component. Although these enzymes are essential for cell viability and their products (inosine-containing tRNAs) have a direct effect on translation, little is known about ADAT2/3. Questions such as what is ADAT3’s role in enzyme activity, how many zinc ions are coordinated, how many tRNAs are bound per heterodimer per catalytic cycle and what is the nature of the tRNA binding domain were all open questions until this work. The focus of chapter two is on the specific contributions of each subunit to catalysis.
    [Show full text]
  • DNA Methylation Modifier LSH Inhibits P53 Ubiquitination And
    Chen et al. Epigenetics & Chromatin (2019) 12:59 https://doi.org/10.1186/s13072-019-0302-9 Epigenetics & Chromatin RESEARCH Open Access DNA methylation modifer LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism Ling Chen1,2,3,8, Ying Shi1,2, Na Liu1,2, Zuli Wang1,2, Rui Yang1,2, Bin Yan1,2,4, Xiaoli Liu1,2, Weiwei Lai1,2, Yating Liu1,2, Desheng Xiao5, Hu Zhou6, Yan Cheng7, Ya Cao1,2, Shuang Liu4, Zanxian Xia8,9* and Yongguang Tao1,2,3,4,5* Abstract Background: The stability of p53 is mainly controlled by ubiquitin-dependent degradation, which is triggered by the E3 ubiquitin ligase MDM2. The chromatin modifer lymphoid-specifc helicase (LSH) is essential for DNA methyla- tion and cancer progression as a transcriptional repressor. The potential interplay between chromatin modifers and transcription factors remains largely unknown. Results: Here, we present data suggesting that LSH regulates p53 in cis through two pathways: prevention protea- somal degradation through its deubiquitination, which is achieved by reducing the lysine 11-linked, lysine 48-linked polyubiquitin chains (K11 and K48) on p53; and revival of the transcriptional activity of p53 by forming a complex with PKM2 (pyruvate kinase 2). Furthermore, we confrmed that the LSH–PKM2 interaction occurred at the intersubunit interface region of the PKM2 C-terminal region and the coiled-coil domains (CC) and ATP-binding domains of LSH, and this interaction regulated p53-mediated transactivation in cis in lipid metabolism, especially lipid catabolism. Conclusion: These fndings suggest that LSH is a novel regulator of p53 through the proteasomal pathway, thereby providing an alternative mechanism of p53 involvement in lipid metabolism in cancer.
    [Show full text]
  • An Adenosine-To-Inosine Trna-Editing Enzyme That Can Perform C-To-U Deamination of DNA
    An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA Mary Anne T. Rubio*, Irena Pastar†, Kirk W. Gaston*, Frank L. Ragone*‡, Christian J. Janzen§, George A. M. Cross§, F. Nina Papavasiliou†¶, and Juan D. Alfonzo*‡ʈ *Department of Microbiology and the Ohio State RNA Group, and the ‡Ohio State Biochemistry Program, Ohio State University, Columbus, OH 43210; and †Laboratory of Lymphocyte Biology and §Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10021 Communicated by Norman R. Pace, University of Colorado, Boulder, CO, March 20, 2007 (received for review February 24, 2007) Adenosine-to-inosine editing in the anticodon of tRNAs is essential otide cytidine deaminases (CDAs) acting on RNA (like the for viability. Enzymes mediating tRNA adenosine deamination in APOBEC family of enzymes) or DNA (like AID, the activation- bacteria and yeast contain cytidine deaminase-conserved motifs, induced deaminase). tRNA-editing adenosine deaminases suggesting an evolutionary link between the two reactions. In [adenosine deaminases acting on tRNA (ADATs)] that target trypanosomatids, tRNAs undergo both cytidine-to-uridine and ade- the anticodon belong to the CDA superfamily and harbor its nosine-to-inosine editing, but the relationship between the two characteristic H(C)XE and PCXXC metal-binding signature reactions is unclear. Here we show that down-regulation of the sequences (4, 6–10). Thus, although anticodon-specific ADATs Trypanosoma brucei tRNA-editing enzyme by RNAi leads to a reduc- structurally resemble CDAs, they modify adenosine, suggesting tion in both C-to-U and A-to-I editing of tRNA in vivo.
    [Show full text]