Origin and Structure Similarity with the Central Domain of DNA Glycosylase

Total Page:16

File Type:pdf, Size:1020Kb

Origin and Structure Similarity with the Central Domain of DNA Glycosylase Protein X of Hepatitis B Virus: Origin and Structure Similarity with the Central Domain of DNA Glycosylase Formijn J. van Hemert1*, Maarten A. A. van de Klundert3, Vladimir V. Lukashov1*, Neeltje A. Kootstra3, Ben Berkhout1, Hans L. Zaaijer2,3 1 Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, 2 Laboratory Clinical Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, 3 Laboratory of Experimental Immunology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Abstract Orthohepadnavirus (mammalian hosts) and avihepadnavirus (avian hosts) constitute the family of Hepadnaviridae and differ by their capability and inability for expression of protein X, respectively. Origin and functions of X are unclear. The evolutionary analysis at issue of X indicates that present strains of orthohepadnavirus started to diverge about 25,000 years ago, simultaneously with the onset of avihepadnavirus diversification. These evolutionary events were preceded by a much longer period during which orthohepadnavirus developed a functional protein X while avihepadnavirus evolved without X. An in silico generated 3D-model of orthohepadnaviral X protein displayed considerable similarity to the tertiary structure of DNA glycosylases (key enzymes of base excision DNA repair pathways). Similarity is confined to the central domain of MUG proteins with the typical DNA-binding facilities but without the capability of DNA glycosylase enzymatic activity. The hypothetical translation product of a vestigial X reading frame in the genome of duck hepadnavirus could also been folded into a DNA glycosylase-like 3D-structure. In conclusion, the most recent common ancestor of ortho- and avihepadnavirus carried an X sequence with orthology to the central domain of DNA glycosylase. Citation: van Hemert FJ, van de Klundert MAA, Lukashov VV, Kootstra NA, Berkhout B, et al. (2011) Protein X of Hepatitis B Virus: Origin and Structure Similarity with the Central Domain of DNA Glycosylase. PLoS ONE 6(8): e23392. doi:10.1371/journal.pone.0023392 Editor: Jean-Pierre Vartanian, Institut Pasteur, France Received May 11, 2011; Accepted July 15, 2011; Published August 5, 2011 Copyright: ß 2011 van Hemert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The authors have no support or funding to report. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] (FJvH); [email protected] (VVL) Introduction DDB1 (Damaged DNA Binding Protein1), in which case protein X redirects the ubiquitin ligase activity of CUL4-DDB1 E3 The hepatitis B virus (HBV) particle contains a partially double complexes, which are intimately involved in the intracellular stranded DNA genome of about 3200 base pairs [1,2] with four regulation of DNA replication and repair, transcription and signal partially overlapping reading frames encoding the C, S and X transduction [13]. The X protein is well conserved among proteins and the error-prone viral reverse transcriptase or (mammalian) orthohepadnavirus, but absent in avihepadnavirus. polymerase [3,4]. Besides human HBV, the subfamily of Similarity of X with host cellular proteins appeared to be below or Orthohepadnaviridae includes similar virus strains isolated from near the threshold level of detection and a crystal model of its 3D- gorilla, orangutan, chimpanzee, gibbon, woolly monkey, chuck structure is currently not available. and squirrel species. Infections by Avihepadnaviridae have been Here, we present an in silico generated model of the X tertiary demonstrated in duck, goose, heron and stork species. About 300 structure. The X model of choice is the best of the 5 alternative million patients worldwide carry a chronic HBV infection [5], structures constructed by the modeling software. In docking which causes the death of over one million persons annually by experiments of the X structures with HBXIP or DDB1 into liver failure or hepatocellular carcinoma [6]. Transgenic mice heterodimers, X model 1 outperforms most other models expressing the X protein in liver were prone to develop regarding the interface stability of these complexes. Amino acid hepatocellular carcinoma [7]. However, the cellular pathways residues in X proven to be critical for dimer formation with along which X induces hepatocellular carcinoma are fragmentary HBXIP are among the contact residues of the interface. In documented [8]. The X protein is 154 amino acids in size and heterodimers of DDB1 with full-length protein X, the interfaces displays direct or indirect interaction with host factors, thus contain most of the H-box a-helical X residues that were described modulating a plethora of cellular processes. Protein X interferes to be involved in a DDB1/H-box oligopeptide complex [13]. We with transcription, signal transduction, cell cycle progress, protein have queried the PDB database for proteins displaying similarity degradation, apoptosis and chromosomal stability [9–11]. More with the X 3D-structure and found a striking similarity of X with specifically, heterodimer complex formation of X with its cellular members of the MUG family of DNA glycosylases, which are the target protein (HBX interacting protein, HBXIP) has been key enzymes of the BER (base excision repair) pathway [14]. Even demonstrated, triggering deregulation of centrosome dynamics the hypothetical translation product of a vestigial X reading frame and mitotic spindle formation [12]. Another interaction involves in duck hepadnavirus - after restoration of stopcodons into coding PLoS ONE | www.plosone.org 1 August 2011 | Volume 6 | Issue 8 | e23392 3D-Structure Similarity of HBx with DNA Glycosylase triplets [15] - showed a 3D-structure with significant similarity to (http://cbsuapps.tc.cornell.edu/beast.aspx) for phylogenetic re- MUG proteins. Protein-DNA docking experiments indicated a construction and tMRCA (time of the most recent common binding capability of X protein to an oligodeoxynucleotide that ancestor) estimation. An uncorrelated lognormal relaxed molec- has been analyzed by X-ray in complex with E. coli MUG DNA ular clock was assumed to act via the JTT amino acid replacement glycosylase [16,17]. From the evolutionary point of view, model [25] with gamma and invariant site heterogeneity. A orthohepadnavirus and avihepadnavirus share a common protein constant population size was chosen as a demographic model. X ancestor with orthology to DNA glycosylase. Identical analyses were done in parallel over a sufficient period of time to achieve convergence of Monte Carlo Markov chains. Materials and Methods Relevant XML files are added as Supporting Information Files. DNA glycosylases are indicated by their PDB entry (lower case) The NCBI reference set served as a source of human HBV with the chain identifier (upper case). The actual GenBank sequences. Hepadnavirus sequences of non-human hosts (other accession numbers are mentioned in table and figures. TimeTree primates, woolly monkey, chuck, squirrel and birds) were [26] estimates of species divergence were used to calibrate BEAST downloaded from GenBank. X protein sequences were derived analyses for the determination of the rate of amino acid by translation of the appropriate reading frame in complete viral replacements in animal DNA glycosylases. 3D-models were genomes. An ancestral and a consensus sequence of human HBV generated by submission to the i-TASSER server [27] and X protein was constructed from the same collection by means of visualized by means of RasTop 2.2 (http://sourceforge.net/ the ANCESCON server [18] and by BioEdit [19], respectively. An projects/rastop). Application of parent or template structures HBV genotype D consensus sequence was available [20]. (server-detected or custom-supplied) is mentioned in the text. Sequences with relatively high similarity were aligned by ClustalW Protein-protein docking was achieved by ClusPro 1.0 [28] and by [21] or by PROBCONS [22] in case of low similarity. Alignments ClusPro 2.0, presently available as PIPER [29]. The usage of were combined by the profile-to-profile option of MUSCLE [23] ALASCAN [30] for the identification of protein-protein interfaces and subjected to rounds of manual refinement particularly at gap and the calculation of interface stability has been described borders. The BEAST suite consisting of the modules Beauti, Beast, previously [31]. Distances between amino acid residues were Logcombiner, TreeAnnotator v1.4.8, Tracer v1.4.1 and FigTree estimated by means of Chimera v1.6 [32]. Protein-DNA docking v1.2.3 [24] was used locally and distantly on the BEAST server of was performed by means of PatchDock [33] and HEX [34]. the Computational Biology Service Unit at Cornell University Protein-DNA interfaces were analyzed by means of ProTorP [35]. Figure 1. Phylogeny and divergence time estimates of hepadnaviral protein X. (A) Virus strains are indicated by the common name of their hosts and the GenBank accession identifier. The evolutionary
Recommended publications
  • Hepatitis Virus in Long-Fingered Bats, Myanmar
    DISPATCHES Myanmar; the counties are adjacent to Yunnan Province, Hepatitis Virus People’s Republic of China. The bats covered 6 species: Miniopterus fuliginosus (n = 640), Hipposideros armiger in Long-Fingered (n = 8), Rhinolophus ferrumequinum (n = 176), Myotis chi- nensis (n = 11), Megaderma lyra (n = 6), and Hipposideros Bats, Myanmar fulvus (n = 12). All bat tissue samples were subjected to vi- Biao He,1 Quanshui Fan,1 Fanli Yang, ral metagenomic analysis (unpublished data). The sampling Tingsong Hu, Wei Qiu, Ye Feng, Zuosheng Li, of bats for this study was approved by the Administrative Yingying Li, Fuqiang Zhang, Huancheng Guo, Committee on Animal Welfare of the Institute of Military Xiaohuan Zou, and Changchun Tu Veterinary, Academy of Military Medical Sciences, China. We used PCR to further study the prevalence of or- During an analysis of the virome of bats from Myanmar, thohepadnavirus in the 6 bat species; the condition of the a large number of reads were annotated to orthohepadnavi- samples made serologic assay and pathology impracticable. ruses. We present the full genome sequence and a morpho- Viral DNA was extracted from liver tissue of each of the logical analysis of an orthohepadnavirus circulating in bats. 853 bats by using the QIAamp DNA Mini Kit (QIAGEN, This virus is substantially different from currently known Hilden, Germany). To detect virus in the samples, we con- members of the genus Orthohepadnavirus and represents ducted PCR by using the TaKaRa PCR Kit (TaKaRa, Da- a new species. lian, China) with a pair of degenerate pan-orthohepadnavi- rus primers (sequences available upon request). The PCR he family Hepadnaviridae comprises 2 genera (Ortho- reaction was as follows: 45 cycles of denaturation at 94°C Thepadnavirus and Avihepadnavirus), and viruses clas- for 30 s, annealing at 54°C for 30 s, extension at 72°C for sified within these genera have a narrow host range.
    [Show full text]
  • And Giant Guitarfish (Rhynchobatus Djiddensis)
    VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus.
    [Show full text]
  • In Vitro Selection and Characterization of Single Stranded DNA Aptamers Inhibiting the Hepatitis B Virus Capsid-Envelope Interaction
    Aus dem Veterinärwissenschaftlichen Department der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Arbeit angefertigt unter der Leitung von: Univ.-Prof. Dr. Gerd Sutter Angefertigt im Institut für Virologie des Helmholtz Zentrum München (apl.-Prof. Dr. Volker Bruss) In vitro Selection and Characterization of single stranded DNA Aptamers Inhibiting the Hepatitis B Virus Capsid-Envelope Interaction Inaugural-Dissertation zur Erlangung der tiermedizinischen Doktorwürde der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München von Ahmed El-Sayed Abd El-Halem Orabi aus Sharkia/Ägypten München 2013 Gedruckt mit der Genehmigung der Tierärztlichen Fakultät der Ludwig-Maximilians-Universität München Dekan: Univ.-Prof. Dr. Joachim Braun Berichterstatter: Univ.-Prof. Dr. Gerd Sutter Korreferent: Univ.-Prof. Dr. Bernd Kaspers Tag der Promotion: 20. Juli 2013 My Family Contents Contents 1 INTRODUCTION ................................................................................................... 1 2 REVIEW OF THE LITERATURE ....................................................................... 2 2.1 HEPATITIS B VIRUS (HBV) .............................................................................................. 2 2.1.1 HISTORY AND TAXONOMY .......................................................................................................... 2 2.1.2 EPIDEMIOLOGY AND PATHOGENESIS .......................................................................................... 3 2.1.3 VIRION STRUCTURE ....................................................................................................................
    [Show full text]
  • New Avian Hepadnavirus in Palaeognathous Bird, Germany
    RESEARCH LETTERS New Avian Hepadnavirus includes emus (Dromaius novaehollandiae) and ostrich- es (Struthio spp.). in Palaeognathous Bird, In 2015, a deceased adult elegant-crested tinamou Germany kept at Wuppertal Zoo (Wuppertal, Germany) underwent necropsy at the University of Veterinary Medicine Han- 1 1 nover, Foundation (Hannover, Germany). Initial histologic Wendy K. Jo, Vanessa M. Pfankuche, examination revealed moderate, necrotizing hepatitis and Henning Petersen, Samuel Frei, Maya Kummrow, inclusion body–like structures within the hepatocytes. To Stephan Lorenzen, Martin Ludlow, Julia Metzger, identify a putative causative agent, we isolated nucleic ac- Wolfgang Baumgärtner, Albert Osterhaus, ids from the liver and prepared them for sequencing on an Erhard van der Vries Illumina MiSeq system (Illumina, San Diego, CA, USA) Author affiliations: University of Veterinary Medicine Hannover, (online Technical Appendix, https://wwwnc.cdc.gov/EID/ Foundation, Hannover, Germany (W.K. Jo, V.M. Pfankuche, article/23/12/16-1634-Techapp1.pdf). We compared ob- H. Petersen, M. Ludlow, J. Metzger, W. Baumgärtner, tained reads with sequences in GenBank using an in-house A. Osterhaus, E. van der Vries); Center for Systems metagenomics pipeline. Approximately 78% of the reads Neuroscience, Hannover (W.K. Jo, V.M. Pfankuche, aligned to existing avihepadnavirus sequences. A full ge- W. Baumgärtner, A. Osterhaus); Wuppertal Zoo, Wuppertal, nome (3,024 bp) of the putative elegant-crested tinamou Germany (S. Frei, M. Kummrow); Bernhard Nocht Institute for HBV (ETHBV) was subsequently constructed by de novo Tropical Medicine, Hamburg (S. Lorenzen); Artemis One Health, assembly mapping >2 million reads (88.6%) to the virus Utrecht, the Netherlands (A. Osterhaus) genome (GenBank accession no.
    [Show full text]
  • Complete Genome Sequence of a Divergent Strain of Tibetan Frog Hepatitis B Virus Associated to Concave-Eared Torrent Frog
    bioRxiv preprint doi: https://doi.org/10.1101/506550; this version posted December 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Complete genome sequence of a divergent strain of Tibetan frog hepatitis B virus 2 associated to concave-eared torrent frog Odorrana tormota 3 4 Humberto J. Debat 1*, Terry Fei Fan Ng2 5 6 1Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de 7 Tecnología Agropecuaria (IPAVE-CIAP-INTA), X5020ICA, Córdoba, Argentina. 8 2College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA 30602. 9 10 Running title: Tibetan frog hepatitis B virus in Odorrana tormota 11 12 *Address correspondence to: 13 Humberto J. Debat [email protected] 14 15 ORCID ID: 16 HJD 0000-0003-3056-3739, TFFN 0000-0002-4815-8697 17 18 Keywords: dsDNA virus, Hepadnavirus, amphibian virology, frog virus, Odorrana tormota, virus 19 discovery. 20 21 Abstract 22 The family Hepadnaviridae is characterized by partially dsDNA circular viruses of approximately 3.2 kb, 23 which are reverse transcribed from RNA intermediates. Hepadnaviruses (HBVs) have a broad host range 24 which includes humans (Hepatitis B virus), other mammals (genus Orthohepadnavirus), and birds 25 (Avihepadnavirus). HBVs host specificity has been expanded by reports of new viruses infecting fish, 26 amphibians, and reptiles. The tibetan frog hepatitis B virus (TFHBV) was recently discovered in 27 Nanorana parkeri (Family Dicroglossidae) from Tibet.
    [Show full text]
  • Bats Carry Pathogenic Hepadnaviruses Antigenically Related to Hepatitis B Virus and Capable of Infecting Human Hepatocytes
    Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes Jan Felix Drexlera,1, Andreas Geipelb,1, Alexander Königb, Victor M. Cormana, Debby van Rielc, Lonneke M. Leijtenc, Corinna M. Bremerb, Andrea Raschea, Veronika M. Cottontaild,e, Gael D. Magangaf, Mathias Schlegelg, Marcel A. Müllera, Alexander Adamh, Stefan M. Klosed, Aroldo José Borges Carneiroi, Andreas Stöckerj, Carlos Roberto Frankei, Florian Gloza-Rauscha,k, Joachim Geyerl, Augustina Annanm, Yaw Adu-Sarkodien, Samuel Oppongn, Tabea Bingera, Peter Vallod,o, Marco Tschapkad,e, Rainer G. Ulrichg, Wolfram H. Gerlichb, Eric Leroyf,p, Thijs Kuikenc, Dieter Glebeb,1,2, and Christian Drostena,1,2 aInstitute of Virology, University of Bonn Medical Centre, 53127 Bonn, Germany; bInstitute of Medical Virology, Justus Liebig University, 35392 Giessen, Germany; cDepartment of Viroscience, Erasmus Medical Center, 3000 CA, Rotterdam, The Netherlands; dInstitute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany; eSmithsonian Tropical Research Institute, Balboa Ancón, Republic of Panamá; fCentre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon; gFriedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; hInstitute of Pathology, University of Cologne Medical Centre, 50937 Cologne, Germany; iSchool of Veterinary Medicine, Federal University of Bahia, 40.170-110, Salvador, Brazil; jInfectious Diseases Research Laboratory, University
    [Show full text]
  • HDV-Like Viruses
    viruses Review HDV-Like Viruses Jimena Pérez-Vargas 1 ,Rémi Pereira de Oliveira 1, Stéphanie Jacquet 2, Dominique Pontier 2, François-Loïc Cosset 1,* and Natalia Freitas 1 1 CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, France; [email protected] (J.P.-V.); [email protected] (R.P.d.O.); [email protected] (N.F.) 2 LBBE UMR5558 CNRS—Centre National de la Recherche Scientifique, Université de Lyon 1—48 bd du 11 Novembre 1918, 69100 Villeurbanne, France; [email protected] (S.J.); [email protected] (D.P.) * Correspondence: fl[email protected] Abstract: Hepatitis delta virus (HDV) is a defective human virus that lacks the ability to produce its own envelope proteins and is thus dependent on the presence of a helper virus, which provides its surface proteins to produce infectious particles. Hepatitis B virus (HBV) was so far thought to be the only helper virus described to be associated with HDV. However, recent studies showed that divergent HDV-like viruses could be detected in fishes, birds, amphibians, and invertebrates, without evidence of any HBV-like agent supporting infection. Another recent study demonstrated that HDV can be transmitted and propagated in experimental infections ex vivo and in vivo by different enveloped viruses unrelated to HBV, including hepatitis C virus (HCV) and flaviviruses such as Dengue and West Nile virus. All this new evidence, in addition to the identification of novel virus species within a large range of hosts in absence of HBV, suggests that deltaviruses may take advantage of a large spectrum of helper viruses and raises questions about HDV origins and evolution.
    [Show full text]
  • Viruses Status January 2013 FOEN/FOPH 2013 1
    Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 1 Authors: Prof. Dr. Riccardo Wittek, Dr. Karoline Dorsch-Häsler, Julia Link > Classification of Organisms Part 2: Viruses The classification of viruses was first published in 2005 and revised in 2010. Classification of Organisms. Part 2: Viruses Status January 2013 FOEN/FOPH 2013 2 Name Group Remarks Adenoviridae Aviadenovirus (Avian adenoviruses) Duck adenovirus 2 TEN Duck adenovirus 2 2 PM Fowl adenovirus A 2 Fowl adenovirus 1 (CELO, 112, Phelps) 2 PM Fowl adenovirus B 2 Fowl adenovirus 5 (340, TR22) 2 PM Fowl adenovirus C 2 Fowl adenovirus 10 (C-2B, M11, CFA20) 2 PM Fowl adenovirus 4 (KR-5, J-2) 2 PM Fowl adenovirus D 2 Fowl adenovirus 11 (380) 2 PM Fowl adenovirus 2 (GAL-1, 685, SR48) 2 PM Fowl adenovirus 3 (SR49, 75) 2 PM Fowl adenovirus 9 (A2, 90) 2 PM Fowl adenovirus E 2 Fowl adenovirus 6 (CR119, 168) 2 PM Fowl adenovirus 7 (YR36, X-11) 2 PM Fowl adenovirus 8a (TR59, T-8, CFA40) 2 PM Fowl adenovirus 8b (764, B3) 2 PM Goose adenovirus 2 Goose adenovirus 1-3 2 PM Pigeon adenovirus 2 PM TEN Turkey adenovirus 2 TEN Turkey adenovirus 1, 2 2 PM Mastadenovirus (Mammalian adenoviruses) Bovine adenovirus A 2 Bovine adenovirus 1 2 PM Bovine adenovirus B 2 Bovine adenovirus 3 2 PM Bovine adenovirus C 2 Bovine adenovirus 10 2 PM Canine adenovirus 2 Canine adenovirus 1,2 2 PM Caprine adenovirus 2 TEN Goat adenovirus 1, 2 2 PM Equine adenovirus A 2 Equine adenovirus 1 2 PM Equine adenovirus B 2 Equine adenovirus 2 2 PM Classification of Organisms.
    [Show full text]
  • Taxonomy Bovine Ephemeral Fever Virus Kotonkan Virus Murrumbidgee
    Taxonomy Bovine ephemeral fever virus Kotonkan virus Murrumbidgee virus Murrumbidgee virus Murrumbidgee virus Ngaingan virus Tibrogargan virus Circovirus-like genome BBC-A Circovirus-like genome CB-A Circovirus-like genome CB-B Circovirus-like genome RW-A Circovirus-like genome RW-B Circovirus-like genome RW-C Circovirus-like genome RW-D Circovirus-like genome RW-E Circovirus-like genome SAR-A Circovirus-like genome SAR-B Dragonfly larvae associated circular virus-1 Dragonfly larvae associated circular virus-10 Dragonfly larvae associated circular virus-2 Dragonfly larvae associated circular virus-3 Dragonfly larvae associated circular virus-4 Dragonfly larvae associated circular virus-5 Dragonfly larvae associated circular virus-6 Dragonfly larvae associated circular virus-7 Dragonfly larvae associated circular virus-8 Dragonfly larvae associated circular virus-9 Marine RNA virus JP-A Marine RNA virus JP-B Marine RNA virus SOG Ostreid herpesvirus 1 Pig stool associated circular ssDNA virus Pig stool associated circular ssDNA virus GER2011 Pithovirus sibericum Porcine associated stool circular virus Porcine stool-associated circular virus 2 Porcine stool-associated circular virus 3 Sclerotinia sclerotiorum hypovirulence associated DNA virus 1 Wallerfield virus AKR (endogenous) murine leukemia virus ARV-138 ARV-176 Abelson murine leukemia virus Acartia tonsa copepod circovirus Adeno-associated virus - 1 Adeno-associated virus - 4 Adeno-associated virus - 6 Adeno-associated virus - 7 Adeno-associated virus - 8 African elephant polyomavirus
    [Show full text]
  • Wildlife Virology: Emerging Wildlife Viruses of Veterinary and Zoonotic Importance
    Wildlife Virology: Emerging Wildlife Viruses of Veterinary and Zoonotic Importance Course #: VME 6195/4906 Class periods: MWF 4:05-4:55 p.m. Class location: Veterinary Academic Building (VAB) Room V3-114 and/or Zoom Academic Term: Spring 2021 Instructor: Andrew Allison, Ph.D. Assistant Professor of Veterinary Virology Department of Comparative, Diagnostic, and Population Medicine College of Veterinary Medicine E-mail: [email protected] Office phone: 352-294-4127 Office location: Veterinary Academic Building V2-151 Office hours: Contact instructor through e-mail to set up an appointment Teaching Assistants: NA Course description: The emergence of viruses that cause disease in animals and humans is a constant threat to veterinary and public health and will continue to be for years to come. The vast majority of recently emerging viruses that have led to explosive outbreaks in humans are naturally maintained in wildlife species, such as influenza A virus (ducks and shorebirds), Ebola virus (bats), Zika virus (non-human primates), and severe acute respiratory syndrome (SARS) coronaviruses (bats). Such epidemics can have severe psychosocial impacts due to widespread morbidity and mortality in humans (and/or domestic animals in the case of epizootics), long-term regional and global economic repercussions costing billions of dollars, in addition to having adverse impacts on vulnerable wildlife populations. Wildlife Virology is a 3-credit (3 hours of lecture/week) undergraduate/graduate-level course focusing on pathogenic viruses that are naturally maintained in wildlife species which are transmissible to humans, domestic animals, and other wildlife/zoological species. In this course, we will cover a comprehensive and diverse set of RNA and DNA viruses that naturally infect free-ranging mammals, birds, reptiles, amphibians, and fish.
    [Show full text]
  • Interactions of HBV Capsid Involved in Nuclear Transport Lara Gallucci
    Interactions of HBV capsid involved in nuclear transport Lara Gallucci To cite this version: Lara Gallucci. Interactions of HBV capsid involved in nuclear transport. Human health and pathology. Université de Bordeaux, 2018. English. NNT : 2018BORD0130. tel-01993716 HAL Id: tel-01993716 https://tel.archives-ouvertes.fr/tel-01993716 Submitted on 25 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRESENTÉE POUR OBTENIR LE GRADE DE: DOCTEUR DE L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE: des Sciences de la Vie et de la Santé SPECIALITE: microbiologie et immunologie Par Lara Gallucci Etude des interactions de la capside du VHB impliquées dans le transport nucléaire Sous la direction de Michael Kann Soutenue le 25 Octobre 2018 Membres du jury: Pr Thierry Noel Université de Bordeaux President Dr Gualtiero Alvisi Università di Padova Rapporteur Pr Beate Sodeik Hannover Medical School Rapporteur Dr Anne Royou Université de Bordeaux Examinateur Pr Michael Kann Université de Bordeaux Superviseur DISSERTATION FOR THE AWARD OF THE DEGREE: DOCTORATE
    [Show full text]
  • Avian Hepatitis B Viruses: Molecular and Cellular Biology, Phylogenesis, and Host Tropism
    PO Box 2345, Beijing 100023, China World J Gastroenterol 2007 January 7; 13(1): 91-103 www.wjgnet.com World Journal of Gastroenterology ISSN 1007-9327 [email protected] © 2007 The WJG Press. All rights reserved. TOPIC HIGHLIGHT Dieter Glebe, PhD, Series Editor Avian hepatitis B viruses: Molecular and cellular biology, phylogenesis, and host tropism Anneke Funk, Mouna Mhamdi, Hans Will, Hüseyin Sirma Anneke Funk, Mouna Mhamdi, Hans Will, Hüseyin Sirma, Department of General Virology, Heinrich-Pette-Institut für expe- INTRODUCTION rimentelle Virologie und Immunologie an der Universität Ham- Full understanding of the molecular biology of the hu- burg, Hamburg, Germany man hepatitis B virus (HBV) is hampered by a variety of Supported by the Freie und Hansestadt Hamburg and the Bunde- experimental restrictions. There is no small animal model sministerium für Gesundheit und Soziale Sicherung; grants from system available for infection studies and only few aspects DFG and by the German Competence Network for Viral Hepati- tis (Hep-Net), funded by the German Ministry of Education and of the viral life cycle are accessible to biochemical meth- Research (BMBF), Grant No. TP13.1 ods. A complete viral infection cycle mimicking natural Correspondence to: Hüseyin Sirma, Department of General HBV infection in vitro could only be achieved until recently Virology, Heinrich-Pette-Institut für experimentelle Virologie und with primary human hepatocytes. The disadvantages of Immunologie an der Universität Hamburg, PO Box 201652, Ham- this system are: (1) restricted accessibility to the cells, (2) burg 20206, Germany. [email protected] infection inefficiency and (3) high variability in infection Telephone: +49-40-48051226 Fax: +49-40-48051222 assays.
    [Show full text]