Investigating the Role and Regulation of the AMPK-Related Kinase NUAK1

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Role and Regulation of the AMPK-Related Kinase NUAK1 Investigating the role and regulation of the AMPK-related kinase NUAK1 Duncan Richard Bull A thesis submitted to Imperial College London for the degree of Doctor of Philosophy October 2013 Cellular Stress Group Medical Research Council, Clinical Sciences Centre Imperial College London Declaration of Originality I hereby certify that I am the sole author of this thesis and that no original part of this thesis has been published previously. I declare that any material or information from the work of others that is included in my thesis, published or otherwise, is fully acknowledged in the text and in the list of references. I confirm that this thesis has not been submitted for a higher degree to any other university or institution. Signed: Date: 2nd October 2013 Copyright Declaration The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 2 Abstract AMP-activated protein kinase (AMPK) is a well characterised central regulator of energy homeostasis with many downstream substrates and potential therapeutic targets. Recently several kinases related to AMPK have been identified which are activated by the same upstream kinase, LKB1, and share significant sequence homology with the catalytic α subunit of AMPK. Previous studies have implicated NUAK1, one of these related kinases, in cell cycle regulation and other studies have identified various partner proteins but as yet there is no consensus model of its regulation or physiological role. This aim of this study was to investigate the regulation and interactions of NUAK1 using an in vitro system and also use an in vivo tissue specific mouse knockout system to investigate its function in two different tissues. The results of these studies reveal new insights into the regulation of NUAK1 in vitro and suggest that the kinase is capable of activation by autophosphorylation, in the absence of LKB1. NUAK1 is shown to interact with 14-3-3 proteins and evidence that this interaction may be important for the function of the kinase is presented. Cell based studies in mouse embryonic fibroblasts (MEFs) lacking NUAK1 show that it is involved in proliferation and there are suggestions of pathways involved in regulating this effect. NUAK1 liver-specific knockout mice were generated and extensive metabolic phenotyping analyses were carried out. In young animals deletion of NUAK1 in liver did not lead to any obvious changes in whole body metabolism. However, preliminary studies revealed a possible role for NUAK1 in metabolic regulation in older mice and in response to liver damage. Mice with heart-specific deletion of NUAK1 were generated and these mice were found to have a cardiac hypertrophy phenotype in response to angiotensin II treatment. Potential signalling pathways downstream of NUAK1 in the heart were then investigated in this model. 3 Acknowledgments I would like to thank my supervisors Dave Carling and Naveenan Navaratnam for all their help and guidance throughout my project, especially Nav for watching over me in the lab and giving me some invaluable support! Thanks to David Carmena for his assistance and his early work on this project. Thank you also to everyone else in the Cell Stress group, past and present, for all their help and for making my time in the lab so fun. Many thanks to Phill Muckett for his incredible help with the animal work and to Zoe Webster and the Transgenic Facility for re-deriving the mouse lines. Thanks to Anna Slaviero and Olga Boruc for their assistance with the CLAMS and echocardiography. Thanks to Mahrokh Nohadani for her work with the histology. Thanks to Luke Boulter and the group in Edinburgh for their work on the panCK staining. I acknowledge the financial support of the Medical Research Council which allowed me to carry out my PhD. Finally, thanks to my parents for supporting me for twenty-seven years and to everyone who has kept me sane throughout the past four years, especially those who helped drag me across the finishing line! 4 Abbreviations ACC Acetyl-Coenzyme-A carboxylase ACE Angiotensin converting enzyme ACTH Adrenocorticotropic hormone ADP 5’adenosine diphosphate AICAR 5-aminoimidazole-4-carboximide ribonucleoside AID Autoinhibitory domain ALT Alanine aminotransferase AMARA Synthetic peptide, AMARAASAAALARRR AMP 5’adenosine monophosphate AMPK 5’adenosine monophosphate-activated protein kinase aPKC Atypical protein kinase C AST Aspartate aminotransferase ATP 5’adenosine triphosphate AUC Area under curve BK Bradykinin BRSK Brain-specific kinase BSA Bovine serum albumin BSEP Bile salt export pump C. elegans Caenorhabditis elegans CaM Calmodulin CaMKK Ca2+/calmodulin-dependent protein kinase kinase CAPS 3-[cyclohexylamino]-1-propanesulfonic acid CBM Carbohydrate binding module CBS Cystathionine β-synthase CDE Choline-deficient ethionine supplemented diet CK Cytokeratin CK2 Casein kinase 2 CLAMS Comprehensive Laboratory Animal Monitoring System Cox6b Cytochrome c oxidase subunit VIb CREB cAMP-response element binding protein CRTC2 CREB-regulated transcription co-activator 2 CV Calorific value DAK Death-associated kinase DDC Diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate DMEM Dulbecco’s Modified Eagle’s Medium DMSO Dimethyl Sulphoxide DTT Dithiothreitol E. coli Escherichia coli ECAR Extracellular acidification rate ERK Extracellular-signal regulated kinase et al. et alia FAS Fatty acid synthase g Acceleration due to gravity GAPDH Glyceraldehyde 3-phosphate dehydrogenase 5 GLUT Glucose transporter GSK-3β Glycogen synthase kinase-3β GTP Guanosine triphosphate H&E Haematoxylin & Eosin HCC Hepatocellular carcinoma HDL High density lipoprotein HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid ILK Integrin-linked kinase IP3 Inositol trisphosphate ipGTT Intra-peritoneal glucose tolerance test IPTG Isopropyl-1-thio-b-D-galactopyranoside IRS Insulin receptor substrate IVC Individually ventilated cage KO Knockout KOMP Knockout Mouse Project KSR1 Kinase suppressor of Raf-1 LATS Large tumour suppressor LB Luria broth LDL Low density lipoprotein LKB1 Liver kinase B1/serine threonine kinase 11 LNR Synthetic peptide, KKLNRTLSFAEPG MAP Microtubule associated protein MAPK Mitogen-activated protein kinase MARK Microtubule affinity-regulating kinase MCK Muscle creatine kinase MEF Mouse embryonic fibroblast MELK Maternal embryonic leucine zipper kinase MHC Myosin heavy chain MLC Myosin regulatory light chain MLCK Myosin light chain kinase MO25 Mouse protein 25 MRCK Myotonic dystrophy protein kinase-related cdc42-binding kinase mTOR Mammalian target of rapamycin MYPT Myosin phosphatase targeting NDR Nuclear Dbf2-Related Kinase Ndufs4 NADH dehydrogenase protein 4 NMR Nuclear magnetic resonance NUAK Nua (novel) kinase OCR Oxygen consumption rate PAGE Polyacrylamide gel electrophoresis PAK p21-activated protein kinase PAR Partitioning defective mutant PAS Periodic Acid Schiff PBS Phosphate-buffered saline PCR Polymerase chain reaction PFA Paraformaldehyde PFKFB 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 6 PGC1α Peroxisome proliferator-activated receptor-γ co-activator 1α PI3K Phosphoinositide 3-kinase PJS Peutz-Jeghers syndrome PKA Cyclic AMP-dependent protein kinase PKC Protein kinase C PMSF Phenylmethylsulphonyl fluoride PP1C Protein phosphatase 1C PVDF Polyvinylidene difluoride qPCR Quantitative polymerase chain reaction RAB-GAP RAB family GTPase activating protein RAPTOR Regulatory-associated protein of mTOR RER Respiratory exchange ratio RHEB RAS homologue enriched in brain ROCK Rho-associated protein kinase ROS Reactive oxygen species S.E.M Standard error of the mean SAD Synapses of the amphid defective SAMS Synthetic peptide, HMRSAMSGLHLVKRR SDS Sodium lauryl sulfate SIK Salt-inducible kinase SILAC Stable Isotope Labelling by Amino Acids in Cell Culture SNF1 Sucrose non-fermenting protein 1 SREBP1C Phosphorylate sterol regulatory element-binding protein 1C STRAD STE20-related adaptor protein TAB TGFβ-activated kinase binding protein TAE Tris-acetate-EDTA buffer TAK1 Transforming growth factor-β activated kinase-1 TAZ Transcriptional coactivator with PDZ-binding motif TBS-T Tris buffered saline with Tween TCEP Tris(2-carboxyethyl)phosphine TGFβ Transforming growth factor-β UBA Ubiquitin associated domain USP9X Ubiquitin-specific protease 9X 7 Table of Contents Declaration of Originality ........................................................................................................... 2 Abstract ...................................................................................................................................... 3 Acknowledgments...................................................................................................................... 4 Abbreviations ............................................................................................................................. 5 Table of Contents ....................................................................................................................... 8 List of Figures ........................................................................................................................... 13 List of Appendices ...................................................................................................................
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Molecular Characterization of Galactokinase Deficiency In
    J Hum Genet (1999) 44:377–382 © Jpn Soc Hum Genet and Springer-Verlag 1999377 ORIGINAL ARTICLE Minoru Asada · Yoshiyuki Okano · Takuji Imamura Itsujin Suyama · Yutaka Hase · Gen Isshiki Molecular characterization of galactokinase deficiency in Japanese patients Received: May 19, 1999 / Accepted: August 21, 1999 Abstract Galactokinase (GALK) deficiency is an autoso- Key words Galactosemia · Galactokinase (GALK) · Muta- mal recessive disorder, which causes cataract formation in tion · Genotype · Phenotype children not maintained on a lactose-free diet. We charac- terized the human GALK gene by screening a Japanese genomic DNA phage library, and found that several nucle- otides in the 59-untranslated region and introns 1, 2, and 5 in Introduction our GALK genomic analysis differed from published data. A 20-bp tandem repeat was found in three places in intron Galactokinase (GALK: McKUSICK 230200) is the first 5, which were considered insertion sequences. We identified enzyme in the Leloir pathway of galactose metabolism; it five novel mutations in seven unrelated Japanese patients catalyzes the phosphorylation of galactose to galactose- with GALK deficiency. There were three missense muta- 1-phosphate. GALK deficiency, first described in 1965 tions and two deletions. All three missense mutations (Gitzelmann 1965), is an autosomal recessive genetic disor- (R256W, T344M, and G349S) occurred at CpG dinucle- der with an incidence of 1/1,000,000 in Japan (Aoki and otides, and the T344M and G349S mutations occurred in Wada 1988) on newborn mass screening and an incidence of the conserved region. The three missense mutations led to a 1/1,000,000 in Caucasians (Segal and Berry 1995).
    [Show full text]
  • Gene Symbol Gene Description ACVR1B Activin a Receptor, Type IB
    Table S1. Kinase clones included in human kinase cDNA library for yeast two-hybrid screening Gene Symbol Gene Description ACVR1B activin A receptor, type IB ADCK2 aarF domain containing kinase 2 ADCK4 aarF domain containing kinase 4 AGK multiple substrate lipid kinase;MULK AK1 adenylate kinase 1 AK3 adenylate kinase 3 like 1 AK3L1 adenylate kinase 3 ALDH18A1 aldehyde dehydrogenase 18 family, member A1;ALDH18A1 ALK anaplastic lymphoma kinase (Ki-1) ALPK1 alpha-kinase 1 ALPK2 alpha-kinase 2 AMHR2 anti-Mullerian hormone receptor, type II ARAF v-raf murine sarcoma 3611 viral oncogene homolog 1 ARSG arylsulfatase G;ARSG AURKB aurora kinase B AURKC aurora kinase C BCKDK branched chain alpha-ketoacid dehydrogenase kinase BMPR1A bone morphogenetic protein receptor, type IA BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) BRAF v-raf murine sarcoma viral oncogene homolog B1 BRD3 bromodomain containing 3 BRD4 bromodomain containing 4 BTK Bruton agammaglobulinemia tyrosine kinase BUB1 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast) BUB1B BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast) C9orf98 chromosome 9 open reading frame 98;C9orf98 CABC1 chaperone, ABC1 activity of bc1 complex like (S. pombe) CALM1 calmodulin 1 (phosphorylase kinase, delta) CALM2 calmodulin 2 (phosphorylase kinase, delta) CALM3 calmodulin 3 (phosphorylase kinase, delta) CAMK1 calcium/calmodulin-dependent protein kinase I CAMK2A calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha CAMK2B calcium/calmodulin-dependent
    [Show full text]
  • Hereditary Galactokinase Deficiency J
    Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis.
    [Show full text]
  • Two Locus Inheritance of Non-Syndromic Midline Craniosynostosis Via Rare SMAD6 and 4 Common BMP2 Alleles 5 6 Andrew T
    1 2 3 Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and 4 common BMP2 alleles 5 6 Andrew T. Timberlake1-3, Jungmin Choi1,2, Samir Zaidi1,2, Qiongshi Lu4, Carol Nelson- 7 Williams1,2, Eric D. Brooks3, Kaya Bilguvar1,5, Irina Tikhonova5, Shrikant Mane1,5, Jenny F. 8 Yang3, Rajendra Sawh-Martinez3, Sarah Persing3, Elizabeth G. Zellner3, Erin Loring1,2,5, Carolyn 9 Chuang3, Amy Galm6, Peter W. Hashim3, Derek M. Steinbacher3, Michael L. DiLuna7, Charles 10 C. Duncan7, Kevin A. Pelphrey8, Hongyu Zhao4, John A. Persing3, Richard P. Lifton1,2,5,9 11 12 1Department of Genetics, Yale University School of Medicine, New Haven, CT, USA 13 2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA 14 3Section of Plastic and Reconstructive Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA 15 4Department of Biostatistics, Yale University School of Medicine, New Haven, CT, USA 16 5Yale Center for Genome Analysis, New Haven, CT, USA 17 6Craniosynostosis and Positional Plagiocephaly Support, New York, NY, USA 18 7Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA 19 8Child Study Center, Yale University School of Medicine, New Haven, CT, USA 20 9The Rockefeller University, New York, NY, USA 21 22 ABSTRACT 23 Premature fusion of the cranial sutures (craniosynostosis), affecting 1 in 2,000 24 newborns, is treated surgically in infancy to prevent adverse neurologic outcomes. To 25 identify mutations contributing to common non-syndromic midline (sagittal and metopic) 26 craniosynostosis, we performed exome sequencing of 132 parent-offspring trios and 59 27 additional probands.
    [Show full text]
  • Induction of Uridyl Transferase Mrna-And Dependency on GAL4 Gene Function (In Vitro Translation/Immunoprecipitation/GAL Gene Cluster/Positive Regulation) JAMES E
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 6, pp. 2878-2882, June 1978 Genetics Regulation of the galactose pathway in Saccharomyces cerevisiae: Induction of uridyl transferase mRNA-and dependency on GAL4 gene function (in vitro translation/immunoprecipitation/GAL gene cluster/positive regulation) JAMES E. HOPPER*, JAMES R. BROACHt, AND LUCY B. ROWE* * Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02154; and t Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Communicated by Norman H. Giles, April 10,1978 ABSTRACT In Saccharomyces cerevisiae, utilization of Genetic control of the inducible galactose pathway enzymes galactose requires four inducible enzyme activities. Three of involves the four structural genes GALI, GAL10, GAL7, and these activities (galactose-l-phosphate uridyl transferase, EC genes, GAL4, GAL81 (c), GAL80 2.7.7.10; uridine diphosphogalactose 4-epimerase, EC 5.1.3.2; GAL2 and four regulatory and galactokinase, EC 2.7.1.6) are specified by three tightly (i), and GALS.* Mutations in GALl, GAL10, GAL7, and GAL2 linked genes (GAL7, GALlO, and GALI, respectively) on chro- affect the individual appearance of galactokinase, epimerase, mosome II, whereas the fourth, galactose transport, is specified transferase, and galactose transport activities, respectively (6). by a gene (GALS) located on chromosome XIL Although classic Mutations defining the GALl, GAL10, and GAL7 genes have genetic analysis has revealed both positive and negative regu- invariably been recessive, and they map in three tightly linked latory genes that coordinately affect the appearance of ail four complementation groups near the centromere of chromosome enzyme activities, neither the basic events leading to the ap- pearance of enzyme activities nor the roles of the regulatory II (6, 9, 10).
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
    International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes.
    [Show full text]
  • Profiling Data
    Compound Name DiscoveRx Gene Symbol Entrez Gene Percent Compound Symbol Control Concentration (nM) JNK-IN-8 AAK1 AAK1 69 1000 JNK-IN-8 ABL1(E255K)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317I)-nonphosphorylated ABL1 87 1000 JNK-IN-8 ABL1(F317I)-phosphorylated ABL1 100 1000 JNK-IN-8 ABL1(F317L)-nonphosphorylated ABL1 65 1000 JNK-IN-8 ABL1(F317L)-phosphorylated ABL1 61 1000 JNK-IN-8 ABL1(H396P)-nonphosphorylated ABL1 42 1000 JNK-IN-8 ABL1(H396P)-phosphorylated ABL1 60 1000 JNK-IN-8 ABL1(M351T)-phosphorylated ABL1 81 1000 JNK-IN-8 ABL1(Q252H)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(Q252H)-phosphorylated ABL1 56 1000 JNK-IN-8 ABL1(T315I)-nonphosphorylated ABL1 100 1000 JNK-IN-8 ABL1(T315I)-phosphorylated ABL1 92 1000 JNK-IN-8 ABL1(Y253F)-phosphorylated ABL1 71 1000 JNK-IN-8 ABL1-nonphosphorylated ABL1 97 1000 JNK-IN-8 ABL1-phosphorylated ABL1 100 1000 JNK-IN-8 ABL2 ABL2 97 1000 JNK-IN-8 ACVR1 ACVR1 100 1000 JNK-IN-8 ACVR1B ACVR1B 88 1000 JNK-IN-8 ACVR2A ACVR2A 100 1000 JNK-IN-8 ACVR2B ACVR2B 100 1000 JNK-IN-8 ACVRL1 ACVRL1 96 1000 JNK-IN-8 ADCK3 CABC1 100 1000 JNK-IN-8 ADCK4 ADCK4 93 1000 JNK-IN-8 AKT1 AKT1 100 1000 JNK-IN-8 AKT2 AKT2 100 1000 JNK-IN-8 AKT3 AKT3 100 1000 JNK-IN-8 ALK ALK 85 1000 JNK-IN-8 AMPK-alpha1 PRKAA1 100 1000 JNK-IN-8 AMPK-alpha2 PRKAA2 84 1000 JNK-IN-8 ANKK1 ANKK1 75 1000 JNK-IN-8 ARK5 NUAK1 100 1000 JNK-IN-8 ASK1 MAP3K5 100 1000 JNK-IN-8 ASK2 MAP3K6 93 1000 JNK-IN-8 AURKA AURKA 100 1000 JNK-IN-8 AURKA AURKA 84 1000 JNK-IN-8 AURKB AURKB 83 1000 JNK-IN-8 AURKB AURKB 96 1000 JNK-IN-8 AURKC AURKC 95 1000 JNK-IN-8
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Kinase Profiling Book
    Custom and Pre-Selected Kinase Prof iling to f it your Budget and Needs! As of July 1, 2021 19.8653 mm 128 196 12 Tyrosine Serine/Threonine Lipid Kinases Kinases Kinases Carna Biosciences, Inc. 2007 Carna Biosciences, Inc. Profiling Assays available from Carna Biosciences, Inc. As of July 1, 2021 Page Kinase Name Assay Platform Page Kinase Name Assay Platform 4 ABL(ABL1) MSA 21 EGFR[T790M/C797S/L858R] MSA 4 ABL(ABL1)[E255K] MSA 21 EGFR[T790M/L858R] MSA 4 ABL(ABL1)[T315I] MSA 21 EPHA1 MSA 4 ACK(TNK2) MSA 21 EPHA2 MSA 4 AKT1 MSA 21 EPHA3 MSA 5 AKT2 MSA 22 EPHA4 MSA 5 AKT3 MSA 22 EPHA5 MSA 5 ALK MSA 22 EPHA6 MSA 5 ALK[C1156Y] MSA 22 EPHA7 MSA 5 ALK[F1174L] MSA 22 EPHA8 MSA 6 ALK[G1202R] MSA 23 EPHB1 MSA 6 ALK[G1269A] MSA 23 EPHB2 MSA 6 ALK[L1196M] MSA 23 EPHB3 MSA 6 ALK[R1275Q] MSA 23 EPHB4 MSA 6 ALK[T1151_L1152insT] MSA 23 Erk1(MAPK3) MSA 7 EML4-ALK MSA 24 Erk2(MAPK1) MSA 7 NPM1-ALK MSA 24 Erk5(MAPK7) MSA 7 AMPKα1/β1/γ1(PRKAA1/B1/G1) MSA 24 FAK(PTK2) MSA 7 AMPKα2/β1/γ1(PRKAA2/B1/G1) MSA 24 FER MSA 7 ARG(ABL2) MSA 24 FES MSA 8 AurA(AURKA) MSA 25 FGFR1 MSA 8 AurA(AURKA)/TPX2 MSA 25 FGFR1[V561M] MSA 8 AurB(AURKB)/INCENP MSA 25 FGFR2 MSA 8 AurC(AURKC) MSA 25 FGFR2[V564I] MSA 8 AXL MSA 25 FGFR3 MSA 9 BLK MSA 26 FGFR3[K650E] MSA 9 BMX MSA 26 FGFR3[K650M] MSA 9 BRK(PTK6) MSA 26 FGFR3[V555L] MSA 9 BRSK1 MSA 26 FGFR3[V555M] MSA 9 BRSK2 MSA 26 FGFR4 MSA 10 BTK MSA 27 FGFR4[N535K] MSA 10 BTK[C481S] MSA 27 FGFR4[V550E] MSA 10 BUB1/BUB3 MSA 27 FGFR4[V550L] MSA 10 CaMK1α(CAMK1) MSA 27 FGR MSA 10 CaMK1δ(CAMK1D) MSA 27 FLT1 MSA 11 CaMK2α(CAMK2A) MSA 28
    [Show full text]