Wood Ants Live in Vast Super-Societies Led by Powerful Queens. Ross Piper Enters Their Hidden World

Total Page:16

File Type:pdf, Size:1020Kb

Wood Ants Live in Vast Super-Societies Led by Powerful Queens. Ross Piper Enters Their Hidden World DON’T MISS ATTENBOROUGH’S EXTRAORDINARY ANTS GAMES OF DUE TO AIR IN DECEMBER ON THRONES Wood ants live in vast super-societies led by powerful queens. Ross Piper enters their hidden world. Red wood ant (Formica rufa) workers on top of their nest synchronise the ejection of formic acid droplets to deter a potential predator. Xxxx xxxxxx Xxxx 70 BBC Wildlife December 2017 December 2017 WOOD ANTS Red wood ants are very social insects that live in colonies of up to half a million individuals, most of which are workers. Xxxxx subterranean city, a labyrinth of tunnels The loose thatch of the mound also belies the complexity employs a different strategy. Instead of turning parasite, Above left: F. rufa and chambers, home to some 300,000 Wood ant super colonies of the nest beneath, which is nothing less than a marvel she establishes her nest very close to the birth nest milks black bean occupying many separate inhabitants. At its centre, an ageing queen of arthropod architecture. The subterranean part is often with the help of a splinter group of workers. This aphids, stroking but connected nests them with its surrounded by daughters; her protectors, may have hundreds bigger than the mound you can see above ground, giving process, known as budding, is the reason why in some antennae to foragers and nursemaids. Inside and out, of queens like this one. you a good idea of the size of these structures. Shielded by populations of these ants you find nests very close draw out a drop plunderers and predators lurk. No, this the thatch is the rotting tree stump in which the nest was together forming a super-colony, while in other areas of honeydew. isn’t TV blockbuster Game of Thrones, but established, chambers for the queen, nurseries for the brood the nest mounds are more widely scattered. Above: a wood ant (F. rufa) carries something even more extraordinary. It’s the in varying stages of development – all the way from egg to These ‘budded’ colonies retain links to the ‘mother’ a cocoon over a Areality of life for some of our most fascinating insects. pupa – not to mention food stores and rubbish tips. colony, and if they are too far from food sources they do not woodland floor. Red wood ants are familiar to many of us, with six closely make any foraging trails, instead relying on food from other Why? Below: erect related species in Europe’s Formica rufa group, four of HIDDEN AWAY parts of the super-colony’s empire. Some of these non- hairs on the head which are native to Britain (though one may now be extinct Getting to grips with the nest’s structure and tracing its foraging nests may eventually form foraging trails and are and mesosoma of F. polyctena are here). Take a walk in a good bit of woodland that’s home every tunnel and chamber is next to impossible without then fully integrated into the super-colony, while others do very sparse to these ants and you will be hard-pressed to miss them. disturbing it in some way. Indeed, the challenges of working not and are abandoned. or absent. They’re often present in massive numbers and their nest out what’s going on in a nest without upsetting it is one Establishing a nest depends on the queen being able to mounds can be as much as 2m high. In Britain, some of the reason why we still have plenty to learn about wood ants. produce many daughters, which will maintain and expand best examples can be seen in the Scottish Highlands. The internal architecture of the nest and the activity therein the nest, tend to the brood, find food and repel enemies. Look closely at one of these mounds and around your feet Red wood ants is one thing, but the over-arching social structure of these This ability to produce an army of loyal daughters hinges on (F.rufa) carry a you’ll see thousands of scuttling ants. Many will have taken caterpillar back ants in the landscape is also remarkable. the mind-bending nature of reproduction in these animals. offence to your presence and be standing with jaws agape, to their nest for The story of a nest can be acted out in a number of ways, The queen ant can control the sex or spraying formic acid in your general direction, lending the colony to eat. but the beginning is always the same: young larvae in the of her offspring by using the the air the distinctive odour of these insects. Covering the darkness of a mature, healthy nest, destined to be queens, sperm she stored from her mound is a seemingly untidy thatch of pine needles and which are fed more, better quality food than the rest of the single dalliance vary sparingly. other plant material, but it is actually constructed in such a brood. Once adult, the young queens mate in the nest or If a daughter is needed, the way as to make the most of the sun’s rays to warm the nest leave it to mate nearby, either on the ground or in the air queen releases a tiny amount of as well as protecting it from rain. – a so-called nuptial flight. sperm to fertilise the egg as it is being Having mated, the queens have to establish a nest, and laid. If the queen withholds the the place they often choose is a cosy retreat in a rotting sperm, the egg is not fertilised and MANY WILL HAVE TAKEN OFFENCE tree stump. But the queens of many wood ant species are it will develop into a son. This quirk TO YOUR PRESENCE AND WILL completely incapable of doing this on their own. A young is at the root of the success of ants because it red wood ant queen, for example, becomes a parasite means that a female worker is more closely BE SPRAYING FORMIC ACID IN in the nest of a related ant species, relying on the host related to her sisters than her own offspring, workers to do all the hard work for her. so it pays for her to look after her sisters and YOUR GENERAL DIRECTION. A queen that mates underground in her birth nest the nest rather than strike out on her own. 72 BBC Wildlife December 2017 BBC Wildlife 73 GANNETS COLONIES AND SUPER COLONIES Pain-staking research involving genetics and the marking of thousands of worker ants has shown that wood ant 5 colonies can have a single queen (monogyny) or lots of 2 queens (polygyny). A colony can also inhabit a single nest mound (monodomy) or multiple, connected nest mounds (polydomy) that form by ‘budding’. In any given area, there might be a mix of these social structures. DIVE THE THATCH Enters dive from as 1This outer layer of the nest consists mostly of pine 1 low as a few metres needles arranged in a specific way to make the most of up to a height of 30m. the sun’s warming rays and to keep rain out. 6 Dive may be vertical, or as shallow as 10° NEST ENTRANCES 3 off the horizontal. 2There are several of these all over the nest mound. They can be opened or closed to maintain optimal temperature and humidity within the nest. 6 8 TREE STUMP 3The foundress of the colony often establishes the nest in an old tree stump, which might already be occupied by another ant species and so has ready-made chambers and tunnels. As this stump decays, it helps to 7 keep the nest mound warm. With a nest well and truly established, this sisterhood Above: ants from 6 begins to exert a powerful influence on its habitat. The the Formica QUEEN CHAMBER rufa group are driving preoccupation of the multitude of ant workers In the deepest part of the nest resides the queen, protected by law 4 9 is sourcing food for themselves and their nest-mates, in many European attended by workers and laying a stream of eggs. Deep including the brood, which are particularly ravenous. If countries. The down in the nest, she can live as long as 15–20 years. you watch a nest – or a foraging trail leading to it – for any insects play 6 length of time, you’ll see bits and pieces of various insects important HOT ROOM ecological roles. and spiders that have been butchered and are being 5Eggs from the queen are taken by workers to the top transported back to the nest to be fed to the brood. of the nest mound, where temperatures can be higher, to Any arthropods are fair game. Caterpillars, beetles or hasten their development. spiders that find themselves on the wrong side of a foraging party will be quickly subdued and dismembered. Although BROOD CHAMBER these ants are very capable predators and scavengers, their 6Mature eggs are taken from the hot room to brood most important food source, making up 90 per cent of their chambers deeper in the nest, where their every need is diet, is the sweet liquid – honeydew – that oozes from the attended to by an army of nurse-maids – their older sisters. 7 back-ends of aphids high in the trees that surround the nest. 4 REFUSE CHAMBER SUPPLY AND DEMAND 7Ants are scrupulously tidy. They have to be, because An ant delicately strokes an aphid with its antennae to conditions in the nest are perfect for harmful fungi and elicit a droplet of honeydew, which it greedily consumes – a bacteria.
Recommended publications
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • New Mitochondrial Genomes of 39 Soil Dwelling
    New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing Carmelo Andujar, Paula Arribas, Michal Motyka, Mathew Bocek, Ladislav Bocak, Benjamin Linard, Alfried Vogler To cite this version: Carmelo Andujar, Paula Arribas, Michal Motyka, Mathew Bocek, Ladislav Bocak, et al.. New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing. Mi- tochondrial DNA Part B Resources, Taylor & Francis Online, 2019, 4 (2), pp.2447-2450. 10.1080/23802359.2019.1637289. hal-02922399 HAL Id: hal-02922399 https://hal.archives-ouvertes.fr/hal-02922399 Submitted on 26 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MITOCHONDRIAL DNA PART B 2019, VOL. 4, NO. 2, 2447–2450 https://doi.org/10.1080/23802359.2019.1637289 MITO COMMUNICATION New mitochondrial genomes of 39 soil dwelling Coleoptera from metagenome sequencing Carmelo Andujar a,b,c, Paula Arribasa,b,c, Michal Motykad, Mathew Bocekd, Ladislav Bocakd, Benjamin Linardb,e and Alfried P. Voglerb,c aGrupo de Ecologıa y Evolucion en Islas, Instituto de Productos
    [Show full text]
  • Encyclopedia of Social Insects
    G Guests of Social Insects resources and homeostatic conditions. At the same time, successful adaptation to the inner envi- Thomas Parmentier ronment shields them from many predators that Terrestrial Ecology Unit (TEREC), Department of cannot penetrate this hostile space. Social insect Biology, Ghent University, Ghent, Belgium associates are generally known as their guests Laboratory of Socioecology and Socioevolution, or inquilines (Lat. inquilinus: tenant, lodger). KU Leuven, Leuven, Belgium Most such guests live permanently in the host’s Research Unit of Environmental and nest, while some also spend a part of their life Evolutionary Biology, Namur Institute of cycle outside of it. Guests are typically arthropods Complex Systems, and Institute of Life, Earth, associated with one of the four groups of eusocial and the Environment, University of Namur, insects. They are referred to as myrmecophiles Namur, Belgium or ant guests, termitophiles, melittophiles or bee guests, and sphecophiles or wasp guests. The term “myrmecophile” can also be used in a broad sense Synonyms to characterize any organism that depends on ants, including some bacteria, fungi, plants, aphids, Inquilines; Myrmecophiles; Nest parasites; and even birds. It is used here in the narrow Symbionts; Termitophiles sense of arthropods that associated closely with ant nests. Social insect nests may also be parasit- Social insect nests provide a rich microhabitat, ized by other social insects, commonly known as often lavishly endowed with long-lasting social parasites. Although some strategies (mainly resources, such as brood, retrieved or cultivated chemical deception) are similar, the guests of food, and nutrient-rich refuse. Moreover, nest social insects and social parasites greatly differ temperature and humidity are often strictly regu- in terms of their biology, host interaction, host lated.
    [Show full text]
  • Hox-Logic of Body Plan Innovations for Social Symbiosis in Rove Beetles
    bioRxiv preprint first posted online Oct. 5, 2017; doi: http://dx.doi.org/10.1101/198945. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Hox-logic of body plan innovations for social symbiosis in rove beetles 2 3 Joseph Parker1*, K. Taro Eldredge2, Isaiah M. Thomas3, Rory Coleman4 and Steven R. Davis5 4 5 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, 6 CA 91125, USA 7 2Department of Ecology and Evolutionary Biology, and Division of Entomology, Biodiversity 8 Institute, University of Kansas, Lawrence, KS, USA 9 3Department of Genetics and Development, Columbia University, 701 West 168th Street, New 10 York, NY 10032, USA 11 4Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY 10065, 12 USA 13 5Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, 14 USA 15 *correspondence: [email protected] 16 17 18 19 20 21 22 23 24 25 26 27 1 bioRxiv preprint first posted online Oct. 5, 2017; doi: http://dx.doi.org/10.1101/198945. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 How symbiotic lifestyles evolve from free-living ecologies is poorly understood. In 2 Metazoa’s largest family, Staphylinidae (rove beetles), numerous lineages have evolved 3 obligate behavioral symbioses with ants or termites.
    [Show full text]
  • Phylogeny and Evolution of Myrmecophily in Beetles, Based on Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae)
    Phylogeny and Evolution Of Myrmecophily In Beetles, Based On Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Glené Mynhardt Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2012 Dissertation Committee: Johannes Klompen, Advisor Marymegan Daly Norman Johnson T. Keith Philips Copyright by Glené Mynhardt 2012 Abstract Ant-associated behavior has evolved rampantly among various groups of Arthropoda, and has arisen in at least 34 families of beetles. Due to the amazing morphological modifications and different kinds of interactions that occur within myrmecophilous (ant-associated) beetles, authors have predicted that myrmecophily has evolved in a step-wise fashion from casual, facultative associations to closely integrated, obligate interactions. In this dissertation, myrmecophily within the Coleoptera is reviewed, and known behaviors, ant-beetle interactions, and associated morphological adaptations are discussed. In order to better understand how myrmecophily has evolved, two groups of beetles are studied in a phylogenetic context. A cladistic analysis of 40 species of the myrmecophilous scarab genus, Cremastocheilu s Knoch is presented. Characters related to a myrmecophilous habit are largely informative, especially those characters related to the glandular trichomes (clusters of setae typically associated with exocrine glands). Two of the five previously recognized subgenera, C. (Myrmecotonus ) and C. (Anatrinodia ) are synonymized with the subgenus C. (Cremastocheilus ). Even though behavioral information is only known for a few species, the resulting phylogeny indicates that monophyletic subgenera are largely associated with the same ant hosts, although specific interactions with ant hosts can vary even in closely-related taxa.
    [Show full text]
  • Studium Struktury Společenstev Epigeických Brouků Na Výzkumných Plochách Study of Community Structure of Epigeic Beetles on Forest Research Plots
    Studium struktury společenstev epigeických brouků na výzkumných plochách Study of community structure of epigeic beetles on forest research plots Jaroslav Boháč 1 Zemědělská fakulta Jihočeské univerzity, Na Sádkách 1780, 370 05 České Budějovice Abstract Epigeic and hemiedaphic beetles were studied in different localities in lowland oak forests of protected regions of Czech Republic: Protected Landscape Area Czech Karst by Prague, National Park Podyjí and Protected Landscape Area Pálava in south Moravia. Plots with management (cutting of forests or pasturing) and control plots without management were indicated in every locality. The last two localities were at the mount Plechý in the Šumava National Park with mountain (climax) Norway spruce forests. The cutted plots of forest on Austrian part of the mountain and unattached plots without management (fade forests with young seedelings) were compared. Material was collected with pitfall traps and soil quadrats sampling. The material was determined and species were classified into groups after the sensitivity to human impact (species living in habitats without human impact, species living in human made forest and ubiquitous species living in heavy disturbed habitats (BOHÁČ 1999, BOHÁČ et JAHNOVÁ 2015). Ecological analysis of communities was made (BOHÁČ 1999). Statistical analysis was made on the base of cluster analysis and Shannon-Wiener index and index of equitability were calculated. Together 272 species and 7558 specimen of model groups (Carabidae, Stahylinidae, Silphidae and Geotrupidae) was found on studied localities. Communities of of beetles differ strongly in oak forests and forest steppe in lowland oak forests. The xerothermis species presents on forests steppe and forest species in oak forests.
    [Show full text]
  • Frank and Thomas 1984 Qev20n1 7 23 CC Released.Pdf
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. COCOON-SPINNING AND THE DEFENSIVE FUNCTION OF THE MEDIAN GLAND IN LARVAE OF ALEOCHARINAE (COLEOPTERA, STAPHYLINIDAE): A REVIEW J. H. Frank Florida Medical Entomology Laboratory 200 9th Street S.E. Vero Beach, Fl 32962 U.S.A. M. C. Thomas 4327 NW 30th Terrace Gainesville, Fl 32605 U.S.A. Quaestiones Entomologicae 20:7-23 1984 ABSTRACT Ability of a Leptusa prepupa to spin a silken cocoon was reported by Albert Fauvel in 1862. A median gland of abdominal segment VIII of a Leptusa larva was described in 1914 by Paul Brass who speculated that it might have a locomotory function, but more probably a defensive function. Knowledge was expanded in 1918 by Nils Alarik Kemner who found the gland in larvae of 12 aleocharine genera and contended it has a defensive function. He also suggested that cocoon-spinning may be a subfamilial characteristic of Aleocharinae and that the Malpighian tubules are the source of silk. Kemner's work has been largely overlooked and later authors attributed other functions to the gland. However, the literature yet contains no proof that Kemner was wrong even though some larvae lack the gland and even though circumstantial evidence points to another (perhaps peritrophic membrane) origin of the silk with clear evidence in some species that the Malpighian tubules are the source of a nitrogenous cement.
    [Show full text]
  • A Review of Myrmecophily in Ant Nest Beetles (Coleoptera: Carabidae: Paussinae): Linking Early Observations with Recent Findings
    Naturwissenschaften (2007) 94:871–894 DOI 10.1007/s00114-007-0271-x REVIEW A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings Stefanie F. Geiselhardt & Klaus Peschke & Peter Nagel Received: 15 November 2005 /Revised: 28 February 2007 /Accepted: 9 May 2007 / Published online: 12 June 2007 # Springer-Verlag 2007 Abstract Myrmecophily provides various examples of as “bombardier beetles” is not used in contact with host how social structures can be overcome to exploit vast and ants. We attempt to trace the evolution of myrmecophily in well-protected resources. Ant nest beetles (Paussinae) are paussines by reviewing important aspects of the association particularly well suited for ecological and evolutionary between paussine beetles and ants, i.e. morphological and considerations in the context of association with ants potential chemical adaptations, life cycle, host specificity, because life habits within the subfamily range from free- alimentation, parasitism and sound production. living and predatory in basal taxa to obligatory myrme- cophily in derived Paussini. Adult Paussini are accepted in Keywords Evolution of myrmecophily. Paussinae . the ant society, although parasitising the colony by preying Mimicry. Ant parasites . Defensive secretion . on ant brood. Host species mainly belong to the ant families Host specificity Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair Introduction (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: A great diversity of arthropods live together with ants and while certain Paussini rely on the protective type with less profit from ant societies being well-protected habitats with exposed extremities, other genera access ant colonies using stable microclimate (Hölldobler and Wilson 1990; Wasmann glandular secretions and trichomes (symphile type).
    [Show full text]
  • Hox-Logic of Preadaptations for Social Insect Symbiosis in Rove Beetles
    bioRxiv preprint doi: https://doi.org/10.1101/198945; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hox-logic of preadaptations for social insect symbiosis in rove beetles Joseph Parker1*, K. Taro Eldredge2, Isaiah M. Thomas3, Rory Coleman3 and Steven R. Davis3,4 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA 2Department of Ecology and Evolutionary Biology, and Division of Entomology, Biodiversity Institute, University of Kansas, Lawrence, KS, USA 3Department of Genetics and Development, Columbia University, 701 West 168th Street, New York, NY 10032, USA 4Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA *correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/198945; this version posted October 5, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. How symbiotic lifestyles evolve from free-living ecologies is poorly understood. Novel traits mediating symbioses may stem from preadaptations: features of free- living ancestors that predispose taxa to engage in nascent interspecies relationships. In Metazoa’s largest family, Staphylinidae (rove beetles), the body plan within the subfamily Aleocharinae is preadaptive for symbioses with social insects. Short elytra expose a pliable abdomen that bears targetable glands for host manipulation or chemical defense. The exposed abdomen has also been convergently refashioned into ant- and termite-mimicking shapes in multiple symbiotic lineages.
    [Show full text]
  • Trophallaxis: the Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymeno­Ptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymeno ptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Journal of the Society for British Entomology
    ti J>- c . 6 7S. 7t HARVARD UNIVERSITY LIBRARY OF THE Museum of Comparative Zoology MBS. COW. Z30L Limy MHINtt UNIVERSITY HKTfflTZPi LiBnAi.il JUL 14 196 Journal UNIVERSITY OF THE Society for British Entomology World List abbreviation:^. Soc. Brit. Ent. VOL. 5 EDITED BY J. H. MURGATROYD, F.L.S., F.Z.S., F.R.E.S. E. J. POPHAM, D.Sc., Ph.D., A.R.C.S., F.R.E.S. WITH THE ASSISTANCE OF W. A. F. BALFOUR-BROWNE, M.A., F.R.S.E., F.L.S., F.Z.S., F.R.E.S., F.S.B.E. W. D. HINCKS, M.Sc.j F.R.E.S. B. M. HOBBY, M.A., D.Phil., F.R.E.S. G. J. KERRICH, M.A., F.L.S., F.R.E.S. O. W. RICHARDS, M.A., D.Sc., F.R.E.S., F.S.B.E. W. H. T. TAMS 1 955- 1 957 BOURNEMOUTH AND MANCHESTER DATES OF PUBLICATION Vol. 5 Part 1 (1-46). .14* July, 1954 Part 2 (47-90). .15th November, 1954 Part 3 (91-118). 1955 Part 4 (119-142). 1955 Part 5 (143-178). 1956 Part 6 (179-198). 1956 Part 7 (199-230). 1957 CONTENTS PAGE Andrewes, C. H.: Helocera delecta Mg. and other uncommon Diptera in the Isle of Wight. 164 Bailey, R.: Observations on the size of galls formed on couch grass by a Chalcidoid of the genus Harmolita. 199 Brown, William L., Jnr.: The identity of the British Strongylognathus (Hym. Formicidae). 113 Chambers, V. H.: Further Hymenoptera records from Bedfordshire.
    [Show full text]