Phylogeny and Evolution of Myrmecophily in Beetles, Based on Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Evolution of Myrmecophily in Beetles, Based on Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae) Phylogeny and Evolution Of Myrmecophily In Beetles, Based On Morphological Evidence (Coleoptera: Ptinidae, Scarabaeidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Glené Mynhardt Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2012 Dissertation Committee: Johannes Klompen, Advisor Marymegan Daly Norman Johnson T. Keith Philips Copyright by Glené Mynhardt 2012 Abstract Ant-associated behavior has evolved rampantly among various groups of Arthropoda, and has arisen in at least 34 families of beetles. Due to the amazing morphological modifications and different kinds of interactions that occur within myrmecophilous (ant-associated) beetles, authors have predicted that myrmecophily has evolved in a step-wise fashion from casual, facultative associations to closely integrated, obligate interactions. In this dissertation, myrmecophily within the Coleoptera is reviewed, and known behaviors, ant-beetle interactions, and associated morphological adaptations are discussed. In order to better understand how myrmecophily has evolved, two groups of beetles are studied in a phylogenetic context. A cladistic analysis of 40 species of the myrmecophilous scarab genus, Cremastocheilu s Knoch is presented. Characters related to a myrmecophilous habit are largely informative, especially those characters related to the glandular trichomes (clusters of setae typically associated with exocrine glands). Two of the five previously recognized subgenera, C. (Myrmecotonus ) and C. (Anatrinodia ) are synonymized with the subgenus C. (Cremastocheilus ). Even though behavioral information is only known for a few species, the resulting phylogeny indicates that monophyletic subgenera are largely associated with the same ant hosts, although specific interactions with ant hosts can vary even in closely-related taxa. In addition, a separate cladistics analysis of the spider beetles based on morphology is ii presented. The monophyly of previously proposed suprageneric groups are investigated, and eight tribes of spider beetles (four unnamed basal tribes, plus more derived Gibbiini, Ptinini, Sphaericini) are recognized to capture three unique monophyletic groups of spider beetles. Of eight myrmecophilous spider beetle genera, only one genus ( Gnostus ) can be placed, all other myrmecophilous representatives remain unplaced in phylogeny. Based on this analysis, myrmecophily has evolved independently in four lineages, with nearly all genera appearing basal in spider beetle phylogeny. Based on these findings, obligate myrmecophily has evolved in four different groups. Among the Old World taxa (South African, Australian), and based on morphology, antennae may have evolved in a step-wise fashion, from less specialized (normal, 11-segmented antennae) to more highly specialized (reduced, with fusion of segments); however, pronotal trichomes are present in all related taxa. Among New World taxa, the presence of unique myrmecophilous adaptations indicates rapid evolution of obligate ant-associated behavior and morphology, rather than step-wise evolution from casual or facultative to obligate associations. Finally, two new genera of Dominican amber spider beetles are described. The new genus Electrognostus may indicate a transition from a normal Ptinus -like spider beetle to a myrmecophilous type like Gnostus , but based on the phylogenetic analysis it can currently be placed within the Ptinini tribe. iii This document is dedicated to the many people who gave me strength to believe in myself. iv Acknowledgments I have a lot of people to thank for guiding and supporting me through this interesting venture called graduate school. I have to thank my family first, for giving me the opportunity to study biology, fall in love with insects, and pursue the study of some of the coolest beetles on Earth. Thanks, Anna Mynhardt, my mom, for being there on days that were less than great, and for supporting me and pushing me on days when doing all this felt right. To my dad, Hendrik Mynhardt, for instilling the drive and passion in me to always strive for more. And to my brother, Gavin Mynhardt, for being strong for me and for you. Within the first year of graduate school I met Jason Kolenda, a man who has stood by me through all the ups and downs and has carried me through some of the hardest days of my life. Thank you for making me laugh. Thank you to Jane, Dave, and Aaron Kolenda for making me see what life is really about – having the right people by your side. Thanks to “Grandpa” Herman Lubertazza, Laurie Parham, the Meserini family, Carney, Cheryl, Pat, Nathan, and Danny Lubertazza. Thanks to all my friends, Ashley Kulhanek, Meaghan Ventura, Joshua Bryant, Kaitlin Uppstrom, Monica Farfan, Erin Morris, Chelsea Korfel, the Cary family, The Meehl family, the Rinas family, the Spilker family, and Heather Stephens – you were all there for me at different times during this journey. Thank you Kathy Horava, Judith Cusin, Joelle Fenger, Reni Ayachitula, Lynn Healy and Joanne Strunk for your constant v encouragement and for making me feel like I could conquer the world. I would have been much less of a person without you. Thanks to my many friends at the Museum of Biological Diversity – Abby Reft, Ryan Caesar, Joe Raczkowski, Charuwat Taekul, Brandon Sinn, Ryan Folk, Paul Larson, Jason Macrander, Sam Bolton, Luciana Musetti, Mesfin Tadesse, John Freudenstein, and Steve Passoa for helping me with so many little things that I couldn’t have done without. I also have to thank some of the most important mentors and advisors who have led me to become a better scientist, a better thinker, a better writer, and a more confident person. Even though you left for something much bigger and better, John Wenzel, thanks for making me believe in me, and for letting me grow as a teacher. Thanks for letting me find myself, even if it meant struggling to get there. Thanks to one of the most efficient and kind people I know - Hans Klompen, who kindly adopted me and gave me the discipline and the guidance to finish. Thank you also to my other committee members, Meg Daly and Norm Johnson, for making me stronger, even if it meant questioning myself on a daily basis. I couldn’t have done any of this without my good friend, mentor, and colleague, Keith Philips. You are a true example of what it means to be a good scientist. Thank you for sharing your passion for spider beetles with me. You gave me the ideas and motivation to keep going. And to Linda Gerofsky for being like an academic mother when I needed it most. Thank you to Judy Ridgway, from the bottom of my heart, for making me become the teacher that I am, and for giving me the support I needed to pursue my teaching goals. You have been a mentor, a confidant, a friend, and an inspiration in so many ways. vi Thanks also to the newest friends I have made at the University Center for the Advancement of Teaching: Alan Kalish, Kathryn Plank, Teresa Johnson, Stephanie Rohdieck, Laurie Maynell, Jerry Nelms, Jennie Williams, Christy Anandappa, and to my fellow graduate consultants, Sharon Ross, Lindsay Bernhagen, Spencer Robinson, and Monica Kowalski. We all took different paths to end up together in a great place. Thank you also to all the many people who loaned me specimens, especially James Harrison, and to all of those who successfully talked me into studying myrmecophiles – Gary Alpert and Bill Warner. And to another person who knows how to share his love for knowledge, Xavier Bellés, thanks for promoting spider beetle research. Finally, thank you to all my students who made me become the teacher and the scientist that I’ve become. You are the reason I finally got to this stage. I was a student once, who didn’t quite know where I would end up. Follow your dreams. I did, and even though I’m still searching for answers and for my place in life, I never stop trying. vii Vita May 2000 .......................................................James Bowie High School 2004................................................................B.S. Biology, University of Texas at Austin 2006................................................................M.S. Entomology, Texas A&M University 2006 - 2010 ....................................................Graduate Teaching Associate, Center for Life Sciences Education, The Ohio State University 2010 - present .................................................University Center for the Advancement of Teaching, The Ohio State University Publications Mynhardt G. 2011. Growing into teaching: A graduate student’s journey. Talking about Teaching 5:26-29. Philips T. K. & Mynhardt G. 2011. Description of Electrognostus intermedius , the first spider beetle from Dominican amber with implications for spider beetle phylogeny (Coleoptera Ptinidae). Entomapeiron 4:37-51. viii Mynhardt G. & Wenzel J. W. 2010. Phylogenetic analysis of the myrmecophilous Cremastocheilus Knoch (Coleoptera: Scarabaeidae: Cetoniinae) based on external adult morphology. Zookeys 34:129-140. Abbott J. C. & Mynhardt, G. (2007). Description of the larva of Somatochlora margarita (Odonata: Corduliidae). International Journal of Odonatology 10:129-136. Mynhardt G., Cognato A.I & Harris M. K.. 2007. Population genetics of the pecan weevil, Curculio caryae Horn (Coleoptera: Curculionidae), based on mitochondrial DNA data. Annals of the Entomological Society of America 100:582-590. Fields of Study Major Field: Evolution,
Recommended publications
  • Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E
    Beetle Appreciation Diversity and Classification of Common Beetle Families Christopher E. Carlton Louisiana State Arthropod Museum Coleoptera Families Everyone Should Know (Checklist) Suborder Adephaga Suborder Polyphaga, cont. •Carabidae Superfamily Scarabaeoidea •Dytiscidae •Lucanidae •Gyrinidae •Passalidae Suborder Polyphaga •Scarabaeidae Superfamily Staphylinoidea Superfamily Buprestoidea •Ptiliidae •Buprestidae •Silphidae Superfamily Byrroidea •Staphylinidae •Heteroceridae Superfamily Hydrophiloidea •Dryopidae •Hydrophilidae •Elmidae •Histeridae Superfamily Elateroidea •Elateridae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Suborder Polyphaga, cont. Superfamily Cantharoidea Superfamily Cucujoidea •Lycidae •Nitidulidae •Cantharidae •Silvanidae •Lampyridae •Cucujidae Superfamily Bostrichoidea •Erotylidae •Dermestidae •Coccinellidae Bostrichidae Superfamily Tenebrionoidea •Anobiidae •Tenebrionidae Superfamily Cleroidea •Mordellidae •Cleridae •Meloidae •Anthicidae Coleoptera Families Everyone Should Know (Checklist, cont.) Suborder Polyphaga, cont. Superfamily Chrysomeloidea •Chrysomelidae •Cerambycidae Superfamily Curculionoidea •Brentidae •Curculionidae Total: 35 families of 131 in the U.S. Suborder Adephaga Family Carabidae “Ground and Tiger Beetles” Terrestrial predators or herbivores (few). 2600 N. A. spp. Suborder Adephaga Family Dytiscidae “Predacious diving beetles” Adults and larvae aquatic predators. 500 N. A. spp. Suborder Adephaga Family Gyrindae “Whirligig beetles” Aquatic, on water
    [Show full text]
  • Ant Trails: a Key to Management with Baits1
    ENY-259 Ant Trails: A Key to Management with Baits1 John Klotz, Dave Williams, Byron Reid, Karen Vail, and Phil Koehler2 Communication in the ants is based on chemical straight back to the nest (Figure 1). Somehow on the signals. These chemicals are called pheromones and outgoing trip she can keep track of her position with vary from alarm and nestmate recognition, to the one respect to her nest, and, on the return trip, uses this we will focus on here, recruitment. All of the pest information to take the shorter, more direct route ants use odor trails for orientation, but these trails home. On the way back to the nest, she lays down an differ from one species to another. Where the odor trail. Once back in the nest, this scout ant then pheromones originate in the ant's body, their alerts her nestmates of the food find, which chemical composition, as well as how long they last, encourages them to leave the nest. These recruited all vary from one ant species to the next. In fire ants, ants will follow the odor trail directly to the food the trail chemical is produced by the Dufour's gland, source. In turn, each ant will reinforce the odor trail which is named after its discoverer, Dufour, and is until the food is gone. This behavior is a highly laid down by the stinger. This pheromone is made up efficient means of exploiting a temporary food of molecules which evaporate very quickly. Thus, the resource. fire ant's odor trail is very short-lived.
    [Show full text]
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Genus Claviger Preyssler, 1790 (Coleoptera: Staphylinidae: Pselaphinae) in the Low Beskid Mts.(Poland) - New Sites and Host Affiliation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Title: Genus Claviger Preyssler, 1790 (Coleoptera: Staphylinidae: Pselaphinae) in the Low Beskid Mts.(Poland) - new sites and host affiliation Author: Artur Taszakowski, Bartosz Baran, Natalia Kaszyca, Łukasz Depa Citation style: Taszakowski Artur, Baran Bartosz, Kaszyca Natalia, Depa Łukasz. (2015). Genus Claviger Preyssler, 1790 (Coleoptera: Staphylinidae: Pselaphinae) in the Low Beskid Mts.(Poland) - new sites and host affiliation. "Nature Journal" (Nr 48 (2015), s. 114-119) NATURE JOURNAL VOL. 48: 114–119 (2015) OPOLE SCIENTIFIC SOCIETY GENUS CLAVIGER PREYSSLER , 1790 (C OLEOPTERA : STAPHYLINIDAE : PSELAPHINAE ) IN THE LOW BESKID MTS . (P OLAND ) – NEW SITES AND HOST A FFILIATION 1,3 2,4 1,2,5 1,6 ARTUR TASZAKOWSKI , BARTOSZ BARAN , NATALIA KASZYCA , ŁUKASZ DEPA 1 University of Silesia, Faculty of Biology and Environmental Protection, Department of Zoology, Bankowa 9, 40 – 007 Katowice 2Students’ Scientific Association of Zoologists „Faunatycy” U Ś [email protected], [email protected], [email protected], [email protected] ABSTRACT : In the area of Poland there occur two species of the genus: Claviger longicornis P.W.J. Müller, 1818 and Claviger testaceus Preyssler, 1790. Both species are rare in Poland. Beetles of the genus Claviger are specialized myrmecophiles and are dependent on their host ants throughout the whole life cycle. During the field research, which were conducted in the Low Beskid Mts. (South-Eastern Poland), new sites of both species were found. C. longicornis was recorded in a colony of Lasius sabularum (Bondroit, 1918) and this is the first record of this ant as its host .
    [Show full text]
  • Morphology, Taxonomy, and Biology of Larval Scarabaeoidea
    Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/morphologytaxono12haye ' / ILLINOIS BIOLOGICAL MONOGRAPHS Volume XII PUBLISHED BY THE UNIVERSITY OF ILLINOIS *, URBANA, ILLINOIS I EDITORIAL COMMITTEE John Theodore Buchholz Fred Wilbur Tanner Charles Zeleny, Chairman S70.S~ XLL '• / IL cop TABLE OF CONTENTS Nos. Pages 1. Morphological Studies of the Genus Cercospora. By Wilhelm Gerhard Solheim 1 2. Morphology, Taxonomy, and Biology of Larval Scarabaeoidea. By William Patrick Hayes 85 3. Sawflies of the Sub-family Dolerinae of America North of Mexico. By Herbert H. Ross 205 4. A Study of Fresh-water Plankton Communities. By Samuel Eddy 321 LIBRARY OF THE UNIVERSITY OF ILLINOIS ILLINOIS BIOLOGICAL MONOGRAPHS Vol. XII April, 1929 No. 2 Editorial Committee Stephen Alfred Forbes Fred Wilbur Tanner Henry Baldwin Ward Published by the University of Illinois under the auspices of the graduate school Distributed June 18. 1930 MORPHOLOGY, TAXONOMY, AND BIOLOGY OF LARVAL SCARABAEOIDEA WITH FIFTEEN PLATES BY WILLIAM PATRICK HAYES Associate Professor of Entomology in the University of Illinois Contribution No. 137 from the Entomological Laboratories of the University of Illinois . T U .V- TABLE OF CONTENTS 7 Introduction Q Economic importance Historical review 11 Taxonomic literature 12 Biological and ecological literature Materials and methods 1%i Acknowledgments Morphology ]* 1 ' The head and its appendages Antennae. 18 Clypeus and labrum ™ 22 EpipharynxEpipharyru Mandibles. Maxillae 37 Hypopharynx <w Labium 40 Thorax and abdomen 40 Segmentation « 41 Setation Radula 41 42 Legs £ Spiracles 43 Anal orifice 44 Organs of stridulation 47 Postembryonic development and biology of the Scarabaeidae Eggs f*' Oviposition preferences 48 Description and length of egg stage 48 Egg burster and hatching Larval development Molting 50 Postembryonic changes ^4 54 Food habits 58 Relative abundance.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Coleoptera: Cucujoidea) Matthew Immelg Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea) Matthew immelG Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Gimmel, Matthew, "Revision and Reclassification of the Genera of Phalacridae (Coleoptera: Cucujoidea)" (2011). LSU Doctoral Dissertations. 2857. https://digitalcommons.lsu.edu/gradschool_dissertations/2857 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. REVISION AND RECLASSIFICATION OF THE GENERA OF PHALACRIDAE (COLEOPTERA: CUCUJOIDEA) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology by Matthew Gimmel B.S., Oklahoma State University, 2005 August 2011 ACKNOWLEDGMENTS I would like to thank the following individuals for accommodating and assisting me at their respective institutions: Roger Booth and Max Barclay (BMNH), Azadeh Taghavian (MNHN), Phil Perkins (MCZ), Warren Steiner (USNM), Joe McHugh (UGCA), Ed Riley (TAMU), Mike Thomas and Paul Skelley (FSCA), Mike Ivie (MTEC/MAIC/WIBF), Richard Brown and Terry Schiefer (MEM), Andy Cline (CDFA), Fran Keller and Steve Heydon (UCDC), Cheryl Barr (EMEC), Norm Penny and Jere Schweikert (CAS), Mike Caterino (SBMN), Michael Wall (SDMC), Don Arnold (OSEC), Zack Falin (SEMC), Arwin Provonsha (PURC), Cate Lemann and Adam Slipinski (ANIC), and Harold Labrique (MHNL).
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Quaderni Del Museo Civico Di Storia Naturale Di Ferrara
    ISSN 2283-6918 Quaderni del Museo Civico di Storia Naturale di Ferrara Anno 2018 • Volume 6 Q 6 Quaderni del Museo Civico di Storia Naturale di Ferrara Periodico annuale ISSN. 2283-6918 Editor: STEFA N O MAZZOTT I Associate Editors: CARLA CORAZZA , EM A N UELA CAR I A ni , EN R ic O TREV is A ni Museo Civico di Storia Naturale di Ferrara, Italia Comitato scientifico / Advisory board CE S ARE AN DREA PA P AZZO ni FI L ipp O Picc OL I Università di Modena Università di Ferrara CO S TA N ZA BO N AD im A N MAURO PELL I ZZAR I Università di Ferrara Ferrara ALE ss A N DRO Min ELL I LU ci O BO N ATO Università di Padova Università di Padova MAURO FA S OLA Mic HELE Mis TR I Università di Pavia Università di Ferrara CARLO FERRAR I VALER I A LE nci O ni Università di Bologna Museo delle Scienze di Trento PI ETRO BRA N D M AYR CORRADO BATT is T I Università della Calabria Università Roma Tre MAR C O BOLOG N A Nic KLA S JA nss O N Università di Roma Tre Linköping University, Sweden IRE N EO FERRAR I Università di Parma In copertina: Fusto fiorale di tornasole comune (Chrozophora tintoria), foto di Nicola Merloni; sezione sottile di Micrite a foraminiferi planctonici del Cretacico superiore (Maastrichtiano), foto di Enrico Trevisani; fiore di digitale purpurea (Digitalis purpurea), foto di Paolo Cortesi; cardo dei lanaioli (Dipsacus fullonum), foto di Paolo Cortesi; ala di macaone (Papilio machaon), foto di Paolo Cortesi; geco comune o tarantola (Tarentola mauritanica), foto di Maurizio Bonora; occhio della sfinge del gallio (Macroglossum stellatarum), foto di Nicola Merloni; bruco della farfalla Calliteara pudibonda, foto di Maurizio Bonora; piumaggio di pernice dei bambù cinese (Bambusicola toracica), foto dell’archivio del Museo Civico di Lentate sul Seveso (Monza).
    [Show full text]
  • Argentine Ant, Liniepithema Humile Mayr (Hymenoptera: Formicidae)
    FDACS-P-01684 Pest Alert created 20-April-2009 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture Argentine Ant, Liniepithema humile Mayr (Hymenoptera: Formicidae) David Westervelt, [email protected], Apiary Inspector and Researcher, Florida Department of Agriculture and Consumer Services, Division of Plant Industry Eric T. Jameson, [email protected], Apiary Inspector, Florida Department of Agriculture and Consumer Services, Division of Plant Industry INTRODUCTION: The Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), was introduced into Louisiana in 1890 on coffee ships from Brazil. It has since spread to most of the southern United States where it has become a nuisance pest in the urban environment. It can and does disrupt ecosystems by directly displacing other ant species and other insects. Argentine ants utilize a wide variety of food sources that include protein (live or dead insects) and substances rich in sugars such as honeydew secretions from aphids. Foraging worker ants will also search for food indoors. Argentine ants form large colonies that can include numerous nesting sites that can cover a large area. The Argentine ant can be a serious pest of commercial honey bee hives. This ant challenges the front entrance of the bee hive causing the European honey bee (EHB), Apis mellifera Linnaeus, to guard it. The ants then invade the colony in large numbers through the top or other unguarded openings in the hive (Fig. 1), causing the EHB to abscond, abandoning the honey and brood for the ants to take back to their nest.
    [Show full text]
  • Monism and Morphology at the Turn of the Twentieth Century
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUScholarWorks From a draft. May differ from the published version, which appeared in Monism: Science, Philosophy, Religion, and the History of a Worldview, ed. Todd Weir, 135–158, New York: Palgrave USA, 2012. Monism and Morphology at the Turn of the Twentieth Century SANDER GLIBOFF Indiana University Abstract. Ernst Haeckel’s monistic worldview and his interpretation of Darwin’s theory of evolution worked together to help him rule out any role for divine providence or any non-material mind, spirit, will, or purpose in the organic world. In his account of 1866, the impersonal, unpredictable, and purposeless external environment was what drove evolutionary change. By around the turn of the twentieth century, however, new theories of evolution, heredity, and embryology were challenging Haeckel’s, but Haeckel no longer responded with his earlier vigor. Younger monistically oriented evolutionary biologists had to take the lead in modernizing and defending the monistic interpretation and the external causes of evolution. Three of these younger biologists are discussed here: Haeckel’s student, the morphologist-turned-theoretician Richard Semon (1859–1918); Ludwig Plate (1862–1937), who took over Haeckel’s chair at the University of Jena and became an influential journal editor and commentator on new research on heredity and evolution; and Paul Kammerer (1880–1926), whose experimental evidence for the modifying power of the environment was hotly debated. Despite their very different social, political, and religious backgrounds, their contrasting research methods and career trajectories, and their disagreements on the precise mechanisms of evolution, these three were united by their adherence to Haeckelian monistic principles.
    [Show full text]
  • Comparison of Coleoptera Emergent from Various Decay Classes of Downed Coarse Woody Debris in Great Smoky Mountains National Park, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 11-30-2012 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA Michael L. Ferro Louisiana State Arthropod Museum, [email protected] Matthew L. Gimmel Louisiana State University AgCenter, [email protected] Kyle E. Harms Louisiana State University, [email protected] Christopher E. Carlton Louisiana State University Agricultural Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Ferro, Michael L.; Gimmel, Matthew L.; Harms, Kyle E.; and Carlton, Christopher E., "Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains National Park, USA" (2012). Insecta Mundi. 773. https://digitalcommons.unl.edu/insectamundi/773 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA A Journal of World Insect Systematics MUNDI 0260 Comparison of Coleoptera emergent from various decay classes of downed coarse woody debris in Great Smoky Mountains Na- tional Park, USA Michael L. Ferro Louisiana State Arthropod Museum, Department of Entomology Louisiana State University Agricultural Center 402 Life Sciences Building Baton Rouge, LA, 70803, U.S.A. [email protected] Matthew L. Gimmel Division of Entomology Department of Ecology & Evolutionary Biology University of Kansas 1501 Crestline Drive, Suite 140 Lawrence, KS, 66045, U.S.A.
    [Show full text]