Why Is Body Shape Important?

Total Page:16

File Type:pdf, Size:1020Kb

Why Is Body Shape Important? 8/19/2013 Topic 8: The Evolution of Body Shape Why is body shape important? Why is body shape important? Body shape is a key What are some common patterns in body shape aspect of ________ evolution? Species within Think clades differ in about how How has a snake-like form evolved? body shape What are the main hypotheses for its evolution? different True for almost all What is the developmental basis of body elongation and these limb reduction? clades What are some morphological patterns in its evolution? organisms This variation can have far-reaching are… How has a stocky form evolved? consequences What are some clade-specific hypotheses? What does it mean to evolve stockiness? What are the functional implications of body shape evolution? Photos © PJB, KP Bergmann Why is body shape important? Why is body shape important? Consider what Body shape is a key Functional Aspects of aspects of body aspect of diversity Body Shape shape are variable Expect differently _______________ shaped animals to: _______________ ___________________ Organismal _______________ ___________________ Function ___________________ _______________ _______________ Different body shapes will be better at doing Organismal different things Ecology Photos © PJ Bergmann 1 8/19/2013 Photos © PJB, KP Bergmann Why is body shape important? Aspects of Body Shape Functional Aspects Small limbs Tail Salamander Sprawling Long hind limbs Light bodied Tree Frog Tree Adhesive pads Equal-sized limbs “Mid” bodied Toad Upright Short limbs Heavy bodied Ceratophrys Large mouth 1 8/19/2013 What are some common patterns in body shape evolution? What are some common patterns in body shape evolution? A _________________ body shape A snake-like body shape “Body _______________ and limb ________________” Evolved several times in Has evolved many times Amphibia Examples: Evolved >25 times in the Fishes: Bichirs, eels, gobies, gar Squamata Mammals: Mustelids Never in the ____________ Birds: Hesperornis? In some clades, there are only snake-like species Amphibians: Sirenidae, Amphiumidae, Gymnophiona In others, there are intermediate forms Squamates: Snakes, Amphisbaenia, Pygopodidae, some Anguidae, Degrees of BE & LR Gymnophthalmidae, Scincidae, Gerrhosauridae Photos PJB, Pough et al. 2004 What are some common patterns in body shape evolution? What are some common patterns in body shape evolution? A _____________ body shape Has evolved multiple times Poorly studied Some clades are all stocky, others have intermediates Examples: Fishes: Tetraodontiformes Amphibians: Anura Elongate Stocky Also has evolved within Anura Examples? Testudines Squamata: Phrynosoma Photos ?, PJB 1 8/19/2013 How has a snake-like body form evolved? Body elongation and limb reduction Studied the most Primarily in Squamata Several hypotheses for its evolution Studies of development Studies of morphology Photo © PJ Bergmann Hypotheses for the evolution of a snake-like body shape Adaptation to ______________ Adaptation to _________________ Adaptation to ______ _________________ _________________ Adaptation to _________________ Photos PJB, Pough et al 2004 1 8/19/2013 Hypotheses for the evolution of a snake-like body shape Hypotheses for the evolution of a snake-like body shape Adaptation to _______________ Premise: A snake-like body allows Adaptation to ______________ easy making of and travel through Premise: An elongate body is tunnels good for propulsion in water through __________________ Examples: Some snakes, ________________________ Amphisbaenia, many lizards Examples: Sea snakes, water Evidence: snakes, Sirenidae, eels, lots of Many elongate lizards are fossorial elongate fishes Other adaptations coincide with snake-like body Evidence: Basal snakes are all fossorial Fossil snakes with small legs Reduced eyes in many that were marine burrowing animals and the lack of ciliary muscles in snake eyes Maybe related to marine re-evolution? mosasaurs Some phylogenies suggest that they are sister to all Traditional hypothesis snakes Photos Pough et al 2004, www.digimorph.org Photos Pough et al 2004, www.paleopolis.com Hypotheses for the evolution of a snake-like body shape Hypotheses for the evolution of a snake-like body shape Adaptation to aquatic habitat Adaptation to aquatic habitat Other analyses suggest they are nested within snakes Marine snakes Marine snakes with legs with legs Serpentes Serpentes Modified from Lee & Caldwell, 2000 Modified from Tchernov et al., 2000 Hypotheses for the evolution of a snake-like body shape Hypotheses for the evolution of a snake-like body shape Adaptation to ______________ __________________________ Adaptation to ________________ Premise: Pushing off with whole Premise: Legs get in the way in body displaces the substrate less dense grass and shrubs. No than limbs (higher SA), so legs allows the animals to locomotion is more ___________ wriggle through _____________ Examples: Sidewinders, Lerista Examples: Some pygopodids, skinks, other elongate sand- © Britannica many skinks, elongate reef fishes? dwellers Evidence: Evidence: Studies that show that shorter Observational limbed species inhabit more Maybe not well supported closed habitats (Bergmann & Irschick 2010) Horned lizards move slower in patches of invasive buffle grass © PJB Photos © PJB 1 8/19/2013 Developmental basis of body elongation and limb reduction Developmental basis of limb reduction The two traits (BE & LR) LR has received most have been studied attention separately Observation of varying They are highly _________ numbers of digits and with one another phalanges The same Hox genes are How would this arise? involved in patterning ___________________ of ____________________ development ____________________ Loss of digits with decreasing ______________ Other things as well Some other mechanism Photos © PJ Bergmann Greer 1990 Developmental basis of limb reduction Developmental basis of body elongation Early experiments with Elongate vertebrates tend _____________________ to have: Development is truncated experimentally Reduced limbs Get digit pattern as seen A long thoracic region in nature More recent molecular In snakes, expansion of developmental studies Hox gene domains has: Development is not Over-run the location of simply truncated the __________________ Phalangeal numbers don’t match Expanded area of Duration of __________ ____________ identity _______ gene expression Hox C6 marks the location regulates cell proliferation of the ________________ Hox B5 Hox C8 Hox C6 in many vertebrates Shapiro et al. 2003 Cohn & Tickle 1999 Morphological patterns of evolution of a Developmental basis of body elongation snake-like body form But how do snakes get so MANY vertebrae? Vertebrae form from paraxial mesoderm tissue Early studies lined up the Paraxial mesoderm subdivides __________________ during development morphologies Faster division of tissue results in ________________________________ _________________________________________________ Created “______________” No phylogenies were available or used Appreciated variation, but not patterns of evolution # Vertebrae # 35 0 Gomez et al. 2008 # Phalanges Greer 1990 2 8/19/2013 Morphological evolution Morphological evolution of a snake-like form of a snake-like form Lerista (Scincidae) Evolutionary approach Bachia (Gymnophthalmidae) What is ancestral? limb evolution How many times has BE & LR evolved? Clade has hind limbs more reduced than front Is it reversible? How fast do these traits evolve? Found that in Bachia , derived species have _____________ ______________ Phylogenies are available Evidence is stronger in hind limb than front Statistics for accounting for phylogeny are available Example of the re-evolution of a complex structure Greer 1990 Kohlsdorf & Wagner 2006 Morphological evolution of a snake-like form Morphological evolution of a snake-like form A broad look at squamates Thresholds Evidence for two ecomorphs: ___________ completely _______________________________________ disappear when BE _______________________________________ reaches a certain point Short-tailed There are ____________ Some are fossorial, like when degree of BE Amphisbaenia reaches a certain point Some are sand swimming Long tailed Tend to live in dense vegetation Brandley et al. 2008 Brandley et al. 2008 Morphological evolution of a snake-like form Morphological evolution of a snake-like form Snake like ecomorphs have evolved many times Biogeographic explanation Transition from lizard to They do not disperse inter-continentally snake-like body can take Isolated evolution allows __________________ in different places _________________ Each ecomorph has evolved several times on each continent Intermediate body shapes can persist for ___________ _______________ of years _______________________ digits has occurred at least 6 times Brandley et al. 2008 Wiens et al. 2006 3 8/19/2013 How has a stocky body form evolved? How has a stocky body form evolved? Why might stockiness have evolved in Stockiness has evolved these taxa? several times independently Pufferfishes Pufferfish: Frogs Related to ________________________ Horned lizards Anura: Largely neglected Facilitates ________________________ area of study Need a short rigid body to maintain control during big jumps Different hypotheses for each instance? Phrynosoma : Thermoregulation? Crypsis? Defenses? Photos © ?, PJ Bergmann Photos © ?, PJ
Recommended publications
  • Anfibios Y Reptiles 1 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1Universidad De Cartagena & 2Fauna Silvestre Fundación
    Fauna del Jardín Botánico “Guillermo Piñeres” de Cartagena, Turbaco, COLOMBIA Anfibios y Reptiles 1 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1 2 Universidad de Cartagena & Fauna Silvestre Fundación Fotos: Adolfo Mulet Paso (AMP) – Hugo Claessen (HC) – Jairo H. Maldonado (JHM) – Jesús Torres Meza (JTM) – José Luis Pérez-González (JPG) – Jose Luna (JL) – Keiner Meza-Tilvez (KMT) – Luis Alberto Rueda Solano (LRS) – Mauricio Rivera Correa (MRC) – Juan Salvador Mendoza (JSM). © Jardín Botánico de Cartagena “Guillermo Piñeres” [[email protected]] Macho = (M), Hembra = (H) y Juvenil = (Juv.) [fieldguides.fieldmuseum.org] [1097] versión 1 12/2018 1 Rhinella horribilis 2 Rhinella humboldti 3 Dendrobates truncatus 4 Boana pugnax BUFONIDAE (foto KMT) BUFONIDAE (foto KMT) DENDROBATIDAE (foto KMT) HYLIDAE (foto KMT) 5 Boana xerophylla 6 Dendropsophus microcephalus 7 Scarthyla vigilans 8 Scinax rostratus HYLIDAE (foto LRS) HYLIDAE (foto KMT) HYLIDAE (foto KMT) HYLIDAE (foto KMT) 9 Scinax ruber 10 Trachycephalus typhonius 11 Engystomops pustulosus 12 Leptodactylus fragilis HYLIDAE (foto KMT) HYLIDAE (foto KMT) LEPTODACTYLIDAE (foto KMT) LEPTODACTYLIDAE (foto LRS) 13 Leptodactylus insularum 14 Pleurodema brachyops 15 Elachistocleis pearsei 16 Agalychnis callidryas LEPTODACTYLIDAE (foto AMP) LEPTODACTYLIDAE (foto KMT) MICROHYLIDAE (foto MRC) PHYLLOMEDUSIDAE (foto HC) 17 Phyllomedusa venusta 18 Basiliscus basiliscus (M) 19 Basiliscus basiliscus (Juv.) 20 Anolis auratus PHYLLOMEDUSIDAE (foto AMP) CORYTOPHANIDAE (foto KMT) CORYTOPHANIDAE (foto AMP) DACTYLOIDAE (foto AMP) Fauna del Jardín Botánico “Guillermo Piñeres” de Cartagena, Turbaco, COLOMBIA Anfibios y Reptiles 2 Keiner Meza-Tilvez1,2, Adolfo Mulet-Paso1,2 & Ronald Zambrano-Cantillo1 1 2 Universidad de Cartagena & Fauna Silvestre Fundación Fotos: Adolfo Mulet Paso (AMP) – Hugo Claessen (HC) – Jairo H.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Reptilia, Squamata, Gymnophthalmidae, Potamites Erythrocularis Chávez & Catenazzi, 2014: Distribution Extension
    Herpetology Notes, volume 8: 625-628 (2015) (published online on 20 December 2015) Reptilia, Squamata, Gymnophthalmidae, Potamites erythrocularis Chávez & Catenazzi, 2014: Distribution extension Juan C. Chávez-Arribasplata1,*, Vilma Duran2, and Germán Chávez3 The neotropical family Gymnophthalmidae Merrem, individuals of Potamites erythrocularis were recorded, 1820 comprises 36 genera that occur from Mexico representing the first record outside of the localities to Argentina (Goicoechea et al., 2012). This highly where the type series was collected. diversified family includes the semi-aquatic lizard A young female of Potamites erythrocularis (CORBIDI genus Potamites Doan & Castoe, 2005, which currently 13548) was found at El Parador, Inambari, 8.64 Km SE comprises eight species distributed from western Costa of Puerto Carlos (S 12.9699, W 70.2323; 266m) at 21:30 Rica and Panama to the Amazonian forests of Bolivia on 30 September 2013 by José Malqui and Germán (Chávez and Catenazzi, 2014). Likewise, with five Chávez. It was catched in the leaf-litter alongside a slow species Peru is the country with the highest diversity flowing stream 2-2.5 m in width. The stream drained a within this genus: P. flavogularis Altamirano-Benavides, closed canopy primary forest with riparian vegetation Zaher, Lobo, Grazziotin, Sales Nunes and Rodrigues, of ferns, lichens, plants of the family Heliconaceae and 2013; P. ecpleopus Cope 1876, P. montanicola Chavez Asteraceae and trees of the family Fabaceae. An adult y Vasquez, 2012; P. strangulatus Cope, 1868; and P. male (CORBIDI 15152) was also found at the locality erythrocularis Chavez and Catenazzi, 2014. Most of of El Parador (S 12.9804, W 70.2362; 253m) at 00:32 them are distributed in the Amazonian lowlands (Doan on 5 November 2014 by Juan C.
    [Show full text]
  • Discovery of an Additional Piece of the Large Gymnophthalmid Puzzle: A
    Zootaxa 4950 (2): 296–320 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4950.2.4 http://zoobank.org/urn:lsid:zoobank.org:pub:9464FC1F-2F92-46B7-BA53-1CFC93981F09 Discovery of an additional piece of the large gymnophthalmid puzzle: a new genus and species of stream spiny lizard (Squamata: Gymnophthalmidae: Cercosaurinae) from the western Guiana Shield in Venezuela FERNANDO J.M. ROJAS-RUNJAIC1*, CÉSAR L. BARRIO-AMORÓS2, J. CELSA SEÑARIS3,4, IGNACIO DE LA RIVA5 & SANTIAGO CASTROVIEJO-FISHER4,6 1Museo de Historia Natural La Salle, Fundación La Salle de Ciencias Naturales, Caracas 1050, Distrito Capital, Venezuela 2Doc Frog Expeditions/CRWild, 60504, Bahía Ballena, Uvita, Costa Rica �[email protected]; https://orcid.org/0000-0001-5837-9381 3PROVITA, calle La Joya con Av. Libertador, Unidad Técnica del Este, piso 10, oficina 29-30, Caracas 1060, Miranda, Venezuela �[email protected]; https://orcid.org/0000-0001-8673-7385 4Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga 6681, Porto Alegre, RS 90619-900, Brazil 5Museo Nacional de Ciencias Naturales-CSIC, C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain �[email protected]; https://orcid.org/0000-0001-5064-4507 6Department of Herpetology, American Museum of Natural History, 200 Central Park West, New York, NY 10024-5102, USA �[email protected]; https://orcid.org/0000-0002-1048-2168 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-5409-4231 Abstract Gymnophthalmids are a highly diverse group of Neotropical lizards and its species richness is still in process of discovery.
    [Show full text]
  • Diet of the Lizard Ecpleopus Gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, State of Rio De Janeiro, Brazil
    ZOOLOGIA 28 (5): 587–592, October, 2011 doi: 10.1590/S1984-46702011000500006 Diet of the lizard Ecpleopus gaudichaudii (Gymnophthalmidae) in Atlantic Rainforest, state of Rio de Janeiro, Brazil Thiago Maia1, 5; Mauricio Almeida-Gomes1; Carla C. Siqueira2; Davor Vrcibradic3; Mara C. Kiefer4 & Carlos Frederico D. Rocha1 1 Departamento de Ecologia, Universidade do Estado do Rio de Janeiro. Rua São Francisco Xavier 524, 20550-019 Rio de Janeiro, RJ, Brazil. 2 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro. Avenida Carlos Chagas Filho 373, Bloco A, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil. 3 Departamento de Zoologia, Universidade Federal do Estado do Rio de Janeiro. Avenida Pasteur 458, Urca, 22240-290 Rio de Janeiro, RJ, Brazil. 4 Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense. Caixa Postal 100436, Centro, 24020-971 Niterói, RJ, Brazil. 5 Corresponding author. E-mail: [email protected] ABSTRACT. In this study we analyzed the diet of the gymnophthalmid lizard Ecpleopus gaudichaudii Duméril & Bibron, 1839, a typical inhabitant of the forest-floor leaf litter, in an Atlantic Forest area in the state of Rio de Janeiro, southeast- ern Brazil. The 26 individuals sampled during the study had a mean snout-vent length (SVL) of 36.2 ± 4.2 mm and a mean jaw width (JW) of 4.1 ± 0.5 mm. We did not find differences in SVL between males and females, though the sexes differed in JW when the effect of body size was factored out, with females presenting higher values. The diet of the lizards was composed exclusively of arthropods, especially isopods and orthopterans.
    [Show full text]
  • First Record of Amphisbaena Lumbricalis
    Herpetology Notes, volume 10: 19-22 (2017) (published online on 27 January 2017) First record of Amphisbaena lumbricalis (Squamata, Amphisbaenidae) in the state of Pernambuco, Brazil: including a distribution map and soil classification of its occurrence Ana Paula G. Tavares1, José Jorge S. Carvalho2 and Leonardo B. Ribeiro1,* Amphisbaenia is currently represented by 196 species (Vanzolini, 1996; Galdino et al., 2015). In Alagoas, (Uetz and Hošek, 2016) belonging to six families (Vidal A. lumbricalis has been recorded in the municipalities and Hedges, 2009). Amphisbaenidae, the most diverse of Delmiro Gouveia, Piranhas and Traipu, and in the family (178 species), is distributed throughout South municipality of Canindé de São Francisco in Sergipe America and Africa (Gans, 2005; Vidal et al., 2008; state. In the present study, we report a new occurrence of Uetz and Hošek, 2016). Of these, 73 species occur in this worm lizard for the semiarid region of Pernambuco Brazil (Costa and Bérnils, 2015), and 20 in the semiarid state and classify the soil where it occurs. region. Three distribution patterns can be recognised Between July 2009 and March 2014, specimens in these species (Rodrigues, 2003): i) species with of A. lumbricalis were gathered during wild fauna wide distribution in the Caatinga Morphoclimatic rescue missions conducted by the Project to Integrate Domain: Amphisbaena alba, A. pretrei, A. vermicularis, the San Francisco River with the Northern Northeast Leposternon infraorbitale, L. microcephalum and L. Hydrographic Basins (PISF). A total of 477 km of polystegum; ii) species associated with the sand dunes the area (eastern and northern axes of the PISF) were of the middle São Francisco River and adjacent sands: sampled during vegetation suppression and worm A.
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA Mark N. Hutchinson & Stephen C. Donnellan 26. BIOGEOGRAPHY AND PHYLOGENY OF THE SQUAMATA This review summarises the current hypotheses of the origin, antiquity and history of the order Squamata, the dominant living reptile group which comprises the lizards, snakes and worm-lizards. The primary concern here is with the broad relationships and origins of the major taxa rather than with local distributional or phylogenetic patterns within Australia. In our review of the phylogenetic hypotheses, where possible we refer principally to data sets that have been analysed by cladistic methods. Analyses based on anatomical morphological data sets are integrated with the results of karyotypic and biochemical data sets. A persistent theme of this chapter is that for most families there are few cladistically analysed morphological data, and karyotypic or biochemical data sets are limited or unavailable. Biogeographic study, especially historical biogeography, cannot proceed unless both phylogenetic data are available for the taxa and geological data are available for the physical environment. Again, the reader will find that geological data are very uncertain regarding the degree and timing of the isolation of the Australian continent from Asia and Antarctica. In most cases, therefore, conclusions should be regarded very cautiously. The number of squamate families in Australia is low. Five of approximately fifteen lizard families and five or six of eleven snake families occur in the region; amphisbaenians are absent. Opinions vary concerning the actual number of families recognised in the Australian fauna, depending on whether the Pygopodidae are regarded as distinct from the Gekkonidae, and whether sea snakes, Hydrophiidae and Laticaudidae, are recognised as separate from the Elapidae.
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • Reptile Diversity in an Amazing Tropical Environment: the West Indies - L
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. VIII - Reptile Diversity In An Amazing Tropical Environment: The West Indies - L. Rodriguez Schettino REPTILE DIVERSITY IN AN AMAZING TROPICAL ENVIRONMENT: THE WEST INDIES L. Rodriguez Schettino Department of Zoology, Institute of Ecology and Systematics, Cuba To the memory of Ernest E. Williams and Austin Stanley Rand Keywords: Reptiles, West Indies, geographic distribution, morphological and ecological diversity, ecomorphology, threatens, conservation, Cuba Contents 1. Introduction 2. Reptile diversity 2.1. Morphology 2.2.Habitat 3. West Indian reptiles 3.1. Greater Antilles 3.2. Lesser Antilles 3.3. Bahamas 3.4. Cuba (as a study case) 3.4.1. The Species 3.4.2. Geographic and Ecological Distribution 3.4.3. Ecomorphology 3.4.4. Threats and Conservation 4. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary The main features that differentiate “reptiles” from amphibians are their dry scaled tegument andUNESCO their shelled amniotic eggs. In– modern EOLSS studies, birds are classified under the higher category named “Reptilia”, but the term “reptiles” used here does not include birds. One can externally identify at least, three groups of reptiles: turtles, crocodiles, and lizards and snakes. However, all of these three groups are made up by many species that are differentSAMPLE in some morphological characters CHAPTERS like number of scales, color, size, presence or absence of limbs. Also, the habitat use is quite variable; there are reptiles living in almost all the habitats of the Earth, but the majority of the species are only found in the tropical regions of the world. The West Indies is a region of special interest because of its tropical climate, the high number of species living on the islands, the high level of endemism, the high population densities of many species, and the recognized adaptive radiation that has occurred there in some genera, such as Anolis, Sphaerodactylus, and Tropidophis.
    [Show full text]
  • Wide Soouted Worm-Lizard Wilsoni Taylor (1951:548)
    42.1 REPTILIA: AMPHISBAENIA: AMPHISBAENIDAE RHINEURA GANS, CARL. 1967. Rhineura. cene of Colorado (1 on map), South Dakota (2 on map), Catalogue of American Amphibians and Reptiles, p. 42. Nebraska (3 on map), and Wyoming (4 on map). These are: Rhineura coloradensis· (Cope, 1873:19), R. hatcheri Baur (1893:998), R. sternbergi Walker (1932:225), R. hibbardi Rhineura Cope Taylor (1951:539), R. amblyceps Taylor (1951:543), and R. Wide soouted worm-lizard wilsoni Taylor (1951:548). Brattstrom (1958:43) claimed that R. amblyceps is a synonym of R. hatcheri. Kluge (in lilt., d. Rhineura Cope, 1861:75. Type-species, Lepidosternon flori• MacDonald, 1963:164) reported the discovery of a Rhineura• danum Baird, 1859, by monotypy. like species from the Arikareean of South Dakota (Miocene; • CONTENT. One recent species, R. floridana, is recognized. 5 on map) and Hecht (1959:137) reported numerous verte• Six fossil forms have been described, but their relationships are brae from the upper part of the Bridger formation (Middle Eocene) at the southern end of the Green River Basin, Wy• in question (see Fossil Record). oming (6 on map). See Gilmore (1938:13), Gilmore and • DEFINITION. Amphisbaenids with a depressed snout. The Jepsen (1945:30), Taylor (1951:523) and Galbreath (1953:8) rostral is azygous and the nostrils are positioned on the ventral for comments in these and related fossils. side of the head. There are azygous rostro-nasal, prefrontal, Vanzolini (1951b:1l6) erected the new genus Pseudo• and frontal shields in sequence along the dorsal midline of rhineura for R. minutus Gilmore (1938:12). the head.
    [Show full text]