Role of Cecr2 and Candidate Modifier Genes of Cecr2 in the Neural Tube Defect Exencephaly

Total Page:16

File Type:pdf, Size:1020Kb

Role of Cecr2 and Candidate Modifier Genes of Cecr2 in the Neural Tube Defect Exencephaly Role of Cecr2 and Candidate Modifier Genes of Cecr2 in the Neural Tube Defect Exencephaly by Renee Yvonne Marie Leduc A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular Biology and Genetics Department of Biological Sciences University of Alberta © Renee Yvonne Marie Leduc, 2015 Abstract Neurulation, the early developmental process that forms the rudiment of the brain and spinal cord, relies upon the intricate interplay of hundreds of genes in multiple genetic pathways within the appropriate environmental conditions. Neural tube defects (NTDs), common congenital birth defects in humans, arise when the process of neurulation is disrupted. Human NTDs are multifactorial disorders, which means that combinations of many genetic, epigenetic, and environmental factors interact in order for disease to manifest. Our mouse model of NTDs develops the perinatal lethal cranial NTD exencephaly (the murine equivalent of anencephaly in humans) when homozygous for a loss-of-function mutation in the ATP-dependent chromatin remodeling gene Cecr2. Much like in humans, manifestation of the exencephaly phenotype in Cecr2 mutant mice is dependent on multiple factors. Work in this thesis focused on identifying and characterizing the multifactorial nature of exencephaly in both Cecr2 mutant mice and in humans. A previously established incomplete penetrance of exencephaly in Cecr2 homozygous mutant mouse embryos is indicative of genetic and/or environmental changes that are contributing resistance to exencephaly. An updated penetrance analysis that I performed revealed a reduction in exencephaly penetrance, which demonstrated that genetic and/or environmental factors are changing over time. Previous work in our lab has shown that the penetrance of exencephaly in Cecr2 mutant mice is dependent on mouse strain, as Cecr2 mutant BALB/cCrl mice are susceptible to developing exencephaly but Cecr2 mutant FVB/N mice are resistant. This inter-strain variability suggests the presence of modifier genes, where the BALB/cCrl genetic background harbors susceptibility alleles and FVB/N harbors resistance alleles. Prior studies from the McDermid lab identified a modifier region in mouse chromosome 19 that contains at ii least two modifier loci, which contribute to the difference in exencephaly penetrance seen between Cecr2 mutant BALB/cCrl and FVB/N. I have further characterized the chromosome 19 modifier region and demonstrated that the two modifier loci are not additive, suggesting that the modifiers are involved in the same pathway or process. I then used whole exome sequencing of the two mouse strains to identify candidate modifier genes containing protein-coding variants that differed between the two strains. With this analysis, combined with previously generated data from whole genome microarrays, I produced a list of 26 candidate modifier genes that differ in expression and/or protein code between the two mouse strains. I showed via genetic analysis in the mouse that the top candidate gene, Arhgap19, is most likely not a Cecr2 modifier. The human homologue of CECR2 and the human homologues of the remaining candidate modifier genes were then sequenced in a cranial NTD cohort consisting of 156 probands. This study in humans identified protein-coding variants that were predicted to affect protein function in CECR2 and in 17 of the candidate modifier genes, as well as established DNMBP, MMS19, and TJP2 as top candidate NTD modifier genes. As an independent but related project, I also characterized a gene-environment interaction that resulted in circling behavior, a phenotype unrelated to NTDs, in male mice of a specific genetic cohort in our mouse colony. This study is the first to show that environmental enrichment in the form of running-wheels can induce abnormal behaviors in genetically susceptible mice. Additionally, I sought to characterize phenotypes due to homozygous mutation or knockdown of the Drosophila melanogaster homologue of Cecr2 (dikar) in an effort to produce a more tractable genetic model to study the molecular function of Cecr2. Results indicated that dikar is dispensible for normal fly development with no obvious phenotype due to loss of dikar. iii Overall, I have established the Cecr2 mutant mouse as a valuable model for studying the multifactorial nature of NTDs and have produced several novel candidate NTD genes in mice and humans. Important future work will be directed towards the functional characterization of protein-coding variants identified in the human cranial NTD cohort. In the event that a variant is shown to have a functional impact, expanded sequencing efforts of this variant or the gene it affects in additional NTD patients will aid in determining the relevance of such a gene in human NTD etiology. iv Preface The research project involving mice, of which this thesis is a part, received research ethics approval from the Animal Care and Use Committee of the University of Alberta, University of Alberta AUP 00000094. The research project involving human samples received research ethics approval from the University of Alberta Research Ethics Board, project name “Sequencing genes in a cohort of humans with a neural tube defect” (MS3_Pro00042452). This project was part of the larger research project at Duke University, which received research ethics approval from the Duke University Health System Institutional Review Board for Clinical Investigations, project name “Hereditary Basis of Neural Tube Defects” (CR5_Pro00016517). Some of the research conducted for this thesis has previously been published and/or has been completed in collaboration. Specific details regarding publication and collaborations for each results chapter are given in the appropriate chapter preface. v Acknowledgements First and foremost, I wish to express my sincere gratitude to my supervisor, Dr. Heather McDermid, for her unrelenting support, expertise, and patience. Her guidance and mentorship provided the foundation for all future successes in my science career. Her enthusiasm is truly contagious; it kept my passion for science alive. I could not have imagined a better mentor or lab environment for my PhD study. I would also like to extend my thanks to the rest of my thesis committee, Dr. Kirst King- Jones and Dr. Fred Berry, for their insightfulness, guidance, and encouragement. They always were quick and gracious with offering their time and expertise, which has been invaluable for my research. Much of the work in this thesis would not have been possible without the many collaborators I have had the privilege to work with. In the four short months I spent at Duke University, Dr. Allison Ashley-Koch integrated me into her lab as though I was one of her own. She was a superior mentor, and I want to thank her for sharing her immense knowledge, support and laboratory space. Dr. Simon Gregory also provided me with his unrelenting support and expertise, for which I am extremely grateful. Drs. Nicholas Katsanis and Erica Davis were so quick to offer their expertise and resources for my research project, which has led to a very fruitful collaboration for both this project and future projects. At the University of Alberta, Dr. John Locke has offered me his expertise, resources, and laboratory space since I was in undergraduate student. I have always felt like a member of his lab. I am eternally grateful for his advice, support, and mentorship. I also extend my thanks to Dr. Glen Baker, who graciously offered his time, expertise and resources as part of a collaboration. I give a special thanks to my labmates, who are also my friends. They offered much advice for my research and immeasurable support for all aspects of my life. My PhD experience would have been a shadow without them. I also extend a very heartfelt thank-you to the rest of my friends and family, who never once stopped offering their support in all my life’s endeavors. I wish to acknowledge the funding provided by the National Science and Engineering Research Council (NSERC), who supported me throughout my PhD, and with their Micheal Smith Foreign Study Scholarship (MSFSS), made my international research possible. Lastly, I offer my sincerest thanks to the patients and their families that have graciously enrolled in the Duke NTD study, without whom much of this research would not have been possible. vi Table of Contents Page # 1: General Introduction 1 1.1: Introduction 2 1.2: Neurulation 2 1.3: Open neural tube defects 8 1.4: Mice as models of neurulation and neural tube defects 17 1.5: Other models of neurulation and neural tube defects 19 1.6: ATP dependent chromatin remodeling 21 1.7: Cecr2 23 1.8: Objectives 26 2: Materials and methods 28 2.1: Mouse husbandry 29 2.2: Embryo collection and exencephaly penetrance analysis 29 2.3: Small inner ear penetrance analysis 30 2.4: DNA extraction 30 2.5: Cecr2GT45bic genotyping 31 2.6: Cecr2tm1.1Hemc genotyping 31 2.7: Sanger sequencing 32 2.8: Whole exome sequencing of BALB/cCrl and FVB/N 33 2.9: Exonic sequencing of 25 candidate NTD genes in 156 human anencephaly samples 35 2.10: LacZ staining 39 2.11: Paraffin embedding and histology of tissue samples 39 2.12: Immunofluorescence of neurulating embryos 40 2.13: Cloning of human CECR2 41 2.14: Site-directed mutagenesis of human CECR2 plasmid constructs 42 2.15: Sub-cloning human CECR2 plasmid constructs 44 2.16: HEK293 cell culture maintenance, harvest, and transfection 45 2.17: Protein extraction and quantification 47 vii Table of Contents Page
Recommended publications
  • Supplementary Data
    Supplementary Data for Quantitative Changes in the Mitochondrial Proteome from Subjects with Mild Cognitive Impairment, Early Stage and Late Stage Alzheimer’s disease Table 1 - 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Table 2 - MCI mitochondrial samples, Protein Summary Table 3 - MCI mitochondrial samples, Experiment 1 Table 4 - MCI mitochondrial samples, Experiment 2 Table 5 - MCI mitochondrial samples, Experiment 3 Table 6 - EAD Mitochondrial Study, Protein Summary Table 7 - EAD Mitochondrial Study, Experiment 1 Table 8 - EAD Mitochondrial Study, Experiment 2 Table 9 - EAD Mitochondrial Study, Experiment 3 Table 10 - LAD Mitochondrial Study, Protein Summary Table 11 - LAD Mitochondrial Study, Experiment 1 Table 12 - LAD Mitochondrial Study, Experiment 2 Table 13 - LAD Mitochondrial Study, Experiment 3 Supplemental Table 1. 112 unique, non-redundant proteins identified and quantified in at least two of the three analytical replicates for all three disease stages. Description Data MCI EAD LAD AATM_HUMAN (P00505) Aspartate aminotransferase, mitochondrial precursor (EC Mean 1.43 1.70 1.31 2.6.1.1) (Transaminase A) (Glutamate oxaloacetate transaminase 2) [MASS=47475] SEM 0.07 0.09 0.09 Count 3.00 3.00 3.00 ACON_HUMAN (Q99798) Aconitate hydratase, mitochondrial precursor (EC 4.2.1.3) Mean 1.24 1.61 1.19 (Citrate hydro-lyase) (Aconitase) [MASS=85425] SEM 0.05 0.17 0.18 Count 3.00 2.00 3.00 ACPM_HUMAN (O14561) Acyl carrier protein, mitochondrial
    [Show full text]
  • Coupling of Spliceosome Complexity to Intron Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans.
    [Show full text]
  • RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases
    G C A T T A C G G C A T genes Review RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases Amber Willbanks, Shaun Wood and Jason X. Cheng * Department of Pathology, Hematopathology Section, University of Chicago, Chicago, IL 60637, USA; [email protected] (A.W.); [email protected] (S.W.) * Correspondence: [email protected] Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity. Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however, recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and post-transcriptional levels in normal cell development and human diseases. This review will provide an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation and RNA processing, as well as translational implications in human diseases. Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain Citation: Willbanks, A.; Wood, S.; (NSUN); MYC Cheng, J.X. RNA Epigenetics: Fine-Tuning Chromatin Plasticity and Transcriptional Regulation, and the Implications in Human Diseases. Genes 2021, 12, 627.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • MUC4/MUC16/Muc20high Signature As a Marker of Poor Prognostic for Pancreatic, Colon and Stomach Cancers
    Jonckheere and Van Seuningen J Transl Med (2018) 16:259 https://doi.org/10.1186/s12967-018-1632-2 Journal of Translational Medicine RESEARCH Open Access Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large‑scale genomic databases: MUC4/MUC16/ MUC20 signature is associated with poor survival in human carcinomas Nicolas Jonckheere* and Isabelle Van Seuningen* Abstract Background: MUC4 is a membrane-bound mucin that promotes carcinogenetic progression and is often proposed as a promising biomarker for various carcinomas. In this manuscript, we analyzed large scale genomic datasets in order to evaluate MUC4 expression, identify genes that are correlated with MUC4 and propose new signatures as a prognostic marker of epithelial cancers. Methods: Using cBioportal or SurvExpress tools, we studied MUC4 expression in large-scale genomic public datasets of human cancer (the cancer genome atlas, TCGA) and cancer cell line encyclopedia (CCLE). Results: We identifed 187 co-expressed genes for which the expression is correlated with MUC4 expression. Gene ontology analysis showed they are notably involved in cell adhesion, cell–cell junctions, glycosylation and cell signal- ing. In addition, we showed that MUC4 expression is correlated with MUC16 and MUC20, two other membrane-bound mucins. We showed that MUC4 expression is associated with a poorer overall survival in TCGA cancers with diferent localizations including pancreatic cancer, bladder cancer, colon cancer, lung adenocarcinoma, lung squamous adeno- carcinoma, skin cancer and stomach cancer. We showed that the combination of MUC4, MUC16 and MUC20 signature is associated with statistically signifcant reduced overall survival and increased hazard ratio in pancreatic, colon and stomach cancer.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Interacción Célula Sinovial-Fibrina Como Mecanismo Patogénico Y Oportunidad Terapéutica En Artritis Reumatoide
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR I TESIS DOCTORAL Interacción célula sinovial-fibrina como mecanismo patogénico y oportunidad terapéutica en artritis reumatoide MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Antonio Gabucio López DIRECTORA Olga Sánchez Pernaute Madrid, 2017 © Antonio Gabucio López, 2016 Universidad Complutense de Madrid FACULTAD DE CIENCIAS QUÍMICAS TESIS DOCTORAL Interacción célula sinovial-fibrina como mecanismo patogénico y oportunidad terapéutica en artritis reumatoide PRESENTADA POR Antonio Gabucio López Facultad de Ciencias Químicas Directora Olga Sánchez Pernaute I A todos los que me han ayudado por hacer la vida más fácil y a todos los que me han “des”-ayudado por enseñarme a ser más fuerte II III AGRADECIMIENTOS A la Dra. Olga Sánchez Pernaute, directora del estudio, por su incansable apoyo y asesoramiento científico. Al doctor Gabriel Herrero-Beaumont Cuenca, jefe de servicio de reumatología de la Fundación Jiménez Díaz, por su insustituible apoyo y sin el cual, esta tesis no hubiera sido posible. A los pacientes anónimos, objeto y objetivo del estudio, sin cuya existencia y solidaridad nada de esto tendría sentido. A la Sociedad Española de Reumatología, por el apoyo prestado en el origen de este proyecto. A la Fundación Conchita Rábago de Jiménez Díaz por su soporte financiero. A todas aquellas personas que de una u otra manera han contribuido al desarrollo de esta tesis doctoral. IV V ÍNDICE RESUMEN / ABSTRACT..............................................................................................
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Aplicación De La Biología De Sistemas Al Estudio De La Malaria Y Búsqueda De Biomarcadores Y Dianas Terapéuticas
    Aplicación de la biología de sistemas al estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Autora: Mireia Ferrer Almirall Máster en Bioinformática y Bioestadística Area 1-Bioinformática farmacéutica Tutores: Melchor Sánchez Martínez y Alex Sánchez Pla Profesor responsable de la asignatura: Carles Ventura Royo 02/01/2019 Esta obra está sujeta a una licencia de Reconocimiento-NoComercial- SinObraDerivada 3.0 España de Creative Commons FICHA DEL TRABAJO FINAL Aplicación de la biología de sistemas al Título del trabajo: estudio de la malaria y búsqueda de biomarcadores y dianas terapéuticas Nombre del autor: Mireia Ferrer Almirall Melchor Sánchez Martínez y Nombre del consultor/a: Alex Sánchez Pla Nombre del PRA: Carles Ventura Royo Fecha de entrega (mm/aaaa): 01/2019 Titulación: Máster en Bioinformática y Bioestadística Área del Trabajo Final: 1-Bioinformática farmacéutica Idioma del trabajo: castellano Malaria, Biología-de-sistemas, Palabras clave dianas-terapéuticas Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de aplicación, metodología, resultados i conclusiones del trabajo. La finalidad de este trabajo es aplicar herramientas de biología de sistemas para investigar los mecanismos implicados en la infección por el parásito de la malaria e identificar posibles biomarcadores y dianas terapéuticas. Se ha partido de una serie temporal de datos de microarrays del bazo de ratones infectados con dos cepas del parásito (NL y L) para determinar los genes que se encuentran diferencialmente expresados (DEG) respecto a ratones control. A partir de las listas de DEG obtenidas, se han utilizado herramientas de biología de sistemas en combinación con análisis de significación biológica para obtener una visión integrada de los procesos biológicos que se encuentran alterados en la enfermedad e identificar posibles biomarcadores/dianas terapéuticas.
    [Show full text]
  • NIH Public Access Provided by CDC Stacks Author Manuscript Mol Genet Metab
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE NIH Public Access provided by CDC Stacks Author Manuscript Mol Genet Metab. Author manuscript; available in PMC 2013 November 01. Published in final edited form as: Mol Genet Metab. 2012 November ; 107(3): 596–604. doi:10.1016/j.ymgme.2012.09.022. Associations between maternal genotypes and metabolites implicated in congenital heart defects $watermark-text $watermark-text $watermark-text Shimul Chowdhury1,2, Charlotte A. Hobbs1, Stewart L. MacLeod1, Mario A. Cleves1, Stepan Melnyk1, S. Jill James1, Ping Hu1, and Stephen W. Erickson1,3 1Department of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, 13 Children’s Way, Slot 512, Little Rock, AR 72202, USA 2Clinical Molecular Genetics Department, Providence Sacred Heart Medical Center, 101 W. Eighth Avenue, Spokane, WA 99204, USA 3Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Arkansas Children’s Hospital Research Institute, 4301 W. Markham Street, Slot 781, Little Rock, AR 72205, USA Abstract Background—The development of non-syndromic congenital heart defects (CHDs) involves a complex interplay of genetics, metabolism, and lifestyle. Previous studies have implicated maternal single nucleotide polymorphisms (SNPs) and altered metabolism in folate-related pathways as CHD risk factors. Objective—We sought to discover associations between maternal SNPs and metabolites involved in the homocysteine, folate, and transsulfuration pathways, and determine if these associations differ between CHD cases and controls. Design—Genetic, metabolic, demographic, and lifestyle information was available for 335 mothers with CHD-affected pregnancies and 263 mothers with unaffected pregnancies.
    [Show full text]
  • Stranded DNA and Sensitizes Human Kidney Renal Clear Cell Carcinoma
    RESEARCH ARTICLE Exosome component 1 cleaves single- stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor Qiaoling Liu1†, Qi Xiao1†, Zhen Sun1†, Bo Wang2†, Lina Wang1, Na Wang1, Kai Wang1, Chengli Song1*, Qingkai Yang1* 1Institute of Cancer Stem Cell, DaLian Medical University, Dalian, China; 2Department of General Surgery, Second Affiliated Hospital, DaLian Medical University, Dalian, China Abstract Targeting DNA repair pathway offers an important therapeutic strategy for Homo sapiens (human) cancers. However, the failure of DNA repair inhibitors to markedly benefit patients necessitates the development of new strategies. Here, we show that exosome component 1 (EXOSC1) promotes DNA damages and sensitizes human kidney renal clear cell carcinoma (KIRC) cells to DNA repair inhibitor. Considering that endogenous source of mutation (ESM) constantly assaults genomic DNA and likely sensitizes human cancer cells to the inhibitor, we first analyzed the statistical relationship between the expression of individual genes and the mutations for KIRC. Among the candidates, EXOSC1 most notably promoted DNA damages and subsequent mutations via preferentially cleaving C site(s) in single-stranded DNA. Consistently, EXOSC1 was more *For correspondence: significantly correlated with C>A transversions in coding strands than these in template strands in [email protected] human KIRC. Notably, KIRC patients with high EXOSC1 showed a poor prognosis, and EXOSC1 (CS); sensitized human cancer cells to poly(ADP-ribose) polymerase inhibitors. These results show that [email protected] (QY) EXOSC1 acts as an ESM in KIRC, and targeting EXOSC1 might be a potential therapeutic strategy. †These authors contributed equally to this work Competing interests: The Introduction authors declare that no DNA damages and subsequent mutations are central to development, progression, and treatment competing interests exist.
    [Show full text]
  • The Database of Chromosome Imbalance Regions and Genes
    Lo et al. BMC Cancer 2012, 12:235 http://www.biomedcentral.com/1471-2407/12/235 RESEARCH ARTICLE Open Access The database of chromosome imbalance regions and genes resided in lung cancer from Asian and Caucasian identified by array-comparative genomic hybridization Fang-Yi Lo1, Jer-Wei Chang1, I-Shou Chang2, Yann-Jang Chen3, Han-Shui Hsu4, Shiu-Feng Kathy Huang5, Fang-Yu Tsai2, Shih Sheng Jiang2, Rajani Kanteti6, Suvobroto Nandi6, Ravi Salgia6 and Yi-Ching Wang1* Abstract Background: Cancer-related genes show racial differences. Therefore, identification and characterization of DNA copy number alteration regions in different racial groups helps to dissect the mechanism of tumorigenesis. Methods: Array-comparative genomic hybridization (array-CGH) was analyzed for DNA copy number profile in 40 Asian and 20 Caucasian lung cancer patients. Three methods including MetaCore analysis for disease and pathway correlations, concordance analysis between array-CGH database and the expression array database, and literature search for copy number variation genes were performed to select novel lung cancer candidate genes. Four candidate oncogenes were validated for DNA copy number and mRNA and protein expression by quantitative polymerase chain reaction (qPCR), chromogenic in situ hybridization (CISH), reverse transcriptase-qPCR (RT-qPCR), and immunohistochemistry (IHC) in more patients. Results: We identified 20 chromosomal imbalance regions harboring 459 genes for Caucasian and 17 regions containing 476 genes for Asian lung cancer patients. Seven common chromosomal imbalance regions harboring 117 genes, included gain on 3p13-14, 6p22.1, 9q21.13, 13q14.1, and 17p13.3; and loss on 3p22.2-22.3 and 13q13.3 were found both in Asian and Caucasian patients.
    [Show full text]