Anomalies in the Vertebral Column and Ilio-Sacral Articulation of Some Anuran Amphibians

Total Page:16

File Type:pdf, Size:1020Kb

Anomalies in the Vertebral Column and Ilio-Sacral Articulation of Some Anuran Amphibians SALAMANDRA 57(1): 53–64 Anomalies in the anuran vertebral column and ilio-sacral articulation SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Anomalies in the vertebral column and ilio-sacral articulation of some anuran amphibians Alexander Haas1, Sophie Schwippert1, Sebastian Büsse2, Thomas Kleinteich3, André Beerlink4, Jörg U. Hammel5, Stephanie Köhnk1, Stanislav Gorb2 & Karolin Engelkes1 1) Centrum für Naturkunde, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany 2) Functional Morphology and Biomechanics, Institute of Zoology, University of Kiel, Am Botanischen Garten 1–9, 24118 Kiel, Germany 3) TPW Prüfzentrum GmbH, Xantener Str. 6, 41460 Neuss, Germany 4) YXLON International GmbH, Essener Bogen 15, 22419 Hamburg 5) Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany Corresponding author: Alexander Haas, e-mail: [email protected] Manuscript received: 17 August 2020 Accepted: 20 November 2020 by Alexander Kupfer Abstract. We present accounts of vertebral anomalies in 17 individuals representing 13 species of anuran amphibians. These cases were detected while perusing a larger survey on the skeleton of frogs, for which µCT scans of a broad range of species were collected and evaluated. Our data and reports from the literature suggest that malformations, asymmetries, and irregularities, if present, appear to be particularly prevalent in the posterior region of the axial skeleton in frogs. Anomalies at the trunk-tail boundary, i.e., at the sacrum and neighbouring segments, were relatively common. Malfor- mations at the trunk-tail boundary often include sacralization of pre- and postsacral elements with asymmetrically or symmetrically developed diapophyses, fusion with the posteriormost presacral vertebra, occurrence of postsacral verte- brae, unusual transverse processes at the proximal end of the urostyle, formation of additional zygapophyses, or fusion of elements that normally articulate. Vertebral fusion in the anterior vertebral column (Presacral Vertebrae I+II) has been reported both in evolutionary context and in cases of individual developmental anomalies. Malformations in the middle section of the vertebral column, such as the case of Epidalea calamita reported herein, are rare. Key words. Amphibia, Anura, axial skeleton, pelvis, sacrum, malformation. Introduction es the articulation between the vertebral column and the pelvis. The sacral vertebra is pivotal for the function of the The anuran body plan is unique among vertebrates mak- sacro-urostylic complex (Emerson 1982). The tail vertebral ing members of the monophylum Anura easily recogniz- column is highly reduced in all extant species; only vestiges able: apart from losing the tail, the truncation of the ver- of the tail vertebrae contribute to the formation of the uro- tebral column, the reduction in the number of vertebrae, style that is otherwise an evolutionary novelty (Ročkova & the elongation of the ilia, expanded sacral diapophyses with Roček 2005, Pugener & Maglia 2009a). ventral articulation to the ilium, and the formation of the The anatomical details and the shape of the ilio-sacral urostyle are the most obvious synapomorphies in early frog joint vary among the frog lineages and are strongly cor- evolution (Shubin & Jenkins 1995, Pugener & Maglia related with a species’ specialization in locomotor mode, 2009a). Frogs are the tetrapod group with the fewest verte- such as jumping versus swimming or burrowing, as well brae. Species of the Ascaphidae and Leio pelmatidae possess as habitat choice (arboreal, fossorial, aquatic, terrestrial) nine presacral vertebrae, all other anurans have a vertebral (Emerson 1979, Jorgensen & Reilly 2013). For example, count of eight or less (Duellman & Trueb 1994). There the very wide sacral diapophyses of the sacral vertebra in is only moderate differentiation into functional groups in pipids allow for a forward sliding of the pelvis (Videler the presacral vertebral column, for example, in the size of & Jorna 1985, Cundall et al. 2017), whereas the almost vertebral transverse processes at the level of the suprascap- cylindrical diapophyses in many ranid frogs provide the ula. Presacral Vertebra I, or Presacral I for short, is the only necessary articular freedom for dorsoventral extension at neck vertebra and stands out by typically lacking transverse the initial jumping phase (Emerson 1979, 1982, Jenkins & processes (Gaupp 1896). A single sacral vertebra establish- Shubin 1998). © 2021 Deutsche Gesellschaft für Herpetologie und Terrarienkunde e.V. (DGHT), Mannheim, Germany Open access at http://www.salamandra-journal.com 53 Alexander Haas et al. Considering the crucial functional role of the verte- Sensing & Inspection Technologies GmbH Phoenix Nano- bral column, ilio-sacral articulation, and sacro-urostylic tom S or M, or a GE Sensing & Inspection Technologies complex, one would expect that mutational malforma- GmbH Phoenix v|tome|x L 450. Depending on the size of tions of the skeleton were strongly selected against in evo- the specimen, the scanning parameters were set appropri- lution and should be rare in nature (Zamora-Camacho ately (Supplementary document S1). Volumes were recon- & Aragón 2019). Congenital skeletal anomalies, however, structed from X-ray projections using the software deliv- can have many different causes other than genetic muta- ered with the respective scanner. The resulting voxel size tions. Particularly in organisms that complete a substan- ranged from 11.87–106.01 µm, depending on the specimen tial part of their skeletal development during larval life and size and CT system used. metamorphosis, when they can be exposed to teratogens in Amira 6.0.1. software (Thermo Fisher Scientific) was the environment. Recently, Ouellet (2000) and Henle & used to visualize and inspect µCT volumes. For each avail- Dubois (2017) have assessed amphibian anomalies in gen- able µCT image stack an Isosurface of the calcified tissues eral. These hitherto most extensive compilations and eval- (i.e., bones and calcified cartilage) was generated for in- uations of published reports cover anomalies in colour pat- spection. If the specimen showed anomalies in the verte- tern and morphology, and review hypotheses about causes bral column or the ilio-sacral articulation, relevant skele- of such pathologies. Specific skeletal abnormalities, how- tal structures were segmented with Amira’s Segmentation ever, have been covered only marginally apart from exter- Editor (Brush and Magic Wand tools). As this study fo- nal features of general limb or body deformations. Henle cuses on the vertebral column and sacral structures, only & Dubois (2017) provided a glossary, specific cases, and affected skeletal elements were accurately separated dur- general methodological recommendations. ing segmentation; cruder segmentation methods were ap- In a different project on skeletal features of the shoulder plied in other areas of the skeleton. Because cartilage does girdle (Engelkes et al. 2020), we had access to and exam- not visualize reliably in µCT datasets of plain specimens ined micro-computed tomography (µCT) scans of a broad and because it does not contribute additional aspects to taxonomic sample of anuran amphibians. During the ex- the phenomena treated herein, cartilage tissue was gener- amination we recognized several individuals with verte- ally neglected for this study; only calcified cartilage was oc- bral and sacral malformations or anomalies compared to casionally segmented and visualized in skeletal parts that conspecifics or congeners. Various categories of vertebral were unaffected by malformations if its grey values fell anomalies have been described before (Madej 1965). We within the range of bone grey values. Segmented skeletons classify vertebral malformations herein, first, as any asym- were exported with the mulitExport macro (Engelkes et metry that was so substantial that it could be detected visu- al. 2018) as polymesh surfaces (.obj format) and, if neces- ally even without further measurement, such as much in- sary, further processed in MeshLab 1.3.3 (Cignoni et al. flated or present processes on only one side. In specimens 2008); specifically, Quadric Edge Collapse Decimation and that could be considered normal, in contrast, asymmetries Taubin Smooth procedures were applied in MeshLab to re- were not perceivable. A second category of anomalies does duce the number of polygons and to smooth the surfaces not involve asymmetry but the fusion of consecutive ver- while still preserving the original surface as well as pos- tebral structures. Third, supernumerary elements can be sible. Next, the surfaces were imported into various ver- present. Sometimes a combination of these major types of sions of Modo (7–13; The Foundry Visionmongers Ltd.) for malformations can occur in the same specimen. In the fol- subtle further smoothing (if necessary), topology hole fill- lowing we describe the osteological malformations of the ing, assigning colours (malformations red; corresponding vertebral column and ilio-sacral articulation present in structures without indication of malformation green, all specimens examined. Providing a comprehensive compila- other skeletal parts grey), and final rendering (Dome Light tion on the topic is beyond the scope of this work, but by and Directional Light). Colour plates were arranged using reporting the phenomenology of some new cases of axial Graphic 3.1 (Picta Inc.)
Recommended publications
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Amphibian Ark Conservation Needs Assessment, Philippines, July 2014 Page 1
    Amphibian Ark Conservation Needs Assessment, Philippines, July 2014 Page 1 Species suited to Conservation Education 42 species Species that are specifically selected for management – primarily in zoos and aquariums - to inspire and increase knowledge in visitors, in order to promote positive behavioural change. For example, when a species is used to raise financial or other support for field conservation projects (this would include clearly defined ‘flagship’ or ‘ambassador’ species). Phylogenetic Cultural/socio-economic Scientific Education Species Biological Distinctiveness significance importance Importance potential Sanguirana everetti 8.659490771 No aspect of biology known to be No No research dependent on this Yes exceptional species Research into availability of founders needs to be prioritised. Known in the area it was first collected like Mt. Apo. Threat: Habitat loss. It is not seen in great numbers anymore in Mindanao and chytrid may already affected them – hard hit (Diesmos). New genetic data suggest that real S. everetti is a SW Mindanao species...not sure what the Apo population would be since it has not be included in a phylogenetic study (Brown). No inferences can be made on the basis of habitat or forest cover. Need actual surveys of populations (Brown). Recommended to be listed as Data Deficient, for its distribution. Data Deficient because no studies can be conducted in that region due to security issues (Brown). Hylarana similis 7.692704126 No aspect of biology known to be No No research dependent on this Yes exceptional species Chytrid infected, effects cannot be reversed in time, high priority, but (Diesmos) they are quiet common on other mountain areas in Luzon, one of the hardest hit frog.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Skeletal System? Skeletal System Chapters 6 & 7 Skeletal System = Bones, Joints, Cartilages, Ligaments
    Warm-Up Activity • Fill in the names of the bones in the skeleton diagram. Warm-Up 1. What are the 4 types of bones? Give an example of each. 2. Give 3 ways you can tell a female skeleton from a male skeleton. 3. What hormones are involved in the skeletal system? Skeletal System Chapters 6 & 7 Skeletal System = bones, joints, cartilages, ligaments • Axial skeleton: long axis (skull, vertebral column, rib cage) • Appendicular skeleton: limbs and girdles Appendicular Axial Skeleton Skeleton • Cranium (skull) • Clavicle (collarbone) • Mandible (jaw) • Scapula (shoulder blade) • Vertebral column (spine) • Coxal (pelvic girdle) ▫ Cervical vertebrae • Humerus (arm) ▫ Thoracic vertebrae • Radius, ulna (forearm) ▫ Lumbar vertebrae • Carpals (wrist) • Metacarpals (hand) ▫ Sacrum • Phalanges (fingers, toes) ▫ Coccyx • Femur (thigh) • Sternum (breastbone) • Tibia, fibula (leg) • Ribs • Tarsal, metatarsals (foot) • Calcaneus (heel) • Patella (knee) Functions of the Bones • Support body and cradle soft organs • Protect vital organs • Movement: muscles move bones • Storage of minerals (calcium, phosphorus) & growth factors • Blood cell formation in bone marrow • Triglyceride (fat) storage Classification of Bones 1. Long bones ▫ Longer than they are wide (eg. femur, metacarpels) 2. Short bones ▫ Cube-shaped bones (eg. wrist and ankle) ▫ Sesamoid bones (within tendons – eg. patella) 3. Flat bones ▫ Thin, flat, slightly curved (eg. sternum, skull) 4. Irregular bones ▫ Complicated shapes (eg. vertebrae, hips) Figure 6.2 • Adult = 206 bones • Types of bone
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • Glossary of Basic Orthotic & Prosthetic Terminology
    Glossary Abduction Moving away from midline. Abductor Muscle involved in active abduction. Acetabulum Socket in pelvis, which receives head of femur. Achilles Tendon Prominent cord at posterior aspect of ankle. Adduction Move toward midline. The position of the components of a prosthesis or orthosis in space Alignment relative to each other and to the patient. Reference position of the body permitting description of location and movements. The individual is standing erect. Head facing forward. Arms Anatomic Position Parallel to the trunk, straight at the sides. Forearms and hands positioned so the palms face forward. Legs straight. Feet parallel to each other. Anterior Toward the front. Not symmetrical; denoting a lack of symmetry between two or more like Asymmetrical parts. The degeneration, or shrinking of a muscle due to lack of use, such as Atrophy in an amputation. Axis Imaginary line passing through center of joint; pivot point. Assembly and alignment of the components of a prosthesis or orthosis Bench alignment using only previously acquired data regarding the patient. Two sides; used to describe an amputee missing both left and right Bilateral extremities. A shell composed of two separate parts that open and shut; used to Bi-valve describe many braces that have two halves; clamshell. Light bulb shaped; circumference small on one end growing larger at Bulbous the bulbous end. CG Center of Gravity. Calcaneus Heel bone Calcification Building up of calcium deposits; bone. Callus Thickening of skin. Carpal The wrist bones and their associated soft parts. Process of modifying the positive model obtained by filling an Cast modification impression in order to obtain a shape which specifies the whole, or part, of the form of the final prosthesis or orthosis.
    [Show full text]
  • Vertebral Column
    Vertebral Column • Backbone consists of Cervical 26 vertebrae. • Five vertebral regions – Cervical vertebrae (7) Thoracic in the neck. – Thoracic vertebrae (12) in the thorax. – Lumbar vertebrae (5) in the lower back. Lumbar – Sacrum (5, fused). – Coccyx (4, fused). Sacrum Coccyx Scoliosis Lordosis Kyphosis Atlas (C1) Posterior tubercle Vertebral foramen Tubercle for transverse ligament Superior articular facet Transverse Transverse process foramen Facet for dens Anterior tubercle • Atlas- ring of bone, superior facets for occipital condyles. – Nodding movement signifies “yes”. Axis (C2) Spinous process Lamina Vertebral foramen Transverse foramen Transverse process Superior articular facet Odontoid process (dens) •Axis- dens or odontoid process is body of atlas. – Pivotal movement signifies “no”. Typical Cervical Vertebra (C3-C7) • Smaller bodies • Larger spinal canal • Transverse processes –Shorter – Transverse foramen for vertebral artery • Spinous processes of C2 to C6 often bifid • 1st and 2nd cervical vertebrae are unique – Atlas & axis Typical Cervical Vertebra Spinous process (bifid) Lamina Vertebral foramen Inferior articular process Superior articular process Transverse foramen Pedicle Transverse process Body Thoracic Vertebrae (T1-T12) • Larger and stronger bodies • Longer transverse & spinous processes • Demifacets on body for head of rib • Facets on transverse processes (T1-T10) for tubercle of rib Thoracic Vertebra- superior view Spinous process Transverse process Facet for tubercle of rib Lamina Superior articular process
    [Show full text]
  • OP-MOLB160269 Online 744..771
    Evolutionary History of the Asian Horned Frogs (Megophryinae): Integrative Approaches to Timetree Dating in the Absence of a Fossil Record Stephen Mahony,*,1,2 Nicole M. Foley,1 S.D. Biju,2 and Emma C. Teeling*,1 1School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland 2Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi, India *Corresponding authors: E-mails: [email protected]; [email protected]. Associate editor: Beth Shapiro Abstract Downloaded from https://academic.oup.com/mbe/article-abstract/34/3/744/2919384 by guest on 06 August 2019 Molecular dating studies typically need fossils to calibrate the analyses. Unfortunately, the fossil record is extremely poor or presently nonexistent for many species groups, rendering such dating analysis difficult. One such group is the Asian horned frogs (Megophryinae). Sampling all generic nomina, we combined a novel 5 kb dataset composed of four nuclear and three mitochondrial gene fragments to produce a robust phylogeny, with an extensive external morpho- logical study to produce a working taxonomy for the group. Expanding the molecular dataset to include out-groups of fossil-represented ancestral anuran families, we compared the priorless RelTime dating method with the widely used prior-based Bayesian timetree method, MCMCtree, utilizing a novel combination of fossil priors for anuran phylogenetic dating. The phylogeny was then subjected to ancestral phylogeographic analyses, and dating estimates were compared with likely biogeographic vicariant events. Phylogenetic analyses demonstrated that previously proposed systematic hypotheses were incorrect due to the paraphyly of genera. Molecular phylogenetic, morphological, and timetree results support the recognition of Megophryinae as a single genus, Megophrys, with a subgenus level classification.
    [Show full text]
  • Philippine Amphibians and Reptiles: an Overview of Species Diversity, Biogeography, and Conservation
    1 Philippine Amphibians and Reptiles: An Overview of Species Diversity, Biogeography, and Conservation Arvin C. Diesmos, Rafe M. Brown , Angel C. Alcala!, Rogelio V. Sison", Leticia E. Afuang#, and Genevieve V. A. Gee$ Biological Sciences Department, College of Science, De La Salle University-Dasmariñas, 4115 Dasmariñas, Cavite, Philippines; Section of Integrative Biology and Texas Memorial Museum, University of Texas, Austin, TX 78712, USA; !Silliman University- Angelo King Center for Research and Environmental Management, SU Marine Laboratory, 6200 Dumaguete City, Philippines; "Herpetology Section, Zoology Division, Philippine National Museum, Padre Burgos Street, 1000 Manila, Philippines; #Conservation International-Philippines, Philam Homes, 1104 Quezon City, Philippines; $Haribon Foundation, Teachers Village, 1101 Quezon City, Philippines 6he Philippine Archipelago is home to a spec- flat-headed frog (Barbourula busuangensis), a fully tacular and diverse assemblage of amphibians and rep- aquatic species inhabiting unpolluted mountain streams tiles. Situated at the interface between the Oriental and and rivers of Palawan. It is one of the only two known Australian faunal zones, the herpetofauna of this largely species of this genus. Frogs of the genus Platymantis oceanic island archipelago has captured the attention are the most diverse; the number of Philippine species and imagination of systematists and biogeographers for currently stands at 26 but dozens of newly discovered nearly 200 years. Previously thought of as having a species are still awaiting description. depauperate herpetofauna, the Philippine archipelago is now recognized as one of the most important center The fauna includes four species of frogs that have of herpetofaunal diversity in Southeast Asia. Informa- been introduced by man either intentionally (Bufo tion generated from recent field surveys coupled with marinus, Hoplobatrachus rugulosus, Rana catesbeiana) analyses of available data on diversity, points to over- or inadvertently (Rana erythraea).
    [Show full text]
  • Cervical Vertebrae 1 Cervical Vertebrae
    Cervical vertebrae 1 Cervical vertebrae Cervical vertebrae or Cervilar Position of human cervical vertebrae (shown in red). It consists of 7 bones, from top to bottom, C1, C2, C3, C4, C5, C6 and C7. A human cervical vertebra Latin Vertebrae cervicales [1] Gray's p.97 [2] MeSH Cervical+vertebrae [3] TA A02.2.02.001 [4] FMA FMA:72063 In vertebrates, cervical vertebrae (singular: vertebra) are those vertebrae immediately inferior to the skull. Thoracic vertebrae in all mammalian species are defined as those vertebrae that also carry a pair of ribs, and lie caudal to the cervical vertebrae. Further caudally follow the lumbar vertebrae, which also belong to the trunk, but do not carry ribs. In reptiles, all trunk vertebrae carry ribs and are called dorsal vertebrae. In many species, though not in mammals, the cervical vertebrae bear ribs. In many other groups, such as lizards and saurischian dinosaurs, the cervical ribs are large; in birds, they are small and completely fused to the vertebrae. The transverse processes of mammals are homologous to the cervical ribs of other amniotes. Cervical vertebrae 2 In humans, cervical vertebrae are the smallest of the true vertebrae, and can be readily distinguished from those of the thoracic or lumbar regions by the presence of a foramen (hole) in each transverse process, through which passes the vertebral artery. The remainder of this article focuses upon human anatomy. Structure By convention, the cervical vertebrae are numbered, with the first one (C1) located closest to the skull and higher numbered vertebrae (C2-C7) proceeding away from the skull and down the spine.
    [Show full text]
  • The Conservation Status of Biological Resources in the Philippines
    : -.^,rhr:"-i-3'^^=£#?^-j^.r-^a^ Sj2 r:iw0,">::^^'^ \^^' Cfl|*ti-»;;^ THE CONSERVATION STATUS OF BIOLOGICAL RESOURCES IN THE PHILIPPINES A RRF'OHT V^Y THK lUCN CONSKRVATION MONITORING CENT:-!E PfcparGd by Roger Cox for the lnLf5rnaLion?.l InsLituLo Cor Knvironment and Development (IIED) February 1988 / fgrMsa^jnt-^'-agyga-- •r-r- ;.«-'> t ^-' isr* 1*.- i^^s. , r^^, ^».|;; ^b-^ ^.*%-^ *i,r^-v . iinnc [ '»/' C'A'. aSM!': Vi - '«.;s^ ; a-* f%h '3;riti7;.:- n'^'ji K ;ii;!'r ' <s:ii.uiy.. viii. K A xo.^ jf^'r;.' 3 10 ciJuJi i\ Ji\{ :::) Jnj:kf- .i. n ( im'.i) •V'lt r'v - -V.-^f~^?fl LP-ife- f^^ s.:.... --11 -^M.jj^^^ riB CC./Sfc^RvAriON .<*TC.rj^. OF EI3U:i' "I.VJ, JbO'TSOURCES ^^a THE PHILIPPlVl'fC ;j^...^..-r'^^ I ilRPOHT BY THK ILCJJ CGJJSIiKVA'ilCN M0N:.V:..):;1NG CKNT ^ Pc'jpas-fjr' ')y Roto* C(/X for the TiKD). {'obruary 1988 Digitized by the Internet Archive in 2010 with funding from UNEP-WCIVIC, Cambridge http://www.archive.org/details/conservationstat88coxr . 7' CONTENTS List of Figures, Appendices and Tables iii Summary iy Acknowledgements vii 1 INTRODUCTION 1.1 Background 1 1.2 Objectives 3 2 METHODS 4 3. FLORA, VEGETATION AND FOREST COVER 3.1 Description of the natural vegetation 4 3.1.1 The forests 4 3.1.2 Other vegetation types 7 3 2 Conservation status of the Philippine flora 8 3.2.1 Introduction 8 3.2.2 Causes of habitat destruction 9 3.2.3 Threatened plant species 11 3. 2. A Centres of plant diversity and endemism 12 4 COASTAL AND MARINE ECOSYSTEMS 4.1 Background 17 4.2 Mangroves 18 4.3 Coral reefs 19 4.4 Seagrass beds 22 5.
    [Show full text]
  • Clinical Anatomy of the Female Pelvis 1
    Clinical Anatomy of the Female Pelvis 1 Clinical Anatomy of the Female Pelvis 1 Helga Fritsch CONTENTS 1.1 Introduction 1.1 Introduction 1 1.2 Morphological and The pelvic fl oor constitutes the caudal border of the Clinical Subdivision of the Female Pelvis 1 human’s visceral cavity. It is characterized by a com- plex morphology because different functional systems 1.3 Compartments 7 join here. A clear understanding of the pelvic anatomy 1.3.1 Posterior Compartment 7 1.3.1.1 Connective Tissue Structures 7 is crucial for the diagnosis of female pelvic diseases, for 1.3.1.2 Muscles 10 female pelvic surgery as well as for fundamental mech- 1.3.1.3 Reinterpreted Anatomy and anisms of urogenital dysfunction and treatment. Clinical Relevance 12 Modern imaging techniques are used for the diag- 1.3.1.4 Important Vessels, Nerves and Lymphatics of the Posterior Compartment: 13 nosis of pelvic fl oor or sphincter disorders. Further- 1.3.2 Anterior Compartment 14 more, they are employed to determine the extent of 1.3.2.1 Connective Tissue Structures 14 pelvic diseases and the staging of pelvic tumors. In 1.3.2.2 Muscles 15 order to be able to recognize the structures seen on 1.3.2.3 Reinterpreted Anatomy and CT and MRI as well as on dynamic MRI, a detailed Clinical Relevance 16 1.3.2.4 Important Vessels, Nerves and Lymphatics knowledge of the relationship of the anatomical enti- of the Anterior Compartment: 16 ties within the pelvic anatomy is required. 1.3.3 Middle Compartment 17 The Terminologia Anatomica [15] contains a mix- 1.3.3.1 Connective Tissue Structures 17 ture of old and new terms describing the different 1.3.3.2 Muscles 17 structures of the pelvis.
    [Show full text]