The Vertebral Column Is 33 Vertebrae Held Together by Ligaments and Muscles, with Intervertebral Discs in Between

Total Page:16

File Type:pdf, Size:1020Kb

The Vertebral Column Is 33 Vertebrae Held Together by Ligaments and Muscles, with Intervertebral Discs in Between The vertebral column is 33 vertebrae held together by ligaments and muscles, with intervertebral discs in between. The vertebral column provides support and upright posture (attenuates loads) for the body. It is also a site for many muscle attachments. There are natural curves in the spine to help with the support and posture, as well as increasing the flexibility of the spine. The 33 vertebrae are divided into 5 sections, with each group having unique features designed for specific purposes. The groups are: cervical (7), thoracic (12), lumbar (5), sacrum (5), and coccyx (4). All vertebrae have a body, 2 transverse processes, a spinous process, superior/inferior articulating facets, lamina, pedicle, and a vertebral foramen. 1 There are anterior convex curves in the cervical and lumbar spines. Posterior concave curves occur in the thoracic and sacral-coccygeal spines. The curves of the spine may increase/decrease as the body’s center of gravity shifts (ex: pregnancy, weight gain/loss, trauma)—this is a result of trying to maintain in the upright position, the brain over the body’s center of gravity. 2 Scoliosis—excessive lateral curvature; side to side Kyphosis—hunchback; excessive curvature of thoracic Lordosis—swayback ; excessive curvature of lumbar 3 C1 and C2 are shaped differently than the other 5 cervical vertebrae to permit the head to rotate. C1 (atlas) = holds up the world (head) and is missing a body; it articulates with the occipital bone as well as rotating around the odontoid process (dens) of the C2 vertebrae (atlantoaxial joint). The atlantoaxial joint is what type of joint?? C2 (axis) = odontoid process projects up C3-C7 = the body is small and all the processes are short and blunted. Their spinous processes are bifircated (split) to provide passage of blood vessels and the transverse processes have holes in it (transverse foramen) where spinal nerves exit. 4 Be able to identify these landmarks Pedicle = connects the body to the transverse process Lamina = connects the transverse process to the spinous process Vertebral Foramen = where the spinal cord goes 5 *Identify which vertebrae is the atlas and which vertebrae is the axis* The bottom 2 vertebrae are C3 (smaller one) and C7 (the bigger one). Intervertebral Foramen = hole in between 2 vertebrae that allows nerves to leave the spine and go to other parts of the body Superior Articulating Facet = facet that projects upward Inferior Articulating Facet = facet that projects downwards *What type of joint are facets???? 6 Atlantoccipital joint is a condyloid joint. Atlantoaxial joint is what kind of joint again??? 7 Thoracic vertebrae are thicker and bigger than cervical vertebrae. They have a bigger body and the spinous process is longer and projects downward at a sharp angle. The facets are grooved out more and easier to see and there is also a groove on the transverse processes. Why would there be a groove there??? The groove is for the ribs. It’s where the ribs come around and articulate with the vertebral column. These notches provide the articulation of the 12 pairs of ribs with the 12 thoracic vertebrae. 8 The lumbar vertebrae are the largest vertebrae. Lumbar vertebrae are different from the thoracic by the body being even thicker. The reason for that is the lumbar region is in the lower back and so it has to bear a lot more of the weight from the body. Therefore, the body is thicker to deal with that extra load. The lumbar vertebrae also has a short and stubby spinous process. 9 Be sure to identify all of the landmarks and to know the differences between the 3 vertebrae regions: cervical, thoracic, and lumbar. 10 This website can be a good review as you learn the different landmarks. It will also be helpful when we go over all of the bones. 11 Ligamentum nuchae helps sustain the weight of the head in animals and helps restore the head to its normal position. The longitudinal ligaments are also known as the interbody ligaments. The Anterior Longitudinal Ligament runs along the anterior aspect of the body of all 33 vertebrae. It is structurally the weakest of all the spinal column ligaments and it limits hyperextension of the head/neck. So if you get bad whiplash from a car accident, you probably severely stretched or tore your anterior longitudinal ligament during the hyperextension of the neck as your head whipped back. The Posterior Longitudinal Ligament runs along the posterior aspect of the bodies of all 33 vertebrae. It helps form the anterior wall of the spinal canal and it limits flexion of the head/neck. 12 More movement is allowed in the cervical and lumbar regions, whereas movement is more restricted in the thoracic region due to the ribs. 13 Intervertebral discs are cartilaginous and help absorb shock in between the vertebrae as well as separating them to allow nerve roots to pass from the spinal canal to other parts in the body. You have a herniated disc when the inner nucleus pulposus bulges out through the outer layer (annulus fibrosus). Low back pain and motion restriction is usually associated with a herniated intervertebral disc. In your lumbar region, about L4-L5, you have a big important nerve called the sciatic nerve. If a herniated disc bulges out in that region and hits the sciatic nerve, an acute lower back pain radiates down the posterolateral aspect of the thigh. 14 15 16 Spinal nerves innervating the musculature are formed into plexuses, or a network of nerves. Nerves that innervate the head and cervical spine come from the cervical plexus. The phrenic nerve innervates the diaphragm and allows us to breathe. The brachial plexus innervates the upper extremities and the lumbar, etc. innervate the lower extremities. 17 18 The thorax creates a large compartment called the thoracic cavity (chest cavity), which houses the lungs and heart. The manubrium is the top upside-down shaped triangle of the sternum. The top notch of the top part of the manubrium is called the suprasternal notch (also called the jugular notch) and the palpable horizontal ridge connecting the manubrium to the body is called the sternal angle. The sternal angle is a reference point for locating the 2nd rib and for listening to heart valve sounds with a stethoscope. The xiphoid process is the bottom point of the sternum and is a reference point for CPR compressions. 19 Costochondral Joint = where the rib and cartilage come together Costosternal Joint= where the ribs/cartilage meet the sternum **The ribs are connected to the sternum by cartilage which helps make the ribs more flexible for breathing. True ribs have a direct connection to the sternum. False ribs have an indirect connection because they attach jointly with the cartilage to the sternum. The floating ribs don’t attach to the sternum at all. 20 The inner walls of the chest cavity and linings of the lungs create a vacuum, and movement of the thorax creates changes in pressure within the chest cavity, which causes air to enter into and be expelled from the lungs. Movement at the joints of the thorax allows for the expansion and contraction of the thoracic cavity, and muscles attached to these bones create that movement, which will be discussed in Unit 2. 21 The head articulates with the bodies of 2 thoracic vertebrae. Remember there are 12 thoracic vertebrae and 12 pairs of ribs…The tubercle on the rib articulates on the groove of the transverse process of the vertebrae. And the anterior end is where the costal cartilage connects. Therefore, the ribs articulate posteriorly with the thoracic vertebrae and anteriorly with the sternum. The rib cage is important because it is made up of 12 vertebrae, 24 ribs, and a breastbone (made up of 3 parts) that all helps to protect the heart and lungs from knocks and bumps. 22 The head articulates with the thoracic vertebrae. 23 24 Adequate pain control is important so you can breathe deeply and avoid lung complications. If you don’t breathe deep enough because it hurts, mucus and moisture build up in the lungs and lead to infections such as pneumonia. Pneumothorax can result as well which is when your lungs collapse. Fracture of the last 2 ribs (your floating ribs) can cause damage to your kidneys, liver, and spleen. 25 .
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Netter's Musculoskeletal Flash Cards, 1E
    Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected].
    [Show full text]
  • Basic Biomechanics
    Posture analysis • A quick evaluation of structure and function • Doctor views patient from behind (P-A) and from the side (lateral) • References points of patient’s anatomy relative to plumb (a position of balance) 9/3/2013 1 Posture analysis • Lateral View – Knees (anterior, posterior, plumb, genu recurvatum) – Trochanter (anterior, posterior, plumb) – Pelvis (anterior, posterior, neutral pelvic tilt) – Lumbar lordosis (hypo-, hyper-, normal) – Mid-axillary line (anterior, posterior, plumb) – Thoracic kyphosis (hyp-, hyper- normal) – Acromion (anterior, posterior, plumb) – Scapulae (protracted, retracted, normal) – Cervical lordosis (hypo-, hyper-, normal) – External auditory meatus (anterior, posterior, plumb) – Occiput (extended, neutral, flexed) 9/3/2013 2 Posture analysis • Posterior – Anterior View – Feet (pronation, supination, normal) – Achilles tendon (bowed in/out, normal) – Knees (genu valga/vera, normal - internal/external rotation) – Popliteal crease heights (low, high, level) – Trochanter heights (low, high, level) – Iliac crest heights (low on the right/left, normal) – Lumbar scoliosis (right/left, or no signs of) – Thoracic scoliosis (right/left, or no signs of) – Shoulder level (low on the right/left, or normal) – Cervical scoliosis (right/left, or no signs of) – Cervical position (rotation, tilt, neutral) – Mastoid (low on the right/left, or normal) 9/3/2013 3 …..poor postures 9/3/2013 4 Functional Anatomy of the Spine • The vertebral curvatures – Cervical Curve • Anterior convex curve (lordosis) develop in infancy
    [Show full text]
  • Skeletal System? Skeletal System Chapters 6 & 7 Skeletal System = Bones, Joints, Cartilages, Ligaments
    Warm-Up Activity • Fill in the names of the bones in the skeleton diagram. Warm-Up 1. What are the 4 types of bones? Give an example of each. 2. Give 3 ways you can tell a female skeleton from a male skeleton. 3. What hormones are involved in the skeletal system? Skeletal System Chapters 6 & 7 Skeletal System = bones, joints, cartilages, ligaments • Axial skeleton: long axis (skull, vertebral column, rib cage) • Appendicular skeleton: limbs and girdles Appendicular Axial Skeleton Skeleton • Cranium (skull) • Clavicle (collarbone) • Mandible (jaw) • Scapula (shoulder blade) • Vertebral column (spine) • Coxal (pelvic girdle) ▫ Cervical vertebrae • Humerus (arm) ▫ Thoracic vertebrae • Radius, ulna (forearm) ▫ Lumbar vertebrae • Carpals (wrist) • Metacarpals (hand) ▫ Sacrum • Phalanges (fingers, toes) ▫ Coccyx • Femur (thigh) • Sternum (breastbone) • Tibia, fibula (leg) • Ribs • Tarsal, metatarsals (foot) • Calcaneus (heel) • Patella (knee) Functions of the Bones • Support body and cradle soft organs • Protect vital organs • Movement: muscles move bones • Storage of minerals (calcium, phosphorus) & growth factors • Blood cell formation in bone marrow • Triglyceride (fat) storage Classification of Bones 1. Long bones ▫ Longer than they are wide (eg. femur, metacarpels) 2. Short bones ▫ Cube-shaped bones (eg. wrist and ankle) ▫ Sesamoid bones (within tendons – eg. patella) 3. Flat bones ▫ Thin, flat, slightly curved (eg. sternum, skull) 4. Irregular bones ▫ Complicated shapes (eg. vertebrae, hips) Figure 6.2 • Adult = 206 bones • Types of bone
    [Show full text]
  • Anatomical Study of the Superior Cluneal Nerve and Its Estimation of Prevalence As a Cause of Lower Back Pain in a South African Population
    Anatomical study of the superior cluneal nerve and its estimation of prevalence as a cause of lower back pain in a South African population by Leigh-Anne Loubser (10150804) Dissertation to be submitted in full fulfilment of the requirements for the degree Master of Science in Anatomy In the Faculty of Health Science University of Pretoria Supervisor: Prof AN Van Schoor1 Co-supervisor: Dr RP Raath2 1 Department of Anatomy, University of Pretoria 2 Netcare Jakaranda Hospital, Pretoria 2017 DECLARATION OF ORIGINALITY UNIVERSITY OF PRETORIA The Department of Anatomy places great emphasis upon integrity and ethical conduct in the preparation of all written work submitted for academic evaluation. While academic staff teach you about referencing techniques and how to avoid plagiarism, you too have a responsibility in this regard. If you are at any stage uncertain as to what is required, you should speak to your lecturer before any written work is submitted. You are guilty of plagiarism if you copy something from another author’s work (e.g. a book, an article, or a website) without acknowledging the source and pass it off as your own. In effect, you are stealing something that belongs to someone else. This is not only the case when you copy work word-for-word (verbatim), but also when you submit someone else’s work in a slightly altered form (paraphrase) or use a line of argument without acknowledging it. You are not allowed to use work previously produced by another student. You are also not allowed to let anybody copy your work with the intention of passing if off as his/her work.
    [Show full text]
  • MULTIPLE OSSIFIED COSTAL CARTILAGES for 1ST RIB Raghavendra D.R
    International Journal of Anatomy and Research, Int J Anat Res 2014, Vol 2(4):744-47. ISSN 2321- 4287 Case Report DOI: 10.16965/ijar.2014.538 MULTIPLE OSSIFIED COSTAL CARTILAGES FOR 1ST RIB Raghavendra D.R. *1, Nirmala D 2. *1 Post graduate student, Department of anatomy, J J M Medical College, Davangere, Karnataka, India. 2 Associate Professor, Department of anatomy, J J M Medical College, Davangere, Karnataka, India. ABSTRACT Costal cartilages are flattened bars of hyaline cartilages. All ribs except the last two, join with the sternum through their respective costal cartilages directly or indirectly. During dissection for 1st MBBS students in the Department of Anatomy, JJMMC, Davangere, variation was found in a male cadaver aged 45 –50 years. Multiple ossified costal cartilages for 1st rib were present on left side. There were 3 costal cartilages connecting 1st rib to manubrium. There were two small intercostal spaces between them. The lower two small costal cartilages fused together to form a common segment which in turn fused with large upper costal cartilage. The large upper costal cartilage forms costochondral joint with 1st rib. All costal cartilages showed features of calcification. The present variation of multiple ossified costal cartilages are due to bifurcation of costal cartilage. It may cause musculoskeletal pain, intercostal nerve entrapment or vascular compression. Awareness of these anomalies are important for radiologists for diagnostic purpose and for surgeons for performing various clinical and surgical procedures. KEYWORDS: Costal cartilage, bifurcation of Rib, Sternum. Address for Correspondence: Dr. Raghavendra D.R. Post graduate student, Department of anatomy, J J M Medical College, Davangere, 577004, Karnataka, India.
    [Show full text]
  • Glossary of Basic Orthotic & Prosthetic Terminology
    Glossary Abduction Moving away from midline. Abductor Muscle involved in active abduction. Acetabulum Socket in pelvis, which receives head of femur. Achilles Tendon Prominent cord at posterior aspect of ankle. Adduction Move toward midline. The position of the components of a prosthesis or orthosis in space Alignment relative to each other and to the patient. Reference position of the body permitting description of location and movements. The individual is standing erect. Head facing forward. Arms Anatomic Position Parallel to the trunk, straight at the sides. Forearms and hands positioned so the palms face forward. Legs straight. Feet parallel to each other. Anterior Toward the front. Not symmetrical; denoting a lack of symmetry between two or more like Asymmetrical parts. The degeneration, or shrinking of a muscle due to lack of use, such as Atrophy in an amputation. Axis Imaginary line passing through center of joint; pivot point. Assembly and alignment of the components of a prosthesis or orthosis Bench alignment using only previously acquired data regarding the patient. Two sides; used to describe an amputee missing both left and right Bilateral extremities. A shell composed of two separate parts that open and shut; used to Bi-valve describe many braces that have two halves; clamshell. Light bulb shaped; circumference small on one end growing larger at Bulbous the bulbous end. CG Center of Gravity. Calcaneus Heel bone Calcification Building up of calcium deposits; bone. Callus Thickening of skin. Carpal The wrist bones and their associated soft parts. Process of modifying the positive model obtained by filling an Cast modification impression in order to obtain a shape which specifies the whole, or part, of the form of the final prosthesis or orthosis.
    [Show full text]
  • Required List of Bones and Markings
    REQUIRED LIST OF BONES AND MARKINGS Axial Skeleton Skull Cranial Bones (8) Frontal Bone (1) Supraorbital foramina Supraorbital ridges or margins Parietal Bones (2) Temporal Bones (2) External auditory meatus Mastoid process Styloid process Zygomatic process Mandibular fossa Foramen lacerum Carotid foramen Jugular foramen Stylomastoid foramen Internal auditory meatus Occipital Bone (1) Foramen magnum Occipital condyles Ethmoid Bone (1) Cribriform plate Olfactory foramina in cribriform plate Crista galli Perpendicular plate (forms superior part of nasal septum) Middle nasal concha Superior nasal concha Sphenoid Bone (1) Foramen ovale Foramen rotundum Sella turcica Greater wing Lesser wing Optic foramen Inferior orbital fissure Superior orbital fissure Pterygoid processes Skull (cont’d) Facial Bones (14) Lacrimal Bones (2) Lacrimal fossa Nasal Bones (2) Inferior Nasal Conchae (2) Vomer (1) (forms inferior portion of nasal septum) Zygomatic Bones (2) Temporal process (forms zygomatic arch with zygomatic process of temporal bone) Maxillae (2) Alveoli Palatine process (forms anterior part of hard palate) Palatine Bones (2) (form posterior part of hard palate) Mandible (1) Alveoli Body Mental foramen Ramus Condylar process (mandibular condyle) Coronoid process Miscellaneous (Skull) Paranasal sinuses are located in the ethmoid bone, sphenoid bone, frontal bone, and maxillae Zygomatic arch (“cheekbone”) is composed of the zygomatic process of the temporal bone and the temporal process of the zygomatic bone 2 pairs of nasal conchae (superior and middle) are part of the ethmoid bone. 1 pair (inferior) are separate facial bones. All the scroll-like conchae project into the lateral walls of the nasal cavity. Hard palate (“roof of mouth”) is composed of 2 palatine processes of the maxillae and the 2 palatine bones (total of 4 fused bones).
    [Show full text]
  • Lumbarisation of the First Sacral Vertebra a Rare Form of Lumbosacral Transitional Vertebra
    Int. J. Morphol., 33(1):48-50, 2015. Lumbarisation of the First Sacral Vertebra a Rare Form of Lumbosacral Transitional Vertebra Lumbarización de la Primera Vertebra Sacra: Rara Forma de Una Vertebra de Transición Lumbosacral Mallikarjun Adibatti* & Asha, K.** ADIBATTI, M. & ASHA, K. Lumbarisation of the first sacral vertebra a rare form of lumbosacral transitional vertebra. Int. J. Morphol., 33(1):48-50, 2015. SUMMARY: In the lumbosacral region, anatomical variations occur with changes in the number of sacral vertebra either by deletion of first sacral vertebra or by the union of fifth lumbar or first coccygeal vertebra with sacrum. Lumbasacral transitional vertebrae (LSTV) is the most common congenital anomalies of the lumbosacral region. It most commonly involves the fifth lumbar vertebra showing signs of fusion to the sacrum known as sacralisation or the first sacral vertebra shows signs of transition to a lumbar configuration commonly known as lumbarisation. Complete transition can result in numerical abnormalities of the lumbar and sacral vertebral segments. Lumbarisation of first sacral vertebra is seen with a very low incidence of 2%. Knowledge of presence of such vertebral variation will be helpful for the clinicians to diagnose and treat patients with low back pain. Although sacralisation of fifth lumbar vertebrae is most commonly seen when compared to lumbarisation of first sacral vertebrae, we report here a case of lumbarisation of first sacral vertebrae for its rarity among the LSTV and clinical implications. KEY WORDS: Vertebrae; Sacrum; Sacralisation; Lumbarisation; Transitional vertebrae. INTRODUCTION RESULTS The sacrum is formed by the fusion of five sacral During routine Osteology classes, we observed the vertebras.
    [Show full text]
  • Chapter 02: Netter's Clinical Anatomy, 2Nd Edition
    Hansen: Netter's Clinical Anatomy, 2nd Edition - with Online Access 2 BACK 1. INTRODUCTION 4. MUSCLES OF THE BACK REVIEW QUESTIONS 2. SURFACE ANATOMY 5. SPINAL CORD 3. VERTEBRAL COLUMN 6. EMBRYOLOGY FINAL 1. INTRODUCTION ELSEVIERl VertebraeNOT prominens: the spinous process of the C7- vertebra, usually the most prominent The back forms the axis (central line) of the human process in the midline at the posterior base of body and consists of the vertebral column, spinal cord, the neck supporting muscles, and associated tissues (skin, OFcon- l Scapula: part of the pectoral girdle that sup- nective tissues, vasculature, and nerves). A hallmark of ports the upper limb; note its spine, inferior human anatomy is the concept of “segmentation,” and angle, and medial border the back is a prime example. Segmentation and bilat l Iliac crests: felt best when you place your eral symmetry of the back will be obvious as you hands “on your hips”; an imaginary horizontal study the vertebral column, the distribution of the line connecting the crests passes through the spinal nerves, the muscles of th back, and its vascular spinous process of the L4 vertebra and the supply. intervertebral disc of L4-L5, a useful landmark Functionally, the back is involved in three primary for a lumbar puncture or epidural block tasks: l Posterior superior iliac spines: an imaginary CONTENThorizontal line connecting these two points l Support: the vertebral column forms the axis of passes through the spinous process of S2 (second the body and is critical for our upright posture sacral segment) (standing or si ting), as a support for our head, as an PROPERTYattachment point and brace for move- 3.
    [Show full text]
  • Vertebral Column
    Vertebral Column • Backbone consists of Cervical 26 vertebrae. • Five vertebral regions – Cervical vertebrae (7) Thoracic in the neck. – Thoracic vertebrae (12) in the thorax. – Lumbar vertebrae (5) in the lower back. Lumbar – Sacrum (5, fused). – Coccyx (4, fused). Sacrum Coccyx Scoliosis Lordosis Kyphosis Atlas (C1) Posterior tubercle Vertebral foramen Tubercle for transverse ligament Superior articular facet Transverse Transverse process foramen Facet for dens Anterior tubercle • Atlas- ring of bone, superior facets for occipital condyles. – Nodding movement signifies “yes”. Axis (C2) Spinous process Lamina Vertebral foramen Transverse foramen Transverse process Superior articular facet Odontoid process (dens) •Axis- dens or odontoid process is body of atlas. – Pivotal movement signifies “no”. Typical Cervical Vertebra (C3-C7) • Smaller bodies • Larger spinal canal • Transverse processes –Shorter – Transverse foramen for vertebral artery • Spinous processes of C2 to C6 often bifid • 1st and 2nd cervical vertebrae are unique – Atlas & axis Typical Cervical Vertebra Spinous process (bifid) Lamina Vertebral foramen Inferior articular process Superior articular process Transverse foramen Pedicle Transverse process Body Thoracic Vertebrae (T1-T12) • Larger and stronger bodies • Longer transverse & spinous processes • Demifacets on body for head of rib • Facets on transverse processes (T1-T10) for tubercle of rib Thoracic Vertebra- superior view Spinous process Transverse process Facet for tubercle of rib Lamina Superior articular process
    [Show full text]