Insectivorous Birds Increase Pine but Not Parasitic Mistletoe Growth

Total Page:16

File Type:pdf, Size:1020Kb

Insectivorous Birds Increase Pine but Not Parasitic Mistletoe Growth Journal of Animal Blackwell Publishing Ltd Ecology 2006 Contrasting cascades: insectivorous birds increase pine but 75, 350–357 not parasitic mistletoe growth KAILEN A. MOONEY* and YAN B. LINHART University of Colorado, Department Ecology and Evolutionary Biology, Boulder, CO 80309-0334, USA Summary 1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on her- bivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator–predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemi- pterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding cater- pillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were connected to pine by a linear food chain, a trophic cascade occurred. Where birds fed as intraguild predators, the reticulate food webs linking birds to pine and mistletoe resulted in no net effects on herbivores or plant biomass. Our study shows that this variation in food web structure occurred between sympatric plants and within plants between differing herbivore guilds. Key-words: bird exclusion, community ecology, effect size, food web structure, indirect effect, intraguild predation, predator exclusion, top-down, tri-trophic interaction Journal of Animal Ecology (2006) 75, 350–357 doi: 10.1111/j.1365-2656.2006.01054.x progressed to the task of determining when and where Introduction top-down control is likely to be important (Matson & The long-standing debate over whether terrestrial plants Hunter 1992; Schmitz, Hamback & Beckerman 2000; are protected from herbivores by predators has now Halaj & Wise 2001). Trophic cascade theory is predi- cated on the assumption of neatly tiered trophic levels © 2006 The Authors. Correspondence and present address: Cornell University, where organisms interact through linear food chains Journal compilation Department Ecology and Evolutionary Biology. Corson (Hairston, Smith & Slobodkin 1960; Polis & Strong © 2006 British Hall, Ithaca, NY 14853, USA. Tel.: 607 255–8050. 1996). Yet when predators prey upon both herbivores Ecological Society E-mail: [email protected] and other predators, the resultant network of direct 351 and indirect interactions causes predator effects to parasites that tap into host xylem and phloem to obtain Contrasting attenuate before herbivore abundance and plant growth water, minerals and photosynthates (Hawksworth & cascades from birds are affected (Polis & Strong 1996). Variation among Wiens 1996). communities in the commonness of intraguild preda- At Manitou, mistletoe is fed upon by three specialist tion has been proposed to be responsible, in part, for herbivores: caterpillars of Dasypyga alternosquamella variation in the strength of trophic cascades (Shurin Ragonot (Pyralidae, Lepidoptera) and Promylea et al. 2002). lunigerella glendella Dyar (Pyralidae, Lepidoptera), Considerably less attention has been given to the and the sap-feeding Neoborella tumida Knight potential for trophic structure to be variable within (Miridae, Hemiptera) (Mooney 2001; Mooney 2003). communities (but see Sipura 2002; Moon & Stiling A more diverse herbivore community feeds upon pine: 2004). Among-study variation in the impacts of pred- caterpillars (three species of Geometridae, and two ators has been attributed, at least in part, to character- from other unidentified families), leaf- and plant- istics of the herbivores and plants involved (Schmitz hoppers (Homoptera, suborder Auchenorrhyncha; et al. 2000; Halaj & Wise 2001). Furthermore, there are 36 species), and the aphid Cinara schwarzii Wilson reasons to predict within-community variability in (Aphididae, Homoptera). Cinara schwarzii is a facultative trophic cascades as a function of the specific character- mutualist with wood ants Formica spp. (Formicidae), istics of the plants and herbivores involved. Plants but the hoppers at this site are not. Mistletoe and pine influence rates of herbivore damage directly through tissues damaged by caterpillars are easily recognizable, constitutive (Fritz & Simms 1992) and induced but feeding by sap-feeders is not. Based on extensive (Karban & Baldwin 1997) resistance traits, and observations conducted with this community, we are indirectly via predators (Turlings, Tumlinson & Lewis certain that these herbivores are host-specific, and that 1990; Marquis & Whelan 1996). Likewise, herbivore no herbivore feeds upon both pine and mistletoe. characteristics such as concealed vs. exposed feeding Ninety-five per cent of bird foraging on pine and modes (e.g. Fritz 1983), sequestration of plant secondary mistletoe is performed by insectivorous chickadees compounds (e.g. Dyer & Bowers 1996) and predator Parus spp. (Paridae), nuthatches Sitta spp. (Sittidae) avoidance behaviours (Preisser, Bolnick & Benard and warblers Dendroica spp. (Parulidae) (Mooney, in 2005) influence rates of predation. press). The arthropod predator community is domin- We compared the effects of insectivorous birds ated by generalists that move freely between pine and between two sympatric plants, and between two guilds mistletoe (Mooney, in press), including ants, hunting of herbivores. For 3 years we excluded birds (top spiders and web-spinning spiders. Ladybird beetle larvae predators) from ponderosa pine Pinus ponderosa Laws. and adults (Coccinellidae), lacewings (Neuroptera, scopulorum and its angiosperm parasite the south- Chrysopidae), and some hemipterans are most com- western dwarf mistletoe Arceuthobium vaginatum (Willd.) monly associated with aphids, but also prey upon other Presl ssp. cryptopodum (Engelm.) Hawksw. & Wiens. arthropods opportunistically (Dixon 2000; Wheeler Pine and mistletoe are each fed upon by separate 2001). species of foliage-chewing and sap-feeding herbivores. These are in turn preyed upon by arthropods (interme- diate predators) that move freely between the two plants. By studying a gymnosperm and a parasitic angiosperm, In late June 1999, 32 understorey pines were selected. we sought to increase the taxonomic and ecological Each was 1–3 m tall (mean ± 1 SE: 2·6 ± 0·07), and diversity of the plants for which bird effects on plant heavily parasitized by mistletoe. Ring counts of trunks growth have been measured. By comparing the effects showed them to be 71 ± 4 years old. Sixteen trees each of this single predator community between two her- were assigned to bird exclusion (cage) and control bivore guilds and between two sympatric plants, we treatments. Cages consisted of a frame of four metal sought to test whether trophic cascades vary within this bars (1·25 cm diameter) and a polyvinyl chloride community, and to associate the differing effects of plastic tubing roof wrapped in 2·5 cm mesh monofila- birds with characteristics of the herbivores and plants ment netting (Marquis & Whelan 1994). involved. Materials and methods Visual searches were used to quantify the abundance of pine herbivores and the arthropod predators that moved between both pine and mistletoe. Mistletoe-feeding © 2006 The Authors. This work was conducted at the Manitou Experimental herbivores were small and extremely cryptic in their Journal compilation Forest in Woodland Park, Colorado, U.S.A. (39°06′N, coloration, and mistletoe morphology made them © 2006 British 105°05′W) at an elevation of 2400 m. The field site difficult to detect. Consequently, data on these arthro- Ecological Society, Journal of Animal was in a pure stand of ponderosa pine parasitized by pods were not collected. Our understanding of bird Ecology, 75, south-western dwarf mistletoe. Dwarf mistletoes effects on mistletoe herbivores is thus limited to 350–357 Arceuthobium spp. (Viscaceae) are leafless, dioecious inference from data on herbivore damage to mistletoe 352 tissues (see below). At this site, mistletoe caterpillars unopened 2002 buds. The pre-experimental internodes, K. A. Mooney & were very common (as high as 2·5 per plant in 1999: which were free of foliage, were measured
Recommended publications
  • The Mechanism by Which Aphids Adhere to Smooth Surfaces
    J. exp. Biol. 152, 243-253 (1990) 243 Printed in Great Britain © The Company of Biologists Limited 1990 THE MECHANISM BY WHICH APHIDS ADHERE TO SMOOTH SURFACES BY A. F. G. DIXON, P. C. CROGHAN AND R. P. GOWING School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ Accepted 30 April 1990 Summary 1. The adhesive force acting between the adhesive organs and substratum for a number of aphid species has been studied. In the case of Aphis fabae, the force per foot is about 10/iN. This is much the same on both glass (amphiphilic) and silanized glass (hydrophobic) surfaces. The adhesive force is about 20 times greater than the gravitational force tending to detach each foot of an inverted aphid. 2. The mechanism of adhesion was considered. Direct van der Waals forces and viscous force were shown to be trivial and electrostatic force and muscular force were shown to be improbable. An adhesive force resulting from surface tension at an air-fluid interface was shown to be adequate and likely. 3. Evidence was collected that the working fluid of the adhesive organ has the properties of a dilute aqueous solution of a surfactant. There is a considerable reserve of fluid, presumably in the cuticle of the adhesive organ. Introduction The mechanism by which certain insects can walk on smooth vertical and even inverted surfaces has long interested entomologists and recently there have been several studies on this subject (Stork, 1980; Wigglesworth, 1987; Lees and Hardie, 1988). The elegant study of Lees and Hardie (1988) on the feet of the vetch aphid Megoura viciae Buckt.
    [Show full text]
  • Lodgepole Pine Dwarf Mistletoe in Taylor Park, Colorado Report for the Taylor Park Environmental Assessment
    Lodgepole Pine Dwarf Mistletoe in Taylor Park, Colorado Report for the Taylor Park Environmental Assessment Jim Worrall, Ph.D. Gunnison Service Center Forest Health Protection Rocky Mountain Region USDA Forest Service 1. INTRODUCTION ............................................................................................................................... 2 2. DESCRIPTION, DISTRIBUTION, HOSTS ..................................................................................... 2 3. LIFE CYCLE....................................................................................................................................... 3 4. SCOPE OF TREATMENTS RELATIVE TO INFESTED AREA ................................................. 4 5. IMPACTS ON TREES AND FORESTS ........................................................................................... 4 5.1 TREE GROWTH AND LONGEVITY .................................................................................................... 4 5.2 EFFECTS OF DWARF MISTLETOE ON FOREST DYNAMICS ............................................................... 6 5.3 RATE OF SPREAD AND INTENSIFICATION ........................................................................................ 6 6. IMPACTS OF DWARF MISTLETOES ON ANIMALS ................................................................ 6 6.1 DIVERSITY AND ABUNDANCE OF VERTEBRATES ............................................................................ 7 6.2 EFFECT OF MISTLETOE-CAUSED SNAGS ON VERTEBRATES ............................................................12
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • An Annotated List of the Lepidoptera of Alberta, Canada
    A peer-reviewed open-access journal ZooKeys 38: 1–549 (2010) Annotated list of the Lepidoptera of Alberta, Canada 1 doi: 10.3897/zookeys.38.383 MONOGRAPH www.pensoftonline.net/zookeys Launched to accelerate biodiversity research An annotated list of the Lepidoptera of Alberta, Canada Gregory R. Pohl1, Gary G. Anweiler2, B. Christian Schmidt3, Norbert G. Kondla4 1 Editor-in-chief, co-author of introduction, and author of micromoths portions. Natural Resources Canada, Northern Forestry Centre, 5320 - 122 St., Edmonton, Alberta, Canada T6H 3S5 2 Co-author of macromoths portions. University of Alberta, E.H. Strickland Entomological Museum, Department of Biological Sciences, Edmonton, Alberta, Canada T6G 2E3 3 Co-author of introduction and macromoths portions. Canadian Food Inspection Agency, Canadian National Collection of Insects, Arachnids and Nematodes, K.W. Neatby Bldg., 960 Carling Ave., Ottawa, Ontario, Canada K1A 0C6 4 Author of butterfl ies portions. 242-6220 – 17 Ave. SE, Calgary, Alberta, Canada T2A 0W6 Corresponding authors: Gregory R. Pohl ([email protected]), Gary G. Anweiler ([email protected]), B. Christian Schmidt ([email protected]), Norbert G. Kondla ([email protected]) Academic editor: Donald Lafontaine | Received 11 January 2010 | Accepted 7 February 2010 | Published 5 March 2010 Citation: Pohl GR, Anweiler GG, Schmidt BC, Kondla NG (2010) An annotated list of the Lepidoptera of Alberta, Canada. ZooKeys 38: 1–549. doi: 10.3897/zookeys.38.383 Abstract Th is checklist documents the 2367 Lepidoptera species reported to occur in the province of Alberta, Can- ada, based on examination of the major public insect collections in Alberta and the Canadian National Collection of Insects, Arachnids and Nematodes.
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]
  • Deicing Salt Pollution Affects the Foliar Traits and Arthropods’ Biodiversity of Lime Trees in Riga’S Street Greeneries
    ORIGINAL RESEARCH published: 31 July 2019 doi: 10.3389/fevo.2019.00282 Deicing Salt Pollution Affects the Foliar Traits and Arthropods’ Biodiversity of Lime Trees in Riga’s Street Greeneries Dalinda Bouraoui 1,2,3, Gunta Cekstere 2,3, Anita Osvalde 2, Pierre Vollenweider 3 and Sergio Rasmann 1* 1 Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland, 2 Institute of Biology, University of Latvia, Riga, Latvia, 3 Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research (WSL), Birmensdorf, Switzerland Street greeneries and other green spaces within the urban matrix can potentially reduce air pollution and increase urban biodiversity. Yet, these services can be negatively affected by anthropogenic stress factors. In the boreo-nemoral zone, large amounts of salts are spread each year for deicing the pavement. To address the effect of deicing salt on street lines of lime trees and how this cascades up to influence the surrounding arthropod biodiversity, we compared heavily salt-polluted, and less polluted sites in the Edited by: Shannon Murphy, city of Riga, Latvia. We analyzed the impairment of foliar functions and development University of Denver, United States of aphid colonies using a common garden experiment. We found marked variation in Reviewed by: the soil physico-chemical properties in polluted vs. unpolluted sites, and the overall Elsa Youngsteadt, North Carolina State University, composition of arthropod communities, considering their abundance together with their United States diversity, significantly responded to site contamination. In a common garden experiment, Steve Frank, we also showed that the exposure to increased salt levels in the soil caused functional North Carolina State University, United States as well as structural injuries within foliage and slowed down the development of aphid *Correspondence: colonies.
    [Show full text]
  • Hemiptera, Aphididae) Inferred from Molecular-Based Phylogeny and Comprehensive Morphological Data
    RESEARCH ARTICLE The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data Karina Wieczorek1*, Dorota Lachowska-Cierlik2, èukasz Kajtoch3, Mariusz Kanturski1 1 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland, 2 Department of Entomology, Institute of Zoology, Jagiellonian University, KrakoÂw, Poland, 3 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, KrakoÂw, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic OPEN ACCESS hypothesis for the subfamily, based on molecular and morphological datasets. Molecular Citation: Wieczorek K, Lachowska-Cierlik D, analyses were based on the mitochondrial gene cytochrome oxidase subunit I (COI) and the Kajtoch è, Kanturski M (2017) The relationships within the Chaitophorinae and Drepanosiphinae nuclear gene elongation factor-1α (EF-1α). Phylogenetic inferences were obtained individu- (Hemiptera, Aphididae) inferred from molecular- ally on each of genes and joined alignments using Bayesian inference (BI) and Maximum based phylogeny and comprehensive likelihood (ML). In phylogenetic trees reconstructed on the basis of nuclear and mitochon- morphological data. PLoS ONE 12(3): e0173608. https://doi.org/10.1371/journal.pone.0173608 drial genes as well as a morphological dataset, the monophyly of Siphini and the genus Chaitophorus was supported. Periphyllus forms independent lineages from Chaitophorus Editor: Daniel Doucet, Natural Resources Canada, CANADA and Siphini. Within this genus two clades comprising European and Asiatic species, respec- tively, were indicated.
    [Show full text]
  • Classification of Aphid on the Basis of Their Taxonomic Features 3 1Aeman Afzal,2Kamran Jamil , Irfan Qadir,4Samiullah Khan,5Abdul Qayyum Zehri,6 Dad Muhammad
    International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 4, Issue 4, April – 2020, Pages: 19-30 Classification of Aphid on The Basis of Their Taxonomic Features 3 1Aeman Afzal,2kamran Jamil , Irfan Qadir,4Samiullah khan,5Abdul Qayyum Zehri,6 Dad Muhammad. 7Muhammad Asif, 8Abdul Raziq. 1 Lab assistant Directorate Post harvest and food technology ARI Quetta. 2.Agriculture Officer Agriculture Extension Quetta Balochistan 3. Research Officer Directorate Agriculture Research Baghbana Khuzdar. 4. Lasbela University of Agriculture, water and marine sciences uthal. 5. Agriculture Officer Agriculture Extension khuzdar Balochistan. 6. Horticulturist Directorate Agriculture Research Panjgor. 7 Deputy Director Agriculture Extension Balochistan-Pakistan. 8. Agriculture officer Directorate of Procurement of supplies Extension Balochistan. Abstract: The experiment was conducted at Quetta to classification of different aphis and thiers host in Balochistan .Aphids were collected randomly from different localities of Quetta such as Baleli, Shaikhmanda, Sariab and Brewrey, etc., during year 2013-2014 and identified them up to the specific level by running the keys of R.L. Blackman and V.F. Eastop. In the whole 5 aphids were identified on the basis of their antennal tubercles, length of third antennal segment, the basal and terminal process of last antennal segment, length of hind tarsus & number of hairs on it, shape or size of cauda and siphunculi. Several host plants were found being attacked by these identified aphids. In view of the greater variation in characters of the specimens in this area, non-availability of detailed descriptions, the keys have been constructed in order to make the future identification easier.
    [Show full text]
  • An Exotic Invasive Aphid on Quercus Rubra, the American Red Oak: Its Bionomy in the Czech Republic
    Eur. J. Entomol. 104: 471–477, 2007 http://www.eje.cz/scripts/viewabstract.php?abstract=1256 ISSN 1210-5759 Myzocallis walshii (Hemiptera: Sternorrhyncha: Aphididae), an exotic invasive aphid on Quercus rubra, the American red oak: Its bionomy in the Czech Republic JAN HAVELKA and PETR STARÝ Biological Centre, AS CR, Institute of Entomology, Branišovská 31, 370 05 ýeské BudČjovice, Czech Republic; e-mail: [email protected] Key words. Aphididae, Myzocallis walshii, Quercus, parasitoids, expansion, Czech Republic, exotic insects Abstract. Myzocallis (Lineomyzocallis) walshii (Monell), a North American aphid species associated with Quercus rubra was detected for the first time in Europe in 1988 (France), and subsequently in several other countries – Switzerland, Spain, Andorra, Italy, Belgium and Germany. Recent research in 2003–2005 recorded this aphid occurring throughout the Czech Republic. The only host plant was Quercus rubra. The highest aphid populations occurred in old parks and road line groves in urban areas, whereas the populations in forests were low. The seasonal occurrence of the light spring form and the darker summer form of M. (Lineomyzocal- lis) walshii as well as their different population peaks were noted. Four native parasitoids species [Praon flavinode (Haliday), Tri- oxys curvicaudus Mackauer, T. pallidus Haliday and T. tenuicaudus (Starý)] were reared from M. (Lineomyzocallis) walshii. INTRODUCTION (Lineomyzocallis) walshii manifested peculiar population pat- terns in the spring of 2004, these populations were sampled Accidental introductions and establishments of exotic repeatedly in the course of a whole year to determine the key species of aphids are occurring all over the world. Subse- population characteristics and the complete life cycle of the quently, they interact either with their formerly intro- aphid.
    [Show full text]
  • The Relationships Within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) Inferred from Molecular-Based Phylogeny Andcomprehensive Morphological Data
    Title: The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny andcomprehensive morphological data Author: Karina Wieczorek, Dorota Lachowska-Cierlik, Łukasz Kajtoch, Mariusz Kanturski Citation style: Wieczorek Karina, Lachowska-Cierlik Dorota, Kajtoch Łukasz, Kanturski Mariusz. (2017). The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny andcomprehensive morphological data. "PLoS ONE" (2017, no. 3, art. no. e0173608, s. 1-31). Doi 10.1371/journal.pone.0173608 RESEARCH ARTICLE The relationships within the Chaitophorinae and Drepanosiphinae (Hemiptera, Aphididae) inferred from molecular-based phylogeny and comprehensive morphological data Karina Wieczorek1*, Dorota Lachowska-Cierlik2, èukasz Kajtoch3, Mariusz Kanturski1 1 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland, 2 Department of Entomology, Institute of Zoology, Jagiellonian University, KrakoÂw, Poland, 3 Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, KrakoÂw, Poland a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Chaitophorinae is a bionomically diverse Holarctic subfamily of Aphididae. The current classification includes two tribes: the Chaitophorini associated with deciduous trees and shrubs, and Siphini that feed on monocotyledonous plants. We present the first phylogenetic OPEN ACCESS
    [Show full text]
  • For Biological Control of the Soybean Aphid, Aphis Glycines (Hemiptera: Aphididae), in the Continental United States
    United States Department of Agriculture Field Release of Aphelinus Marketing and Regulatory glycinis (Hymenoptera: Programs Animal and Aphelinidae) for Biological Plant Health Inspection Service Control of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae), in the Continental United States Environmental Assessment, September 2012 Field Release of Aphelinus glycinis (Hymenoptera: Aphelinidae) for Biological Control of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae), in the Continental United States Environmental Assessment, September 2012 Agency Contact: Shirley Wager-Page, Branch Chief Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326–W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250–9410 or call (202) 720–5964 (voice and TDD). USDA is an equal opportunity provider and employer. Mention of companies or commercial products in this report does not imply recommendation or endorsement by the U.S. Department of Agriculture (USDA) over others not mentioned. USDA neither guarantees or warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information.
    [Show full text]