Hydrological and climatic variability in the river basins of the (from meteorological stations, model reanalysis and satellite altimetry data) Maria Kolmakova

To cite this version:

Maria Kolmakova. Hydrological and climatic variability in the river basins of the West Siberian Plain (from meteorological stations, model reanalysis and satellite altimetry data). Hydrology. Université Paul Sabatier - Toulouse III, 2012. Russian. ￿tel-00784775￿

HAL Id: tel-00784775 https://tel.archives-ouvertes.fr/tel-00784775 Submitted on 4 Feb 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés.

ABACDEFAEB

CABCDEFEFCCCFCAC EACCAAECA ABCAACCDECFC CAECEE

AAAEAAA ABAFA

A CABCEEFCACAFCCCCACCC BCACECCEBCCAAECBABEEEFCCBC BABEEEFCACABACAA

ABCDEBFAABDCADAAC BACDAADCABDAADC BDAADCADAAC AABCDAADCAABBAD BBABDAADCABDBBAD

ECABEECACADCAB BAAAABABABAB BB EAAADAADCADB

Acknowledgements

This Ph.D. thesis was supported by the French Governement scholarship for the joint supervision of thesis (2008-2011) as well as within the support grants of Tomsk State University Tomsk, ), Paul Sabatier University (Toulouse, France), Laboratory of Studies of Space Geophysics and Oceanography (LEGOS) and Russian Foundation for Basic Research. The Ph.D. thesis is a part of CAR-WET-SIB («Biogeochemical cycle of carbon in wetlands of West Siberia») international project between France and Russia.

First of all, I would like to address my sincere gratitude to my advisors Valeriy Zemtsov and Alexei Kouraev as well as to co-authors of the publications Elena Zakharova, Sergey Kirpotin, Nelly Mognard for ideas, consultations and help during my PhD thesis.

I’m also very grateful to Irina Kuzhevskaya from Tomsk State University and Sylvan Biancamaria from LEGOS in Toulouse for invaluable help in climate data processing and its analysis. A special thank to Rinat Manasypov – a Ph.D. student from Tomsk State University for his help during the field campaign in the north of West Siberia.

I would like to extend my sincere gratitude to all colleagues and Ph.D. students of LEGOS as well as to CROUS (Centre régional des œuvres universitaires et scolaires) of Toulouse for support and encouragement during my stay in France.

Finally, I would like to thank all my family and my friend Stéphane for their patience and support throughout this period. I would not have gone so far without their unfailing support and encouragement.

2 Résumé

Pertinence du sujet. Actuellement, le changement climatique est confirmé par de nombreux faits. La hausse de la température globale moyenne à la surface de la terre au cours du XXème siècle, selon l’estimation de divers auteurs (Brohan et al., 2006 ; Hansen et al., 2005), est de 0,6 à 0,7°C. De paire avec les changements de régime thermique, l’humidification générale des sols change ainsi que le régime hydrologique (crues, inondation, sècheresse, etc). L’impact des facteurs naturels et anthropiques, se superposant les uns aux autres, provoquent des changements sur les ressources en eau à l’échelle régionale. Pour prédire les futurs changements climatiques, des données à long terme sur les conditions climatiques et hydrologiques sont requises, et peuvent être obtenues non seulement à l’aide des observations obtenues dans les stations hydrométéorologiques, mais aussi à l’aide des données de ré-analyse météorologique et d’altimétrie satellitaires. Le caractère fortement marécageux du territoire de la Sibérie occidentale et la rareté des stations d’observations hydrométéorologiques compliquent le suivi du régime hydrologique des bassins versants. Dans une telle situation, la prise en compte des données de ré-analyse météorologique et d’altimétrie satellitaires, assurant une couverture régulière de l'ensemble du territoire étudié de la plaine de Sibérie occidentale, permet de compléter les observations in situ et d'élargir considérablement la portée des recherches, ce qui détermine la pertinence de ce travail. Le but du présent travail est d’évaluer la variabilité des disponibilités en chaleur et en humidité de diverses zones climatiques et hydrologiques sur le territoire de la Sibérie occidentale en utilisant conjointement les données des stations météorologiques, de ré-analyse météorologique et d’altimétrie satellitaire dans un contexte de changement climatique. Objectif de la recherche : • analyser les tendances annuelles et saisonnières des températures de l’air et des précipitations atmosphériques sur une période de plusieurs années en utilisant les données des stations météorologiques et selon la ré-analyse ERA-40; • définir la valeur seuil du coefficient de rétrodiffusion d’énergie pour chaque bassin versant étudié. Cette valeur seuil, couplée aux données d'altimétrie satellitaire, permet de distinguer les surfaces inondées des surfaces sèches, avec pour but l’évaluation objective de la quantité d’eau; • évaluer la variabilité dans le temps (saisonnière et annuelle) du régime d’humidification des bassins versants de zones aux caractéristiques hydrométéorologiques contrastées par la méthode de l’altimétrie satellitaire (années de 1993 à 2008).

3 Objets d’étude. Des bassins fluviaux de superficie intermédiaire se trouvant dans 4 types de zones hydrologiques, climatiques et marécageuses de la Sibérie occidentale : I. Zone d’humidification excessive et d’insuffisance de chaleur, zones de marécages mamelonnés : déversoirs des rivières Polouï, Nadym, Pour, Taz. II. Zone d’humidification excessive et de tourbières bombées oligotrophes : déversoirs des rivières du Nord, Konda, Tavda, Kazym, Nazym, Liamine, Tromégan, , grande Iougan, Vassiougan, Tym et Ket. III. Zone d’humidification principalement excédentaire et suffisante dans son extrême sud et de chaleur suffisante, correspondant à la zone d'eutrophisation plate et de tourbières mésotrophes : déversoirs des rivières Toura et Om dans leurs cours supérieurs. IV. Zone d’humidification insuffisante et de chaleur suffisante, zone d'eutrophisations concaves et de marais salins : s’y trouvent la partie basse du bassin de l’Om et la zone d’écoulement interne (ou la région endoréique) de la zone située entre les fleuves et Irtych. La nouveauté scientifique de ce travail se décline en plusieurs points : • Pour les bassins fluviaux (21 déversoirs), selon les données de ré-analyse, l’évolution de la température de l’air et des précipitations atmosphériques est analysée sur de nombreuses années. • Emploi d’une nouvelle approche d'évaluation du niveau d’eau de la zone étudiée à l'aide de données d'altimétrie satellitaire en analysant le signal réfléchi ou le coefficient de rétrodiffusion exprimé en décibels. • Mise en évidence d’une relation entre le degré d’inondation selon les données d'altimétrie satellitaire et les précipitations de la période d’été selon les données de ré-analyse pour la série de bassins versants étudiés. • Les données d'altimétrie satellitaire sont représentatives de l’évolution dans le temps du niveau d’eau. • Sur les bassins versants étudiés, une zonation géographique est proposé en fonction du caractère saisonnier du coefficient d’inondation. Portée pratique du présent travail et mise en valeur des résultats. La thèse est réalisée dans le cadre du projet international franco-russe CAR-WET-SIB « Cycle Biogéochimique du carbone dans les paysage marécageux de Sibérie occidentale » avec le soutien de l’ambassade de France (bourse d’études du gouvernement français sous une double gestion scientifique 2008- 2011), ainsi qu’avec le soutien de la bourse de recherche du fond russe de la recherche fondamentale.

4 Le présent travail montre comment la méthode de l'altimétrie satellitaire peut être utilisée non seulement pour mesurer la hauteur des nappes d’eau, mais aussi pour évaluer la variabilité saisonnière d’une année sur l’autre du niveau d’eau dans les bassins fluviaux. Les principales conclusions et les résultats des travaux sont utilisés lors de la préparation et l'enseignement des cours du programme de maîtrise en « hydrométéorologie », en « hydrologie-sol » ainsi qu’en « hydrologie et géo-écologie des zones marécageuses pétrolières et gazières » à l'Université d'Etat de Tomsk. Approbation des résultats de l’étude. Les principales conclusions de cette thèse ont été présentées et discutées lors de conférences internationales et en Russie : Union européenne des géosciences (European Geosciences Union, Vienne, Autriche, 2009, 2010); Agence spatiale européenne (ASE) «Observation de la Terre par satellite et cycle de l'eau : vers une approche complexe du cycle de l’eau » («Earth observation and the water cycle: towards a water cycle multi-mission strategy ») (Frascati, Italie, 2009); Union européenne des géosciences «Leonardo» sur les enjeux actuels des ressources en eau (EGU Leonardo Topical Conference Series on the hydrological cycle – 2010) (Luxembourg, 2010); Enviromis-2010 (Tomsk, 2010); «Les problèmes fondamentaux de l'eau et des ressources en eau» (Barnaoul, 2010); au séminaire tripartite Russo-Franco-Allemand « Le rôle de régulateur climatique des écosystèmes forestiers et marécageux : aspects paysagers, écologiques et sociaux » (The climate regulating role of forest-bog ecosystems: landscape-ecological and social aspects) (Hambourg, Allemagne, 2010). Sur les données de cette thèse ont été publiés 5 articles, dont deux dans les revues « Journal of Hydrology and Meteorology » (2011) et dans le « Messager de l’université d'Etat de Tomsk », toutes deux incluses dans la liste des publications et des revues scientifiques. Le premier chapitre décrit les principaux facteurs physiques et géographiques et les lois qui ont déterminé le développement de la zone d'étude et les caractéristiques de son climat. Le deuxième chapitre est consacré aux méthodes d’étude qui sont utilisées dans la présente thèse. Au début une brève description des objets d'étude est fournie, puis les méthodes mêmes de l’étude. Le chapitre expose en détail le principe de fonctionnement de la méthode d'altimétrie satellitaire, résume les méthodes de télédétection, et également expose la méthode de ré-analyse à l’aide de laquelle sont étudiées les caractéristiques climatiques. Le troisième chapitre présente les résultats des travaux accomplis 1) L’analyse des disponibilités en chaleur et en humidité de diverses zones climatiques et hydrologiques marécageuses, 2) L’analyse de la variabilité de la quantité d’eau dans les bassins fluviaux selon les données d'altimétrie satellitaire.

5 Les principales conclusions et les résultats des travaux sont les suivants : 1. Selon les données météorologiques des stations et celles de ré-analyse sont analysés les changements de température de l’air et la somme des précipitations atmosphériques dans les bassins de rivières situées dans diverses zones climatiques et hydrologiques marécageuses. L’analyse des données sur les températures moyennes de l’air sur de nombreuses années (1926-2005) montre notamment que le réchauffement le plus élevé est observé dans la partie septentrionale de la plaine dans les déversoirs des rivières Nadym et Taz (0,37°C sur 10 ans), et une augmentation significative de la somme des précipitations atmosphériques est observée dans les régions proches de l’Oural (Sosva du Nord, Konda, Tavda, Toura) et dans les déversoirs des rivières Pour, Taz, Nazym et Vakh. Une tendance à l’augmentation de la somme des précipitations atmosphériques est observée sur toutes les zones de plaine, à l’exception des déversoirs des rivières Chtchoutchia, Vassiougan et Om, qui se caractérisent par des indices négatifs de leur tendance générale. 2. L’analyse des changements de température de l’air et de la somme des précipitations atmosphériques selon les particularités saisonnières ont mis en évidence ce qui suit : • On observe une augmentation significative de la température de l’air dans la période de printemps (de mars à mai) avec le réchauffement le plus élevé dans le nord de la plaine, et également à la station Barabinsk (0,4-0,8°C sur 10 ans) • On observe une augmentation significative de la somme des précipitations atmosphériques dans les périodes d’hiver, de printemps et d’été. Cependant, au printemps, on observe une augmentation significative des précipitations dans la plupart des déversoirs des rivières de plaine situées dans chaque zone climatique et hydrologique marécageuse. Le changement de température de l’air et de la somme des précipitations atmosphériques amène à un changement dans le régime d’inondation du territoire, qui a été évalué à l’aide de la méthode d’altimétrie satellitaire. 3. La méthode d’altimétrie satellitaire a permis d’évaluer la quantité et la variabilité interannuelle et saisonnière du degré d’inondation des déversoirs des rivières du bassin fluvial de l’Ob. 4. Pour l’évaluation des changements sur de nombreuses années du coefficient d’inondation des déversoirs étudiés dans la période d’été et ses changements à l’intérieur de chaque saison dans l’année, une valeur seuil du coefficient de rétrodiffusion a été déterminée pour chaque déversoir à l’aide des données satellites TOPEX/Poseidon et ENVISAT. 5. D’après les données du satellite TOPEX/Poseidon, a été proposée une classification des bassins fluviaux selon le critère de progression du coefficient d’inondation minimal en été

6 d’une année sur l’autre, et ont également été mis en relief quatre zones géographiques. La classification en question concorde bien avec la classification de V.A. Zemtsov (2003), basée sur la similitude de la variabilité sur de nombreuses années de l’écoulement annuel et mensuel des rivières. 6. Des groupes de déversoirs sont mis en évidence, pour lesquels la variabilité de la quantité d’eau d’une année sur l’autre d’après les données du satellite TOPEX/Poseidon concorde bien avec la somme des précipitations atmosphériques par la méthode de ré-analyse sur la période de 1993 à 2001. 7. Il est établi qu’avec le temps on observe une baisse significative de la quantité d’eau (TOPEX/Poseidon) dans la zone d’écoulement interne entre les fleuves Ob et Irtych ainsi que dans le déversoir de la rivière Om. 8. En utilisant les données du satellite ENVISAT, a été réalisée une classification des déversoirs sur le critère de progression du coefficient d’inondation d’une année sur l’autre. Quatre zones géographiques ont également été mises en évidence qui coïncident dans l’ensemble avec les zones définies par les données du satellite TOPEX/Poseidon. L’augmentation de la quantité d’eau a été détectée dans les déversoirs des rivières de la région proche de l’Oural, dans les régions boisées de Sourgout, dans la zone située entre les fleuves Ob et Ienisseï, et également dans le déversoir de la rivière Vassiougan. Dans l’ensemble, les études réalisées ont montré la représentativité des données d’altimétrie satellitaire en matière d’évaluation du degré d’inondation des déversoirs fluviaux et de sa variabilité spatio-temporelle. Perspectives pour les études ultérieures. Les études ultérieures seront orientées vers l’ajout de précisions concernant les valeurs seuil du coefficient de rétrodiffusion afin de subdiviser les paysages se différenciant par leur degré d’inondation et de réchauffement, et vers l’étude des dynamiques de leur inondation selon les saisons et sur une période de nombreuses années.

7 Abstract GENERAL DESCRIPTION OF THE STUDY

Relevance of the study. For the climate change prediction in the future there is a necessity in reliable and long-term data of climate and hydrological parameters that are available from meteorological and hydrological stations as well as from reanalysis and satellite radar altimetry data. A meteorological reanalysis is the analysis of past observational data using a fixed, tried- and-tested, data assimilation system. Model reanalysis is widely used among various scientific groups both in Russia and abroad (Serreze et al., 2005; Hansen et al., 2005; Brohan et al., 2006; Kabanov, 2008; Ippolitov et al., 2008; Gordov, 2007). ERA-40 is one of the most reliable reanalysis today. Satellite radar altimetry is one of the active remote sensing methods. Although satellite radar altimetry was initially designed for oceanographic applications such as sea level change, ocean circulation, and ocean tides (Fu, Cazenave, 2001), it has been demonstrated to be applicable to non-ocean surfaces for monitoring continental surfaces over ice sheets (Zwally et al., 1983) and surface topography in Antarctic and Greenland (Legresy, Remy, 1997; Remy et al., 1999), for water level measurements (Birkett 1995, Cazenave et al. 1997, Alsdorf et al. 2001) as well as for the detection of flooded zones (Zakharova, 2009). The latter aspect is very important in studying the hydrology and geoecology of the West Siberian Plain that is characterized by high level of swamping. Flooded zone is understood to be a relative area of the territory permanently or temporarily covered with moisture (lakes, rivers, bogs of different types, flood plains, swamps). It changes with space and time and reflects a moisture pattern of the territory. In this study we use the flooding coefficient as an equivalent of moisture coefficient proposed by V.S. Mezentsev and I.V. Karnatsevich (1969). Because of high level of swamping in West Siberia and a sparse network of hydrometeorological stations, monitoring of hydrological regime is hindered. In such a situation, it is necessary to involve model reanalysis and satellite altimetry data that ensure the regular coverage of the whole West Siberian Plain, making it possible to supplement field studies and to considerably expand the area of research. This determines the relevance of the thesis. The main goal of the study is to estimate the dynamic of air temperature and precipitation in different hydrological and climatic zones of West Siberia in the context of climate change from meteorological stations data, reanalysis and satellite altimetry.

8 Objectives: • to analyze annual and seasonal trends of air temperature and precipitation from meteorological stations data and ERA-40 reanalysis; • to apply satellite altimetry data for estimation of flooded zones using the threshold value of the backscatter coefficient for each watershed in order to differentiate flooded and water-free surfaces; • to estimate the temporal (seasonal and interannual) variability of moisture regime of watersheds in different landscape zones from satellite radar altimetry (1993-2008). Objects of the study are watersheds (fig. 1) situated in different hydrological and climatic zones as well as wetland zones: I. Zone of excessive moistening and insufficient heat and moisture, zone of palsa bogs include watersheds of Poluy, Nadym, Pur and Taz rivers. II. Zone of excessive moistening and oligotrophic bogs include watersheds of Severnaya Sosva, Konda, Tavda, Kazym, Nazym, Lyamin, Tromyegan, Vakh, Bolshoi Yugan, Vasuygan, Tym and Ket rivers. III. Zone of mostly excessive and sufficient heat and moisture in the southern border of Western Siberia, zone of flat eutrophic and mezothrophic bogs include watersheds of Tura and upper Om rivers. IV. Zone of insufficient moistening and sufficient heat and moisture, zone of eutrophic salt fens include watershed of lower Om river and Inner watershed of Ob and interfluve area. Subject of the study is various indicators of heat and moisture of watersheds in different hydrological and climatic zones of West Siberia from meteorological stations, reanalysis and satellite altimetry. Satellite radar altimetry, cartographical and statistical methods are used in the study. Data used in the study. Meteorological data for the years 1926-2005 were obtained from the daily temperature and precipitation data for Barabinsk and Berezovo stations dataset, available online at the All-Russian Research Institute of Hydrometeorological Information-World Data Center (RIHMI–WDC) (www.meteo.ru). Daily six-hour temperature and precipitation data ERA-40 for the years 1958-2001 were retrieved from the European Center for Medium-Range Weather Forecasts (ECMWF) website (www.ecmwf.int). Satellite radar altimetry data of TOPEX/Poseidon and ENVISAT were used to estimate the variability and extent of flooded zones of the 21 watersheds in West Siberia. Altimetry data were obtained from the Centre of Topography of the Oceans and the Hydrosphere (CTOH) website (http://ctoh.legos.obs-mip.fr/). The following materials were used in the analysis: 1) vegetation map of West Siberia (1:1500000 map scale) (1976), 2) hydrographical characteristics data

9 (percentage of lakes + percentage of swamps) from the Water Surface Resources of West Siberia (1971-1975 and 2009). Scientific originality of the study is 1) to use ERA-40 model reanalysis data for evaluation of air temperature and precipitation variability for 21 watersheds; 2) to use satellite altimetry data for estimation of spatial and temporal variability of flooded zones based on the analysis of a reflected signal or backscatter coefficient (BSC), expressed in decibels, a threshold value of this coefficient is selected for each watershed and compared with historical data; 3) in establishing the correlation between the extent of inundation and summer precipitation data from model reanalysis for a number of watersheds; 4) in validation the representativity of satellite altimetry data for estimating time dynamics of flooded watersheds; 5) the classification of the Ob’s basin rivers based on the seasonal dynamics of the backscatter coefficient. Implementation of results. Satellite radar altimetry is applicable not just to measure height above the surface but also to estimate the variability of various flooded zones (seasonal and interannual). The temporal variability of flooded areas is given in this study. The main results and conclusions of this work are used for lecture courses within the master programs in «hydrometeorology», «land hydrology», «hydrology and environmental studies of swamped oil-and-gas territories» in Tomsk State University as well as for hydrological monitoring of the West Siberian river basins. Principle defended statements: 1. ERA-40 reanalysis is reliable data for estimation of air temperature and precipitation variability in the watersheds of the West Siberian Plain. 2. Satellite altimetry is reliable data for estimation the extent and temporal variability of flooded zones. 3. Satellite altimetry is applicable for geographic division of the study area basing on the seasonal and interannual variability of the extent of flooded zones. Individual contribution. The author of the study has been taken part in statement of objectives and results interpretation. The main results of the study have been obtained by the author of the thesis. Altimetry data processing has been implemented together with A. Kouraev and E. Zakharova colleagues from LEGOS in Toulouse. Conferences and seminars. The main results of the study have been discussed on the international and regional conferences: EGU (European Geosciences Union, Vienna, Austria, 2009, 2010); ESA (European Space Agency) «Earth observation and the water cycle: towards a water cycle multi-mission strategy» (Frascati, Italy, 2009); EGU Leonardo Topical Conference Series on the hydrological cycle (Luxemburg, 2010); Enviromis-2010 (Tomsk, Russia, 2010); «Fundamental problems of water and water resources» (Barnaul, Russia, 2010); trilateral

10 seminar (Russia, France and Germany) «The climate regulating role of forest-bog ecosystems: landscape-ecological and social aspects» (Hamburg, Germany, 2010); «Climatology and hydrology of West Siberia» (Tomsk, Russia, 2012). It has been published 6 articles in co-authorship including two articles in the peer- reviewed journals. Thesis organization and its volume. The manuscript is composed of 2 extended abstracts in French and English, introduction, three chapters, conclusions (in Russian) and bibliography. All tables, figures and pictures in the text, if it’s not explained other, are done by the author of this dissertation.

DESCRIPTION OF THE STUDY

Chapter 1. General description of the territory This chapter describes the physic and geographic factors as well as mechanisms that determined the evolution of the West Siberian Plain. Climate change of various regions has its particular characteristics and differs from the global state. Ippolitov et al. (2008) and Kabanov (2008) have stated that climate warming in Siberia for the last 30 years is characterized by the heterogeneous sub-regional structure with «hot spots» in some regions up to 0,5°C/decade. There is a significant change in the general moisture of the territory as well as in the hydrological regime. Moreover the wetland hydrographic net and its characteristics describe in details because the wetland formation on the territory of West Siberia plays a very important role providing special hydrological conditions (Zemtsov, 1976) and must be considered in its monitoring.

Chapter 2. Methods This chapter is devoted to methods used in the study. The following sources were used as initial data for estimation of the climate change pattern based on air temperature and atmospheric precipitation: 1) archives of the All-Russian Research Institute of Hydrometeorological Information – World Data Center” (RIHMI-WDC) (www.meteo.ru) – daily records from meteorological stations of West Siberia, 2) ERA-40 model reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) (www.ecmwf.int). The monitoring results from meteorological stations were used for control of model reanalysis data. These data are summarized below. The analysis of the air temperature and atmospheric precipitation data was carried out for the Berezovo station from 1936 to 2005 (69 years of observations) and the Barabinsk station from 1926 to 2005 (79 years). The first station is located nearly at the mouth of the Severnaya

11 Sosva river, the second one is positioned near the northern boundary of the inner watershed of Ob’-Irtysh interfluve area. The archive data in relation to temperature and precipitation are regularly adjusted. The sequences of precipitation data are corrected for exclusion of discontinuity. They are adjusted for wetting and transition from rain gauges to precipitation gages. However, the precipitation data contain a significant element of instrumental discontinuity, which is partly associated with underestimation of solid precipitation, especially those that accompanied with snowstorms and strong winds (Estimation Report…, 2008). The ERA-40 reanalysis archive contains the data from September 1957 to August 2002, with the spatial resolution of 2.5° along the latitude and longitude at regular grid points and the time resolution of 6 hours. We analyzed the air temperature and precipitation data from 1958 to 2001 by arithmetic averaging of the data at all regular grid points that fell into the area of each specific watershed (fig. 1). Average annual air temperatures and total atmospheric precipitation were analyzed for a calendar year. Seasonal temperature and precipitation time series were conventionally taken with fixed boundaries: winter (December of the previous year – February, DJF), spring (March – May, MAM), summer (June – August, JJA), autumn (September – November, SON). For estimating statistical significance of trends using the Student’s test, a confidence level was set at 5% ( = 0,05). We used the satellite altimetry method to estimate the moistening mode of the territory (or more exactly its inundation extent). This method has some great advantages as compared with field observations. The classification of remote sensing methods based on different criteria, such as equipment installed on the system, radiation bands and an operating principle (fig, 2) is presented. The short description of passive and active remote sensing systems is given. This thesis uses the satellite altimetry method, which is one of the active remote sensing methods. The operating principle is as follows: the radar altimeters permanently transmit signals to Earth (towards the nadir (upright), and receive the echo from the surface. Altimetry satellites basically determine the distance from the satellite to a target surface by measuring the satellite- to-surface round trip time of a radar pulse (fig. 2).

12 Hydrologic and climatic zones [by Mezentsev, Karnatsevich, 1969]: . Excessive moistening in moderate and wet years and optimal moistening in dry year at a frequency of once every 5 years; B. Zone of excessive moistening and insufficient heat supply in wet year at a frequency of once every 5 years and optimal moistening in moderate and wet years at a frequency of once every 5 years;

. Zone of optimal moistening and heat supply in moderate year and in wet year, at a frequency of once every 5 years and insufficient moistening in dry year at a frequency of once every 5 years; D. Zone of insufficient moistening and excessive heat supply in dry year at a frequency of once every 5 years and optimal moistening in moderate year and in wet year at a frequency of once every 5 years; E. Zone of highly insufficient moistening and excessive heat supply in moderate and dry years at a frequency of once every 5 years, as well as insufficient moistening in wet year at a frequency of once every 5 years; 1. Zone of highly excessive moistening and insufficient heat supply; 1. Zone of highly insufficient moistening and excessive heat supply. Natural zones [by Bulatov, 1996]: 1. tundra; 2. forest tundra; 3. northern and middle taiga; 4. southern taiga; 5. sub-taiga (mixed forests); 6. small-leaved forests; 7. northern forest steppe; 8. central forest steppe; 9. southern forest steppe; 10. steppe.

Figure 1 – Map of coverage of study watersheds with the coordinate grid of ERA-40 model reanalysis (watersheds: 1 – Shchuchya, 2 – Poluy, 3 – Nadym, 4 – Pur, 5 – Taz, 6 – Nazym, 7 – Lyamin, 8 – Tromyegan, 9 – Vakh, 10 – Severnaya Sosva, 11 – Tavda, 12 – Konda, 13 – Tura, 14 – Bolshoy Yugan, 15 – Tym, 16 – Vasyugan, 17 – Om, 18 – Inner watershed of Ob and Irtysh interfluve area) – marked with circles. Red triangle – Berezovo meteostation, green triangle – Barabinsk meteostation.

 B



 Figure 2 – Altimetric measurement scheme (www.aviso.oceanobs.com; Aviso User handbook, 1996); A – general view; B – in details

13 Therefore, the satellite altimetry method can be used for measurement of the distance between the satellite and the reflective surface, as well as the waveform, which carries the information on nature and properties of the surface (Vignudelli et al., 2011). Waveform represents a time change in value and shape of an incoming signal. One of the waveform elements is energy of an altimetry signal, which is expressed as backscatter coefficient (BSC) (0). It is measured in dB and used in this thesis for analyzing inundation extent of study watersheds. Open water surface gives a higher BSC value that less moistened surface. Its value also depends on type of underlying surface – on relief, soil, and vegetation. For example, in the case of open water surface the signal is strong: BSC 15 dB. The reflected signal is weaker, e.g. in mountain areas with a high diversity of elementary surfaces, from which a signal is reflected at different angles with high energy losses, as well as in dry meadows densely covered with grass, and, in a greater degree, in forests. The thesis uses the data obtained from satellite altimeters TOPEX/Poseidon and ENVISAT. A time repetition interval (cycle) of measurements along the satellite tracks is equal to 10 and 35 years, respectively. The zone of coverage with satellite tracks is secured within 66° of north latitude up to 66° of south latitude for TOPEX/Poseidon and 82.4° of north latitude up to 82.4° of south latitude for ENVISAT (fig. 3).

Figure 3 – TOPEX/Poseidon and ENVISAT tracks’ coverage of watersheds (TOPEX/Poseidon – black; ENVISAT – orange)

Altimetry data processing

1. The initial satellite altimetry data were obtained using CTOH software (http://ctoh.legos.obs-mip.fr/ French Observation Service dedicated to satellite altimetry studies), taking into account instrumental errors and adjustments for environment effect. The data 14 represented an averaged signal with a 0,1 sec range values from radar echoes corresponding to along-track ground spacing of 580 m for TOPEX/Poseidon and 380 m for ENVISAT. The distance between satellite tracks is 315 km for TOPEX/Poseidon and 85 km for ENVISAT (fig. 4). The points along the track correspond to satellite signals. Points of intersection of tracks with watershed boundaries were taken using MapInfo software. 2. We determined a total number of altimetry measurements in each cycle, as well as a number of measurements from among them that fall into water surface, or more exactly the surface classified by us as "water" one, but in the reality only flooded with water to a certain extent. Water is present permanently (in the form of rivers or lakes) or temporarily (in the form of swamps of different types, bogs, plain floods). Flooding of the area is proposed to be measured by flooding coefficient (Fwat). It is calculated as a ratio of a number of measurements above water surface Nobs (ndB) to a total number of measurements Nobs in each satellite cycle:

Fwat = Nobs (ndB)/Nobs*100% (1)

Figure 4 – TOPEX/Poseidon and ENVISAT coverage of Vakh watershed by altimetric signals (TOPEX/Poseidon – red dots; ENVISAT – blue dots)

A number of measurements Nobs for 10-day TOPEX/Poseidon (49-753 points) and 35- day for ENVISAT (1261-18,509 points) of satellite cycles for study watersheds depend on watershed area. It is obvious that Fwat value changes in time depending upon seasons, as well as in the multi-year section for each season, reflecting the space-time moistening (flooding) dynamics of the study area. A threshold value of backscatter coefficient (BSC) should be preset for differentiation of flooded and water-free surfaces. Therefore, in the general case an individual value of this criterion should be selected experimentally for each watershed. We used some cartographic data for more objective estimation of the BSC threshold value: different BSC values were set, and then corresponding minimum flooding coefficients

15 were calculated for the driest summer season (from July to September). The latter values were compared with available data on hydrographic characteristics of watersheds (percentage of lakes + percentage of swamps) taken from the monographs (“Surface Water Resources in USSR”, 1971-1975, and “The Hydrology of Water-Logged Areas…”, 2009), as well as the vegetation map of the West Siberian Plain (1976), which reflect a relative area of permanently moistened lands on a watershed. As a result of comparison, the BSC threshold value is selected (within a range from 15 to 27 dB) in such a way to best match the cartographic data (fig. 5).

Figure 5 – Flooding coefficient (%) and its threshold values (dB) for the Vakh river

Chapter 3. Analysis of spatial and temporal variability of climate and flooding of the West Siberian watersheds

Numerous studies devoted to investigation of climate changes in Siberia have shown that these changes are unevenly distributed across the territory and form specific regions (”hot points”), where rapid climate warming is observed (Gordov, 2007). Liner trend analysis of air temperature and precipitation data This section is devoted to investigation of the time dynamics of air temperature and total atmospheric precipitation (average annual and seasonal) in the area of study river basins (21 watersheds) of the Western Siberia according to the data of meteorological stations and ERA-40 model reanalysis. Quality of the reanalysis data is also discussed. Reanalysis makes it possible to transform observation data that are irregular in time and space into grid global fields covering several decades. Reliability of reanalysis data is known to be unequal for different

16 meteorological values. Systematic errors are often inherent to them (Kalnay, 2003). Quality of reanalysis data also depend on density of an observation network. Despite a number of limitations (Cullather et al., 2000), reanalysis data are valuable information sources, even for analysis of precipitation and evaporation that are simulated less precisely than air temperature. We compared the reanalysis data with the observation results from Berezovo and Barabinsk stations in order to assess quality of ERA-40 reanalysis data for analysis of main climatic variables (air temperature and precipitation). The analysis of air temperature and precipitation trends for 1958-2001 in the study watersheds has shown the good matching of meteorological station data and reanalysis data (Table 1).

Table 1 – Liner trends coefficients and its correlations between ERA-40 and meteorological stations data of air temperature and precipitation (1958-2001)

Liner trend coefficient rxy rxy 0 ( /decade)/(mm/decade) (temperature) (precipitation) ERA-40 (S. Sosva) 0,2 /15 0,99 0,77 Berezovo 0,2 /10 ERA-40 (Inner watershed of 0,3 /9 Ob and Irtysh interfluve area) 0,97 0,73 Barabinsk 0,4 /13

The analysis of the air temperature and atmospheric precipitation data of meteostations data for Berezovo (1936-2005) and Barabinsk (1926-2005) as well as ERA-40 data (1958-2001) showed the following results: The greatest warming is observed in the northern part of the West Siberian Plain, which is suggested by linear trend coefficients (0,35-0,37°C/decade). A significant increase in precipitation is observed in the Trans- Region (Severnaya Sosva, Konda, Tavda, Tura), in the Surgut Polesie (Nazym and Vakh) and in the northern part of the plain (Taz river basin) (Table 2). We analyzed seasons of the year (winter: December-February; spring: March-May; summer: June-August; autumn: September-November) and calculated their trends to determine the contribution of each month in the annual time series. The analysis has shown that the highest increase in air temperature in watersheds is observed in the spring season with significant linear trend coefficients from 0,40 to 0,84°C/decade, as well as in the Barabinsk station. The greatest warming is observed in the north of the plain – in watersheds of Shchuchya, Poluy, Nadym and Tromyegan rivers with linear trend coefficients from 0,72 to 0,84°C/10 years (Table 3). In general, a significant increase in spring temperatures was confirmed for 16 watersheds, including the Barabinsk station. The obtained data on air temperature are confirmed by the studies of several authors (Frey and Smith, 2003; Gordov, 2007), who estimated air temperature and

17 precipitation in the West Siberia according to data from meteorological stations (1958-1999) and ERA-40 model reanalysis (1958-2000). An increase in winter temperatures is significant only for the Barabinsk station with the linear trend coefficient of 0,53°C/decade. A change in air temperature in summer and autumn seasons turned to be insignificant except Taz river basin with the increase liner trend of 0,32°C/decade. The analysis of precipitation trends has shown a growth of precipitation at a rate of 4,0– 6,4 mm/decade in the winter season in watersheds of Konda, Nazym, Lyamin rivers, as well as in Berezovo and Barabinsk stations. In the spring season a significant increase is observed in watersheds of Nadym, Pur, Taz, Konda, Nazym, Lyamin, Tura, Vakh, Tromyegan, Bolshoy Yugan rivers and in the Berezovo station (5,1-9.9 mm/decade). In the summer season the significance of the trends was confirmed only in watersheds of Taz, Severnaya Sosva and Nazym (8,6-14,8 mm/decade). The autumn seasons makes the lowest contribution in the seasonal distribution of precipitation, with a significant increase in the watershed of the Tura river (8,8 mm/decade). A significant increase in spring temperatures results in earlier snow melting and the long vegetation period, while a significant increase in atmospheric precipitation leads to higher flooding of territories in different natural zones (despite an increase in air temperatures and evaporation rates). Flooding of the territory depends on the relationship between water balance elements (precipitation, evaporation, drainage). The mechanism of flowing excessive moisture into the river network, being a natural drainage of the area (Ivanov, 1957), should be also taken into account. Therefore, the effect on change in precipitation on change in the flooded zones is difficult to be traced only with ground-based observations. Moreover, the most areas are inaccessible due to high swamping, and this even more complicates the solution of this task. That is why we used the satellite altimetry method for study watersheds.

18

Figure – 6 Map of liner trends coefficients of annual air temperature (on the left) and precipitation (on the right)

19

Table 1 – Annual and seasonal estimated decadal trends in surface air temperature and Student’s test statistics (significance level: = 0,05, statistically significant values are marked with the bold type)

Watershed and meteostation’s name /decade /decade /decade /decade /decade /decade /decade /decade Annual Annual trend, °C/decade t-statistics Trend (DJF), ° t-statistics Trend (MAM), ° t-statistics Trend (JJA), ° t-statistics Trend (SON), ° t-statistics Shchuchya 0,24 1,43 -0,10 -0,26 0,84 2,69 0,27 1,61 -0,11 -0,36 Poluy 0,34 2,12 0,12 0,29 0,78 2,72 0,29 1,83 0,12 0,49 Nadym 0,37 2,29 0,23 0,55 0,76 2,71 0,29 1,97 0,12 0,46 Pur 0,35 2,20 0,22 0,47 0,68 2,52 0,32 2,25 0,23 0,87 Taz 0,36 2,32 0,34 0,71 0,62 2,47 0,25 1,78 0,12 0,42 Severnaya Sosva 0,15 0,97 -0,05 -0,14 0,53 2,23 0,15 0,89 -0,07 -0,32 Konda 0,22 1,65 0,19 0,53 0,45 2,07 0,17 1,06 0,02 0,10 Tavda 0,17 1,31 0,01 0,17 0,44 2,14 0,18 1,15 -0,04 -0,19 Tura 0,20 1,73 0,22 0,72 0,33 1,66 0,18 1,20 0,05 0,30 Nazym 0,22 1,53 0,09 0,24 0,56 2,26 0,17 1,11 0,03 0,11 20

Lyamin 0,24 1,89 0,15 0,40 0,63 2,42 0,19 1,29 0,09 0,39 Tromyegan 0,34 2,24 0,26 0,63 0,72 2,50 0,19 1,36 0,12 0,47 Vakh 0,33 2,14 0,32 0,70 0,61 2,52 0,24 1,73 -0,03 -0,10 Bolshoy Yugan 0,33 2,41 0,36 0,94 0,59 2,49 0,22 1,60 0,11 0,52 Tym 0,26 1,84 0,29 0,70 0,53 2,40 0,12 1,08 0,07 0,29 Vasyugan 0,29 2,21 0,30 0,83 0,49 2,34 0,19 1,62 0,09 0,46 Om 0,28 2,02 0,34 0,98 0,38 1,71 0,17 1,32 0,11 0,58 Inner watershed of Ob and Irtysh interfluve area 0,27 2,14 0,43 1,26 0,37 1,79 0,11 1,0 0,15 0,75

Berezovo, met. station 0,05 0,73 0,02 0,10 0,20 1,22 0,03 0,45 -0,04 -0,28 Barabinsk, met. station 0,26 5,98 0,53 4,00 0,40 4,73 0,06 1,29 0,10 1,33

Table 2 – Annual and seasonal estimated decadal trends in precipitation and Student’s test statistics (significance level: = 0,05, statistically significant values are marked with the bold type)

Watershed and meteostation’s name Annual Annual trend, mm/decade t-statistics Trend mm/decade (DJF), t-statistics Trend (MAM), mm/decade t-statistics Trend mm/decade (JJA), t-statistics Trend (SON), mm/decade t-statistics Shchuchya -1,5 -0,20 2,5 1,2 1,7 0,59 -1,8 -0,31 -4,0 -1,09 Poluy 5,1 0,55 4,0 1,74 5,4 1,76 -1,2 -0,19 -2,9 -0,77 Nadym 7,1 0,86 3,4 1,43 5,1 2,05 2,8 0,52 -4,5 -1,15 Pur 14,0 1,83 3,6 1,38 6,2 2,55 7,9 1,51 -4,0 -0,95 Taz 20,1 2,80 4,9 1,69 7,6 3,20 8,6 2,31 -0,9 -0,21 Severnaya Sosva 16,8 2,43 0,8 0,43 5,6 1,82 9,7 2,32 0,3 0,08 Konda 22,8 2,52 5,8 2,54 6,1 2,21 6,9 1,11 3,5 1,05 Tavda 19,9 2,19 0,3 0,11 1,5 0,44 9,5 1,50 8,0 1,96 Tura 24,1 2,80 4,1 1,57 5,8 2,06 5,3 0,93 8,8 2,48

21 Nazym 23,9 2,56 4,0 2,20 9,5 2,61 14,8 2,73 -5,0 -1,24 Lyamin 16,2 1,63 4,7 2,31 9,9 2,80 7,3 1,23 -6,3 -1,51 Tromyegan 12,9 1,40 3,8 1,72 6,4 2,02 6,8 1,24 -4,7 -1,20 Vakh 20,8 2,26 3,8 1,56 8,4 2,93 9,7 1,63 -1,7 -0,42 Bolshoy Yugan 12,1 1,00 2,1 0,19 6,7 2,21 2,3 0,36 0,5 0,15 Tym 11,7 1,45 3,2 1,39 3,3 1,02 4,7 0,88 0,1 0,03 Vasyugan -1,6 -0,21 3,1 1,27 -0,7 -0,26 -3,9 -0,7 -0,6 -0,19 Om -6,9 -0,91 2,6 1,14 -0,7 -0,31 -10,1 -1,76 0,7 0,20 Inner watershed of Ob and Irtysh 9,5 1,34 3,0 1,28 1,0 0,40 5,2 1,22 -0,2 -0,06 interfluve area Berezovo, met. station 19,8 3,91 6,4 5,25 5,4 2,92 2,1 0,58 4,5 1,81 Barabinsk, met. station 4,3 1,27 4,3 4,54 0,9 0,71 -1,8 -0,66 1,1 0,87

21 Temporal variability of flooded zones from satellite altimetry Time variability in flooding of river basins was analyzed using the data from satellite altimeters TOPEX/Poseidon and ENVISAT. The river basins were classified by interannual dynamics of minimum flooding coefficients for the summer period, which reflects the natural modes of river watersheds. For example, the river classification proposed by V.A. Zemtsov (2003) is based on the similarity of annual and monthly discharge pattern. It is noted in this study that there are wide "neutral" bands with the transient mode of fluctuations between the identified clusters or cores. As a result of the performed analysis using the satellite altimetry results, the author of this thesis identified four geographical regions on the basis of the visual analysis. The first of them includes the central part of the Ob-Irtysh interfluve area (basins of Om and Vasyugan rivers) and its inner watershed area. The second region includes the Trans-Ural region and the northern part of the Ob-Irtysh interfluve area (basins of Severnaya Sosva, Konda, Tavda, Tura and Bolshoy Yugan). 2 subgroups are identified in this group of rivers: ) Severnaya Sosva, Konda, Tavda; b) Tura and Bolshoy Yugan. The third region includes the rivers of the Ob-Yenisei interfluve area (basins of Vakh, Tym and Ket rivers). The fourth region comprises the rivers of the Surgut Polesie, as well as the rivers flowing to the north of the Siberian Ridges (basins of Nazym, Lyamin, Pim, Tromyegan, Kazym, Taz, Pur, Nadym, Poluy rivers). 4 subgroups of river watersheds were identified: a) Pur, Nadym, Kazym; b) Poluy, Taz; c) Tromyegan, Pim; d) Lyamin, Nazym. Our classification of study watersheds by similarity of interannual dynamics of seasonal flooding coefficient matches well with the V.A. Zemtsov's classification (2003). The comparison of both classifications has shown that the data for the central part of the Ob-Irtysh interfluve area (except for the watershed of the Vasyugan river), the Trans-Ural Region and the northern part of the Ob- Irtysh interfluve area, the Surgut Polesie and the rivers flowing to the north of Siberian Ridges coincide with each other. For the last group we presented the more detailed division of river watersheds into subgroups. An example of watershed grouping is presented in Figure 7. The thesis considers the consistency between precipitation data from ERA–40 model reanalysis with the data from TOPEX/Poseidon altimeter. Pair linear correlation indexes and their standard errors were calculated for all study watersheds in order to reveal a statistical relationship between minimum flooding extent in the summer period and total precipitation for the same period. Several watersheds with significant correlation indexes were identified, at a given significant level = 0,05: Severnaya Sosva (rxy = 0,79), Tym (rxy = 0,90), Om (rxy = 0,93),

Vasyugan (rxy = 0,73), Poluy (rxy = 0,77). Therefore, we can suppose that flooding of the area highly depends on total precipitation of the summer season.

22 Om 3 group Vakh 1 group Vasyugan 60 80 Inner watershed Tym Ket

50 60

40 40 classed as open water water (%) open as classed ratio of altimetric observations altimetric ratio of classed as open water (%) ratio of altimetric observations 20 30

0 20

1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002 year year Figure 7 – Groups of watersheds for interannual dynamics of flooding coefficient The identified relationship between flooding and precipitation of the summer period for a number of watersheds shows a good representativity of the altimetry data. The data from satellite altimeter TOPEX/Poseidon cover only the 8-year period and do not allow identifying significant trends due to a small length of series. The only exception is the watershed of the Om river and inner watershed of the Ob-Irtysh interfluve area. Only one reliable prediction can be reasonably made: both fluctuations and directional changes in flooding will continue. Based on such assumptions, the satellite altimetry method can be used for estimation of flooding dynamics for complex areas (swamps, water-logged areas etc.). We estimated the variability in water flooding (2003-2008) of all study river basins with ENVISAT satellite. At the first stage we dealt with the river basins located in the north of West Siberia: Poluy, Nadym, Pur, and Taz (PNPT). A BSC threshold value was set at 20 dB. The obtained results were graphically presented in Fig. 8. They reflect the variability in water flooding of PNPT area, which is characterized by two annual peaks: spring and autumn, with a minimum between them. In winter, when the area is covered with snow, the coefficient is equal to zero. The first maximum related to spring flood that usually occurs in June, with flooding coefficient value up to 85% for all rivers, except for Taz (66%). Low flooding percentage of the Taz river basin is likely to be associated with a more dissected relief within the Taz Upland, where flooding conditions are less favorable. The second minimum is related to the autumn floods observed in September, also with high flooding coefficients: up to 81% for Nadym, 79% for Pur, 56% for Poluy and 52% for Taz. It should be noted that spring and summer-autumn periods are characterized by almost equal high values, although water content of rivers is significantly lower in the period of summer- spring floods as compared with high-water level. It is explained by the fact that even an

23 insignificant increase in difference in precipitation results in significant flooding of the surface and higher soil moisture. Therefore, highly flooded surface is registered by the satellite altimeter almost as water surface at a selected BSC threshold value. The summer minimum for all rivers is observed in August: the coefficient value is equal to 35% for Poluy, 68% for Nadym, 70% for Pur and 42% for Taz. Thus, the satellite altimetry enables to estimate a value and variability of flooded and water-logged areas in PNPT watersheds. Water is partly used as surface and groundwater flow and partly evaporates. Climate warming may intensify these processes.

100 a) Nadym (black)

80 Pur (grey)

Poluy (black with crosses) 60

Taz (black with dots) 40

classed as open water (%) water open as classed 20 Ratio of altimetric observations altimetric of Ratio

0

b) 5000 /s)

3 4000

3000

2000

1000 Pur (grey) daily discharge (m discharge daily Nadym (black)

Pur (grey) and Nadym (black) Nadym and (grey) Pur 0 2002 2003 2004 2005 2006 2007 2008 2009 Figure 8 – Temporal variability of (a) flooded area (% of ENVISAT altimetric observations classed as open water) and (b) daily river discharge for Pur at Samburg and Nadym at Nadym (m3/s). Timing of spring and autumnal maximas of flooded area is shown as grey dashed lines (Zakharova et al., 2009) Further, we proposed the classification of 21 watersheds based on the seasonal dynamics of flooding coefficient at a threshold value of 20 dB (Zakharova et al., 2009). As a result of this analysis, we identified 3 watershed groups of interannual and seasonal (January-December) variability (Table 4). Table 4 – Watershed types of seasonal and interannual variability from ENVISAT (Zakharova et al., 2009) Groups and description of watersheds

I. Small permanent flooding with one peak cycle and clear drying: Inner watershed of Ob and Irtysh interfluve area, Om, Tavda, Severnaya Sosva, Tura, Vasyugan. Ia. Small permanent flooding with two peaks cycle and clear drying: Ket, Tym, Bolshoy Yugan and Konda. II. High permanent flooding with insignificant draining: Tromyegan, Pim, Lyamin, Nazym, Shchuchya. III. Medium permanent flooding with two peaks cycle and well pronounced draining: Vakh, Kazym, Taz, Poluy, Pur, Nadym.

24

Since the threshold value depends on type of landscape, we selected an individual value of this criterion for each watershed. In general, the threshold value for northern watersheds remained unchanged (20 dB), except for the watersheds located in the Trans-Ural Region, the central part of the Ob-Irtysh interfluve area and its inner watershed area, as well as in the Surgut Polesie. As a result of the performed analysis, we also identified four geographical regions, which generally coincide with the regions identified on the basis of T/P satellite. A gradual increase in flooding is observed in each geographical region: 1. in watersheds of Vasyugan and Ket rivers, 2. Tura and Tavda, 3. Tym, 4. Pim and Lyamin (fig. 7).

45 25 40 35 20 30 25 15 20 Vasyugan 15 10 Ket Tavda 10 flooding(%) coefficient, 5 Tura flooding flooding coefficient, (%) 5 0 2002 2004 2006 2008 2010 0 2002 2003 2004 2005 2006 2007 2008 2009 year year

30 Tym 100

25 80

20 60 15 Pim 40 Lyamin 10 20 5 flooding coefficient,flooding (%) flooding coefficient, flooding (%) 0 0 2002 2004 2006 2008 2010 2002 2004 2006 2008 2010 year year

Figure 7 – Interannual inunda tion variability of basins of Vasyugan, Ket, Tavda, Tura, Tym, Pim, Lyamin rivers (only watersheds with visible increase in inundation are shown)

Despite an increase in flooding in each geographical region for the 5-year period, it is rather difficult to predict a direction, in which flooding of the area will be changing. Therefore, this problem can be further solved by using a number of new satellite altimetry missions that enable to increase length of time series.

25 Conclusions and perspectives:

1. Changes in air temperature and total precipitation in river basins located in different hydrologic-climatic and swamp zones were analyzed on the basis of data from meteorological stations and model reanalysis. In particular, the analysis of average annual precipitation data (1926-2005) shows that the greatest warming is observed in the northern part of the plain in watersheds of Nadym and Taz rivers (0,37°/decade). A significant increase in total precipitation is observed in the Trans-Ural Region (Severnaya Sosva, Konda, Tavda, Tura rivers) and in watersheds of Taz, Nazym and Vakh rivers. A trend to increase in total precipitation is observed throughout the area of the plain, except for watersheds of Vasyugan and Om rivers that are characterized by negative trends. 2. The analysis of data on seasonal fluctuations of air temperature and total precipitation has revealed the following: • A significant increase in air temperatures is observed in the spring period (March- May) with the greatest warming in the north of the plains, as well as in the Barabinsk station (0,40 to 0,84°C/decade). • A significant increase in total atmospheric precipitation is observed in winter, spring and summer seasons. However, in the spring season a significant increase in precipitation is observed in most watersheds located in each hydrologic-climatic and swamp zone. Changes in air temperature and total precipitation result in a change of flooded areas. It will be estimated using the satellite altimetry method. 3. The satellite altimetry method enabled to estimate a value and interannual/seasonal variability of flooding extent for watersheds of the Ob basin rivers. 4. A threshold backscatter coefficient (BSC) was determined for each watershed using TOPEX/Poseidon and ENVISAT satellites in order to estimate changes in flooding coefficient of study watersheds in the summer season and within-year variability of this parameter by season. 5. Based on the data from TOPEX/Poseidon satellite, the classification of river basins interannual dynamics of the minimum summer flooding coefficient was proposed, with identification of four geographical areas. This classification matches well with V.A. Zemtsov's classification (2003) based on similarity between the interannual variability and monthly river discharge.

26 6. Several groups of watersheds, for which interannual variability in flooding level based on the data from TOPEX/Poseidon satellite matches well with total precipitation data based on the model reanalysis from 1993 to 2001. 8. It has been found that a significant decrease in flooding (TOPEX/Poseidon) with time is observed in the inner watershed of the Ob-Irtysh interfluve area and in the watershed of the Om river. 8 Using the data from ENVISAT satellite, the watersheds were classified by interannual dynamics of the flooding coefficient and 4 geographical areas were identified too. In general, they coincided with the areas identified on the basis of the data from TOPEX/Poseidon satellite. An increase in flooding was identified in watersheds of rivers in the Trans-Ural Region, the Surgut Polesie, the Ob-Yenisei interfluve area, as well as in the watershed of the Vasyugan river. In general, the performed studies show the representativity of the satellite altimetry data as related to flooding level of river watersheds and its space-time variability. Prospects of the further research. The further research will be aimed at adjusting BSC threshold values for differentiation of landscapes with different flooding and underflooding levels, as well as at studying flooding dynamics by season and for a long-term period.

PUBLICATIONS 1. M.V. Kolmakova, E.A. Zakharova, A.V. Kouraev, V.A. Zemtsov, S.N. Kirpotin. Temporal Variability of climate, flooded and wet zones in the Western Siberia from data stations, atmospheric reanalysis and satellite altimetry // Vestnik of Tomsk State University. – 2012. – 364. – PP. 173-180 (In Russian with an abstract in English).

2. E.A. Zakharova, A.V. Kouraev, S. Biancamaria, M.V. Kolmakova, N.M. Mognard, V.A. Zemtsov, S.N. Kirpotin, B. Decharme. Snow cover and spring flood flow in the northern part of the Western Siberia (The Poluy, Nadym, Pur and Taz rivers). Journal of Hydrometeorology. 2011. – Vol. 12 (6). – P. 1498-1511.

3. Zakharova, E.A., Kouraev, A.V., Kolmakova, M., Mognard, N.M., Zemtsov V.A., Kirpotin S.N. 2009. The modern hydrological regime of the Northern Western Siberia from in situ and satellite observations. International Journal of Environmental Studies. Vol.66, No 4, 447-463.

4. Kolmakova M.V, Kouraev A.V., Zakharova E.A., Kirpotin S.N., Zemtsov V.A., Mognard N.M. Spatial and temporal variability of hydrological regime and water quality in the cryolithozone of Western Siberia // Fundamental problems of water and water resources. – 2010. – P. 141-145.

5. Kirpotin S., Polishchuk Yu., Zakharova E., Shirokova L., Pokrovsky O., Kolmakova M., Dupre B. One of Possible Mechanisms of Thermokarst Lakes Drainage in West-Siberian North. International Journal of Environmental Studies. – 2008. – Vol. 65, No 5. – PP. 631-635.

27 6. Kirpotin S., Berezin A., Bazanov V., Polishchuk Y., Vorobiov S., Mironycheva-Tokoreva N., Kosykh N., Volkova I., Dupre B., Pokrovsky O., Kouraev A., Zakharova E., Shirokova L., Mognard N., Biancamaria S., Viers J., Kolmakova M. Western Siberia wetlands as indicator and regulator of climate change on the global scale. International Journal of Environmental Studies. – 2009. – Vol.66, No 4. – PP. 409-421.

28 AB

Résumé ...... 3 Abstract...... 8 AB...... 30 CD 1. EF BB BBB...... 35 1.1. BB-BB , DB BB A-BFB ABA ...... 35 1.1.1. EB BB ABA...... 35 1.1.2. AA B BAB D ABA...... 37 1.1.3. DFDA BA B AA BAB AA FDB A-BFB ABA...... 40 1.2. EFAAB DB A-BFB ABA...... 41 1.3. CBB...... 45 1.3.1. DA BB B BB...... 46 1.3.2. EA ABA...... 49 1.4. A...... 50 CD 2. DB BDAB ...... 57 2.1. BDAB ...... 57 2.2. AFDAB B BAB...... 61 2.2.1. DA ADB...... 61 2.2.2. B F BABAA ABAB DB ()...... 63 2.3. FFB B ADB BABB...... 75 2.4. EF BDAB...... 76 2.5. A BD, BD F...... 76 2.5.1. AA DBB AB B DA ADB...... 76 2.5.2. AA B ABAB...... 77 CD 3. ADB AAA-AA BABB DB B FAAAB A FA A BFBB ...... 83 3.1. AA AABB BAAB DB...... 83 3.2. ADB A ADAB B AA BAAB B A (1926-2005 .) AA DBB AB B DA ADB ERA-40...... 86 3.3. AA BAB FAAAB A FA A-BFB ABA AA AB DBBB (TOPEX/Poseidon, ENVISAT)...... 97 3.3.1. B FAAAB F AFDAB AB TOPEX/Poseidon ...... 97 3.3.2. DBBB F BBA FAAAB AA AB ENVISAT ...... 102 DAB...... 109 B ...... 111 BDAB 1...... 123 FDB 1. DBBB BABAA ABAB DB .....123 BDAB 2...... 125 FDB 2. EAA BA , BD F ...... 125 BDAB 3...... 128 BA 1. B F AA AB TOPEX/Poseidon B DA ADB ...... 128 BDAB 4...... 131 BA 2. B F AA BABB AA AB ENVISAT ...... 131

29 CDAB

EFAF F BDAB. D A FB BAAB DB F ADAB AA DBBB B BDBB BB, A D A D BDBB AFDAB A AB, A B DA ADB B AB DBBB. DA ADB D F D BDAA DBAB BBDB AA AA B AB AFDAB DA ADB B BD AB AAB B BDAB BAAB DB, BB, B F (Serreze et al., 2005; C, 2007). ADB ERA-40 A AAB A B AB B DB BAB BABB D ADB DBBB BAAB. AB DBB D AB B BA BABAA ABAB DB (). BA D BDAB AB A (Fu, Cazenave, 2001), BAB A BB A, D DA FD (Legresy, Remy, 1997; Remy et al., 1999), D BAB A A F B (Birkett 1995, Cazenave et al. 1997), DA – D DAB BABB B FAAAB BB (Zakharova et al., 2009). DA D A A B BABB BDBB B DBB A-BFB ABA, DB BDA FDAA. A FAAAB AB AB ABDA D B BBB AA BDB AA D (, B, A B B, A , FD). EA A A B AB B DAAB BBB. BBAA F BAB .. A B .. AB (1969) FAAA B AB D AB DAAB BBB, D AA AB DBBB. FDAA A BFBB B A BDBB AFDAB A ABBA BDB B. BDAB AA DA ADB B AB DBBB, FBB DA B B BBB A-BFB ABA, D DAB AA AFDAB B ABDA BB FD BDAB, B D DA A F. F D A BABB DDFAAB A BD-DBBB A A BBB A BFBB AA DBB AB, DA ADB B AB DBBB B BAAB DB.

30 DB BDAB: • B ADB A B AA B A ADAB B AA DA ADB ERA-40, AAA A FA A , B AA DBB AB; • BAB AA AB DBBB D AB FAAAB B BBB, BDA DB AAB BBA FA AB (E) D FA B, D DB FAAA A ; • AB AA ( B AA) BAB B DAAB A F, AB A DAA A, AB DBBB (1993-2008 .). EF BDAB. F BDAB FA AB DB A FA, AB A BD-DBBB B FDA A A BFBB: I. A BFA DAAB B AA DFAAB, A FB FD – F D, , , . II. A BFA DAAB B D DBA FD – F A , A, , , , BA, A, , D A, A, , . III. A BAA BFA B A A A DAAB B A DFAAB, A DB A B A FD – F B E . IV. A AA DAAB B A DFAAB, A A A B DAA FD – D AB FA B E B FDB AAA (BDB FA FD) EF- . DF BDAB – BAB D DDFAAB B FAAAB A FA A BD-DBBB A A- BFB ABA. FD BDAB. BBB BDA D , B AB ACDEFB, AAF, AF. DA FB, B F. AB AAB D AB DBB BABB B A DBDB B 1) B BDB BABB – B A AA (C-) AB A BFBB (www.meteo.ru) B 2)

31 DA ADB ERA-40 A AA A (www.ecmwf.int). D AB B BABB FAAAB BB F BDDB AA AB DB TOPEX/Poseidon B ENVISAT, DAA A A AFDAB CTOH (http://ctoh.legos.obs-mip.fr/ French Observation Service dedicated to satellite altimetry studies, . D, AB). F BDDB «BDA A-BFB ABA», 1:1500000 (1976); B BBB BBB F B AB ( AA …, 1978) B (CBDB FDAA BB…, 2009). A ABA DFAA F D: 1. BAABB AA DA ADB ERA-40 A (21 F) D AB BABB DDFAAB BBB; 2. BDABB BC DEFA FF D AB AAA-AA BABB FAAAB A FA A A ADB BBA FA AB (E), AAB AA BBB BB BD F; 3. DABB B A FAAAB B B DA B AA DA ADB D F; 4. ABB ABAB AA AB DBBB D AB AA BABB FAAAB A FA; 5. DBBBB A F EF FA B AA BBA FAAAB. EFBE AAB F B BB FF. BB DAA AA B-A CAR-WET-SIB «BBBB BD D FDAA DA A BFBB» B D ABB, B A 08-05-92496, 11-05-93109. A, AB DBBB A BD A D D BAB A, A B D AB AA B BABB AB FAAAB A FA. EAA B D F BD B B ABB BB ADAB «BDB»: «BDB B», B «BDB B DB FDAA AAA BB» AA ABB.

32 AA AB, AB A BF: 4. AA DA ADB ERA-40 D AA BAB D AB BABB B A AC A BFBB. 5. AB DBBB D DABDA BAB BABB, D AB ABDA D B AA BAB FAAA BB FA . 6. AB DBBB D B ABAB BBB.

BA ED F. AA D DAAA BDAB FDB DA DBA BDB B BA BB. F ADAB BDAB, FAB D B DB BDB A AAB BDB .. B .., AA AB DFBB BAB BBB B ABB ABB B . D ... EAA FF AA AB DBBB FDB A A .. B ... B FF BDAB. EAA D FDB A AA B BB AAB: CBB (European Geosciences Union, A, B, 2009, 2010); B A (ESA) «AB BDBB: DA BDBB BDAB» («Earth observation and the water cycle: towards a water cycle multi-mission strategy») (B, DB, 2009); CBB «A» DA FD A (EGU Leonardo Topical Conference Series on the hydrological cycle – 2010) (F, 2010); Enviromis-2010 (, 2010); «AADA FD B A » (AD, 2010); A AA B-A-A BA «DB-DB D DA B FDA B: DAA-DBB B BDA » (The climate regulating role of forest-bog ecosystems: landscape-ecological and social aspects) (CF, CAB, 2010), AA AA-B AABB «DBDB B DBDB BFBB» (, 2012). BD BBB FDBA 5 , D 2 – AD, A AB AA AD B BAB. FEF B F. BB B B AB, D, DAB B B DB, B 160 ABAAB, BD 60 A BAAA

33 . FDB B BB, DB BB AB A A , DAA . DAFB. BAA FDA B BD .. B .., FDBB .., ..BBA, ..A BB, ADBB B B ABABB F. EF FDA A DBB B DBDBB C .., AB DFBB BAB BBB B ABB ABB B . D .AB B ADB AA DB, BA C ..A ABB D BDAB. EDA BF ABB, BDB BAABAB D DAAB AA F: D ABB , AA ABB, ABB B. D F – D III, , DFBB BAB BBB B ABB ABB B (LEGOS, . D, AB). BAA FDB AB B BA DFBB LEGOS, BADA FDA AB . D (CROUS) DA B FAB ABB. BA AA BB-BB B AAB, DBDB BB BD BBB B FAAB DB. CF A BDAB, BD AA BBB. AD BAB F BDAB, B BDAB. D FA BDA BAB F AB DBBB, A BB BABAA ABAB DB, BDA DA ADB, BD DBBB BBB. FF DA D DAAA F 1) ADB DDFAAB A BD-DBBB B FDA A, 2) ADB BABB FAAAB A FA AA AB DBBB. EABB BA B D DAAA F, B DAB BDAB.

34 1. EFBFBE FBFBB

A-BFB ABA (B. 1) AB D D 3 DA. 2 B D ABDA A A DB FDAAB, FDDA DBBBB B BBB B. BB ABA ABAA DBB B, – B , – . AB, – B D B B DAB.

BA 1 – CB DAB A-BFB ABA B AA BD A FA

1.1. BB-BB , DB BB A-BFB ABA

1.1.1. EB BB ABA

EFAB A-BFB DB AD A . A AA FD DB DBA ABDA AAA AB, ADAAA A ADABB, B A, A FB B FD DBB A B A (AAA DB …, 1976). ABA D D A BB A: AA B AAA. AA A B B D ADAAA AAA B DB D ABA, A D B AA. FDA B B D 100 . AAA A AB ABFD ABAA ADA B A B A-BFB ABA. BA 0–5 A F 150-200 , DB DB AB FBA ABAA ABA 50-100 (A 100-120 ) B FD B AA (, 1976).

35 EA B ABFD A BB BAB A-BFB ABA D BFBB D (160–210 F. ), A BA A EFB AB, FB A DBA B AD AA (, 2001). AA D A DBBBB DBB. AA B A A BFBB D DA B D DB, BB DD F FBA DDBDA-A ABA DAB B BAA D B DB AA (CDF B ., 1968). AD DBA B, DA B D DB ABD A ABAADA, A FA, B A BBB, B DB BBBB DBDA ABB BAB (AAA DB …, 1976). ABB A ABB D A-BFB DB – A DB ADA-B D D. AAB DBBB ABB D DBABB DBABAB DA AAB A B B AB DAB. ABB BAB D B DB «» AA B DA ABA. AB A-BFB DB BDB ..BD (1962), .. (1976), .. (2011). ABDAA AA DBA BA BAB, DB D AA BB B (ED, 1968). B, ABAB FBA ABA (A BA) BA FAAB, DB B FDBAB, ABDA B B AB BB BBA D AA BA A. DB AB BBD A FDBAB A. FA BA B AA ABB BDA BAB. D DA FDAAB AB A DBA B B. FA . D A B DAA AB. A DAB, AB FB BB, DBB AB AA B A . BABB B DB FDAA D DAAB. ABDAA B B B ABDA F B D ABB B D DB BADA A, B DA D, B B (ED, 1968). AA AA C (EE ADA BB BB) A D A BFBB DA F B D, AA

36 DAB BADA B AA. ADA, BB A A-BFB DB (-, - BADB) A BAABA B B A . D B A, DAB BADA B (C, A B ABB ) D A BFBB – DAB B AAA (CAA B ., 2008). B F, ABB , AB DAA DBB B, D B A , D AA BB B AA BBB.

1.1.2. AA B BAB D ABA

FB BA B DB FD DBAB A BAB DA A BFBB (CB, BD, 1978). EAB B AB FDB B ABB, A ABA, DB A D BABB D. EF BD ADBB A D B - A DB A D ABA. ABB DB BB . BFAB DB DA ABD ADAB. B DDB AAA DAAB, BDB FAB ADA D, B AA A B BAA DBB B DAB. A , AA BAB – , DBDB, B B ., B , AA AB – BAA AB, BAA BAB B DBADA-BDA D, ADFAB, , AB – FDBAB, DB D DAB. BDAA, A BBB B B : B, FD, DB DDBDA B A DAB. D B BBA DA B DA BDBA – B A, BDDB (B. 2) B F AB (B. 3) (, 1976). , D BB AA DA A BA 4. , B BABB A DAB D D B DA DFBA 10-15 B B 50-100 . B A B. EAB BB, F

37 ABDA A. B DBA (B) B B ADB BD. D DB D BA BA AAB AB BBB (, 1976). D AAB B BDD, B, BB B B AB B DBDA BAB (AAA DB , 1976). DAB D A-BFB DB BA DB BA ADAB (CBDBB DB…, 1967). ADABB A A AB ADAD AFD AA DBAB BAABAB B AB AFB AA , BB B A DBA A. DBAB BB , A D DB D BB B AB DB ADAD D B B DBB.

A E

BA 2 – CBDDB (DA ) BA 3 – D F AB A - EFAF – AACB A EFF EFAF – AFB FCDAF FB FEA FA ( FCFB FEA FE CFEF EFC C AEFA CAB AB ECF, AAFB ABE ECFF-EFC . F F; EFC – A FEAE CFBE (, A) AF EFFB CA, C). CAC E FFDF AE- EFFDB AD 25-40 E 200 E

38

BA 4 – B BB AA D A-BFB DB (CBDBB DB…, 1967) EFAF – 1 – A AEFCF AB FEA F; 2 – A F AB FEA F; 3 – A A AB FEA F; 4 – A AB FEA FA CD A BA; 5 – AB AA AB FEF FEA F FFFE FFAE -CDE CDAE CFBE CAAE; 6 – F FFFE -CDE CDAE; 7 – F FFFE FFAE CDAE; 8 – A EF AE

EF BA D DAB BDB. AA FBB DA D ABFD BDAB A BAAB DB AB ADA D (Callaghan & Jonasson, 1995). DAB FDA B FBB A BFBB D F ABAB. B FD FBB D B BA BAB DBBB BAAB. D B, AA AB DA D FB FD ABD A FBDA ABB, BBAB B BB, AA B: D F – BA – – AA – D – – D F (BBA B ., 1995; 2003). EA DAB BD AAB FDA B B DA AB, BD F BDB . A B , BAA BFD DBAA , ADAA A BDAB (BBA B ., 2004). EA A A D FBB DA A BFBB, A B ABDA A-FDA B B D CA D, BDAB BBB BABD AAA B. D A DA FD D BDAB

39 DB BDAB BB D AB B BADA A, BAB BBB BD, FDDAA B , – FAB BA – FAB A D, DBAB D ABFDA . AA DBB FA, AAAA, F BDAB BAB D FB-BAA D A AD. EA AAB FBAB ABAAB FDAAB BBB A BFBB B BAB AA F DA BBB FAAB B AA AA BDBBB DB D A A (D B ., 2009).

1.1.3. DFDA BA B AA BAB AA FDB A-BFB ABA

B BAA FB A BFBB, AA DBAB A BAB B FAB AA D ABA FDFDA , D BDB A A DB. B FAB FAA B B ADA B A A A-BFB DB, B AB A DB, A A ABA, B A AAA . EFAA B AB B A A, AB 50% B FD DB B. DA D, A FDAB DABB, D 14% (AAA DB , 1976), A A AA . ADB AA DB ABB -A A D A BFBB D, A FD DDB AD BA DA A-BFB ABA A ABB BBB ABAADA AB. A BA BBB A-BFB ABA, ABDA A AB BB, AAA DB DB, AFB D BB FDFDA B ADAB (AAA DB , 1976). B F, BABB D ABA BABDB B DBA . BB AA D DA BAB DABB. ABDA D BADB DAB A DFAB. ABB , BBB AD A A, DDB AB B ADB ADA BABB ABA. DBDA FDAA A-

40 BFB ABA B ADBB A AB ABDA B A D ABA. AA ABB BAB DB A B F B AAB FD, D DBB ADA (, 1976).

1.2. EFAAB DB A-BFB ABA

D AA A-BFB ABA A FDDB DBBB DBB A A B FAA A B A , AA BAAB DB DAA BBB B BDBB A , FAA A A. A DAAB BBB B DB BB DB, BAB , DABB, DBAB ABAA FD B ABBDADA , BAABA ABB A D B B. BABB A B ABA A AAB B BBB B , F FA ABAAB AB DA B ADABB. D , FA A ABAADA A BB B BAAB DAB B AB B (ED, 1962). BB A-BFB DB FD ABAADA DAB B FAA BDBB A DB DBDA B BDAB B B DB. ABA B 45% DB , ADA – 30%, A D 20%. DAB AA A A AF, BA F AA DA A. DBDA DAB AA A A B 240-270 A, A – 160-170 A. FDA – A B A – BAB, B F BDA B DB, A D A AAA, AA DA D ABAB, F A F (ED, 1962). A D ABFD B, A B A A . A BFBB A F DB. A BA DB B DB DB AAB AA DAAB B DB B A B. A BFBB A DB FDBB AABB A BBB. A B AA DA AB A

41 DBA BBB D BAB ABAADA AA B, A B BBB A AFD B ABAADA B B A BB (ED, 1962). EAAB B A BFBB AA DBDA, AAB. A A A. A BDA BB AF. A D AD AF F A D B AB DAB (, 1976). D AA DB A – F A B A 50- DDDB (D 2500 ) – FDDB ABDA DBB BBAA B DA A. A DBA DBDA DAA BAB B A, DBA AAB B B BBB (BBAA FDA), FAAB D FDA. A, BBAA FDA A AB – D, BB AAA ABB BB- B , A DB B D BAB (CB, , 1965). EAB DBA A B BB BB DBB BAB: FD A BAB, A D A AAB A B . A BB AAA DAB DBBA BBAA FDA, B AB B FAB DBDA B BDA DB AB B BDBB A A B DBDA A , B DAB AA , B DAA D, B A DBBA, B . AB B B (A , AA ) DBAB A BAB AA AB B A B A A B , DB BB B BB ADAD . , AAA DAB BBAA FDA B DB A DBAB A DAAB. DAAB AB A FAAB BBB D, AFB D BB BA . DAAB BB AA DB B B ( , BAABAB) B BB, DB DB B B BB DAB . A B AB BB DB, .. AB DBB A D B BDAB B B DA (, 1974; A, AB, 1969).

42 A F DAAAB A-BFB ABA DBA A . EA BA BFA A AB DB B A A B B AA A B DB BB DBA AAB DB A FDA (, B BAB). ABA, A B DA, BAB D B– ABB B DAB, DB A BFA DAAB. ..A B ..AB (1969) A A FDA DB AA BADA AAB AAA BABB DB A FDA. DA B AA, F DAAB DBB A 350 750-800 A B -. FD B BBB A- BFB ABA ABDA B B DB . A AA DBB A , BAB A A A DB A D, – B- A DB. B F, DFAAB B DAAAB D A-BFB ABA AA BA A . A ADB AA AAA BABB B AAB DB D B A FDA, D B BBB D BD-DBBB A (A, AB, 1969). EAA DBAA BBB DA A FDA, A B D DDFAAB A-BFB ABA A DA FDB 1 B A BA 5.

BA 5 – CBD-DBBB A A-BFB ABA (A, AB, 1969)

43 I. A FAA BFA AAB B ADFFA FAAFB; II. A BFA AAB B ADFFA FAAFB; III. A BFA AAB DAB B A D B FBA AAB B DFFA FAAFB D FF DBA 5 F; IV. A FBA FAB F B B DAB B D B BFA AAB A D FF DBA 5 F; V. A FBA AAB A D, DFFA AAB DAB D B ADFFA AAB D FF DBA 5 F; FAAF A DFFA; VI. A FBA AAB A D FF DBA 5 F B ADFFA AAB DAB B B D; FAAF A DFFA; VII. A ADFFA AAB A D FF DBA 5 F B ADFFA AAB DAB B B D; FAAF A DFFA; VIII. A FAA ADFFA AAB; FAAF A DFFA.

B F, D A-BFB ABA A FFD B BABBDA DBA BA DAAB B DFAAB: BFA DAAB B AA DFAAB (A I B II), BAA BFA B A A A DAAB B A DFAAB (A III B IV B FD A V) B AA DAAB B A DFAAB ( A V B A VI–VIII). D B, AB AAB BB- BBB AB BA BBB DBBB BD- DBBBB DBB AB, B DA BA 5 D. AA B B DA D D , BA DDFA A A B A BB AAA ADAA AFB DB AA-FAB , B AA B DBAA DBB B DAA BA DBA A.

44 AA A ABAA BBB, B AA ADA DB A A DAA A B, DB, D, A. CAB BD-DBBB A, B AB AA, BDA A, FA DB DA. B AB DB ADAB DFAB BDB B. DB DB B D AA DBB B BDAB BB A DA B AB DAA.

FDB 1 – DBAA BBB DA A FDA, A B D DDFAAB A-BFB ABA BD-DBBB A (A, AB, 1969)

CBD- BDA BBAA EF EB A DBB A FDA, DAAB D BAB A BAB R(D/² () B(D- , Z , Zm () ) F) () () () 1 < 450 < 17 - < 350 < 440 - 2 445-555 17-22 740-800 350-480 440-500 250- 325 3 520-630 22-25 630-770 420-490 475-500 140- 275 4 600-725 24-30 500-650 400-450 450-500 60- 150 5 650-750 26-32 400-550 320-400 400-450 25-75 6 690-750 29-35 390-450 280-330 350-420 15-30 7 715-800 30-37 320-400 230-280 300-370 8-25 8 770-820 > 35 290-320 200-230 < 300 5-8

1.3. CBB

DB BAB BBB A-BFB ABA AFA, A FD AA BBB B DBBB D B DAAAB. A DA EF ABDAAB BB, DA B D , AFDBB DB BB AB, B , B . D FA . EF FD 3 DA. 2. EF DBA B, DBAB BB B AB AB EF F, A 3 680 . EF D BBA ABAA DB DAB D. FA B AB 45 161 . B D 580 . (CBB A BFBB, 1961). A B B EF AB DA , A A DBA AB BBB DB BAB B. D FA EFB A ADBB FD AAA , A B A B EFB, DA B A BAB. EF D B «FA FD» A 525 . 2 BDB 18% DB FA EFB (BA, FBA, 1979). A ABB D B B BAB AA B, AA DBB. BA AB EFB B AABDA AAB DB FA. B (B FD 50 ) F DA B B . BDA B D D ADAB B B EF A D D 28 600 3/ B 105 (CBB A BFBB, 1961). B ABA B AA-DA BDB () AA D B B D , BA A DF B DBDA. BFDB D BAB A A BFBB (232 3/, BDB 58% F) AB DA A, AB 49% DB, A A A B DB 7,4% BB 66,8 3/, BDB 16,7% A (BA, 1996). A B B DB D 48,3, A 51,3 3/.

1.3.1. DA BB B BB

A B D, FDFDA A BBB A-BFB ABA B A A D, B F BDBB DB. BB FD D ABA F BB- BB DB, B A DAAAB, A DAA AA B BDBDA ABAA BBB, FBDB B B AB A , A B – B DA BB ADA D (, 1976). D B, FD BB , B FAAB. DA BB A DB A BBB FDA DA B, B, , B B B. B A F DB FD DBA ADBA A F B

46 DB FB B BAB, FDDAA BB FDA B. BAB FDA BB B A F ..A-CBA (1953), ..CDBA (1949), ..A (1949; 1953), ..A (1976), ..B (CBDB FDAA BB…., 2009). B BB FDA AFD, BD, A B FDA B. FDA B A F . EFAB AA AA BB B A FD A F A D FDA B B B B B DBBB A FAB DA BA DBA BDA (A, 1953). FAA BDBB FD B D (D A BFBB…., 1976). FD D BB B, B FDA , B , DBF BDB DA BA A DB. AB FA ABFDA ADB B- B DF B FDB AB AB, AAB BBA BDBB DA BA B ABABB A FDA . ABFDA B D, B AB BB . AA , A FDA B, BD BBB FD DA BA AB. EA DA B B AB B B DFDBB , A AFD B B AB. BDBAA DA FD, FAA BB D A ABDAB DAB, A BBA B, DA B B B AB BA A , AB , B BB DAB AB. FD ABA, AB B D D DA BA AB. FDAA A FA .. (1978) DBD B A BAB : 1) A BAA BDBAA – FDA B, D DA D; 2) A AA DBB D B BAB D – D FDAA D B , D A D DAB D BB FD, AB A A; FAAA D D D ABAB, D

47 B D; 3) A B D – D B, ABAA B . F D ADA FDA B (A 1) BBA FDAA D B DA FD (A 2), A DAA. D A BBB FD DB FD DB D , AA, D FDAA D A F A. DA FD A AB B AA B A, ADAA BA ABAA D, BB DAB DA D B DAA FA, BB FAB A D ABAA D. BAB AFD, AA, B AAB DAAB. ABB DAAB FA ABA A AAB B- FDB D A DAAB FD ABDA B B FA (, 1978). A D DB FD B FDAA A FA. DB FD DF B F A D AAB BDA B A D B . BFD ABAB B B BA AB FDAAB AFD , AA FD A-FDAB DB B BDA FAAAB BDAB, ABBAA FD. A AB B D FD AFAAAB BDAB B B , FDBA A D F F D FD (BA, A 1983). A B FD B A DB : 1) FD FD AFD DB , ABA F DA BA DBA B AB; 2) ABBAA B A FD FD FD DB FA, AB ADB B A D ABDA . D , AB ABBAA FD BD , A AA B A FBDA A BAB B FDBA DB D BAB A B B; 3) DA FD A FDB AA , B D DB BAB A B BAB A B B AFDBA (BABA B ., 1968; D A BFBB……, 2000). B F, FD A ( AA FDBA D BAB) F DB A FA BA DB B D AB, DB A .

48 CBDB AB FD D DBB A DB AB B BB B, BABB BB FDA BB B, BABB FD B AA (AA BB B B BA – DA D), BABB A B FABB A D , AA DABB B BABB AA . CBDB AB D BAA : DBAA B AA. DBAA BB B A . AB D (AB AA B AA , BFBDBB DB B ..) (D A BFBB…, 2000).

1.3.2. EA ABA

BBB A-BFB ABA AB FD DB . EF A ABA D 5-10%. DA A AAA. .. (1976) D A A A A: 1) D- CAB, 2) A-B, 3) -B, 4) -B, 5) B, 6) ABAB. FD DB ABA – ABFDA. A B A D ABFDA BB D 85% BBB, ADA – 89% B A – 66% (D A BFBB…, 1976). EAB AB ABDA DB FDAA BB B D AD DA DA A-BFB ABA. E BDBA A BFBB AB B BB BB D A B : 1) DB , FB AD FDFDA B BB, BD, ABDA B DFBA; 2) A-BAA (BA) , BB FD B AAB, DAA B DB DAB A ; 3) ABFDA , A-FDA BDA, BDB B ABDA , BB F, A AA FDB (CBDB FDAA BB…, 2009). A FAA ABFDA A B ABA D B AFDB (100-600 ) B D DFBA ( 3 ).

49 E ADA B ABA BAB D A BA (FB AD FDBAB BBB) B BA (FB BB FD). DB DAA AA DABB : ADA B A D A ABFD AB B; BAB D A D A, AB BF A , ABA DB DAA AA DABB DBAA ABDA F ADAB A DBA; FDBB A DBB, B DBAA B BAB AA ABDA ABDA ADAB BAB BDBAA FD. BFD DB A FA B EFB (FA BA, B, A, A, ). ABDA A FA , D A, D D, A, A. ABFDA A B ABA , ADA B A. ABFDA FBA ABAAB AA A FA AA A DBAB B BD FDBB DB D. D B, ABFD DB A FA E B (D A BFBB……, 1976).

1.4. A

EFAAB D, DB, BDBB DB, FD AA A-BFB ABA BDB BBA FD AFB DA AA BBB. A D AA BAB BBB BA BBDA D (), BDB B. AA DAB DA BAD B AD XX , FAAB .. (1947), DBD DAB DA AA AB B BB D B DA BBDA BAB ABAA F B AB. DA AA DAB, B 30-40- . XX . .C.AB, ..CB, ..DAB B DA FA FAAA ..DA (1948), .. (1978), BF AA BB, AA BAB B BBB BB, FD BA DBB AA, ABA D, FB

50 DB, BAFA AB BBB DB, , FBA B AA AF DBB – B B B. BAB AB DA AB F , DA A BADA B DDA B B D F DA, AB A B BADA BABBB B (B A) (B. 6). EFBAAB DA BB BADAB AAB F BADA BA FD B A: DAA , DAA BAB, DAA FD, DAA A B DAA A.

BA 6 – BBB B (.C.A, 1991)

ADA AA DA D BA DB AA, B D B DB. BB BB B A BBB A-BFB ABA D AD DAA A: A, DA, DFDA, DA B A. B B A A DDA A D A FD DB B: AB, B, B B BB. B F, A A, DF DA D BB B BABBB B FDB AAA D DA FD DA BADA BA B A DAB, A, D BB BBDA AB DDA FAA B (CDA B ., 2005). 51 FDAA BBB, FD D B DA B (FDA A, B FD, BDA) B DA B DA (D A BFBB……, 1976). B B DA B BAAB DBA A DAAB, AB FDA A (FD. 2), FAB BB – FDA BDA (ABA AB BAB FDA DA, D F FD, AA BDA , BD AB, BBB A BA A DB B A B).

FDB 2 – BAA FDA A DBA A DAAB (D A BFBB……, 1976; CBDB FDAA BB….., 2009)

CBDB A DA A EFAAB BADA A FDA A FA DAAB DBADA FD D B FD D DBA (A) FD B DAAB DB A B D A (- BA B DA) FD A A A DAAB (AB) B DAA DAA (A) FD

DA A B DAAB B DB FAAB. 1. A BFA DAAB A ABDA A BAB AB B B AB BA -A FD BDB A AA DAA, FDFAB B ABFD BB. AA DBADA, FB, DBA A FD. EAB AB FD FBA A A B D A D ABAB AB, A B DA A D AA B, F AA A D (B. 7). 2. A AB DAAB A FDB A BAB B. D AA A B A AAB. AA D B B AA B FD BAA BA BDA DA D – DBAFA FA ABAB, A DBA B A DBA.

52 3. A AA DAAB B ABDA B DBBA A , FD AB AFDB DB. D B, B ABABB FD F (, 1948; D A BFBB….., 1976; A, 1955; , 1973) FB FD DBBBDB A DFB B AFB, AA BB B B DABB BABDB B A F (B. 7). EA, A F (, 1948; BD, 1969), B A FAAA AB AB A, BB BD AA ADAB BDAB, DAAA A-BFB BB CC. AA . B (B, , 1979; , 1983) B A FDB FBAA A A FB FD. ADBA BBB BBDB .. B ..BA (1979). ..A (1974) DABD DA ABAB A DBA FD A BFBB, DB 9 A B 6 A. BB DAB A FDB BA A FDAAB B AAB D FDA BDA. EA ABAB FD A ADA D A BFBB A BD (CBDB FDAA BB…, 2009), , B AA ABB FD DA B ABAB FB B DBA FD, BD AA BAB ABAB FD, DAA .. A. 1. A DBADA FD; 2*. A DFB FD; 3*. A AFB; 4. A D DBA (A) FD; 5. A DB A B A (–BA B DA) FD; 6. A A A (AB) B DAA (A) FD; 7. D; 8. FD; 9. AB A–BFB ABA B FDA A; 10. A AB AAB DA AFB FD. * – A DFB B AFB FD FD AB F FBAA A FB FD.

BA 7 – - DAB FD A BBB A-BFB ABA (D A BFBB, 1976)

53 CBBB BBB (FDAA, A, DB, A B, A BB D, AB B .) FDB DA B ABB (CBDB FDAA BB…, 2009) B BB F 1:100000. D DAAA BDAB, B AA ABB, A BBB A FB FD DA 6 FDA A, A DBA A FD – 14 A (B. 8). CBBB BBB DA FDB 3 – D , F BDA ADB D AA BBB.

BA 8 – - FDA A (CBDB FDAA BB….., 2009) EFAF – A CACD C, A F FCF. A C: 1. D-C, 2. FF-AE, 3. -AE, 4. FF-, 5. -, 6. A-F. A C C C: 7. FF-D, 8. AE-AE, 9. AE-BE, 10. BE-A, 11. A, 12. FF, 13. E-F, 14. CE, 15. D-, 16. -A, 17. ACE-CB, 18. FEDB-AA, 19. AA-, 20. A-

54

FDB 3 – CBB BB FDA A A BFBB

DA A FDAA B, % EA, % A BB B A, % D ( DA AB, F. , BAB) A FB FD 1.EF-DB 21* 64* 2,1* 853* 71* 275 2.-B 42* 53* 4,0* 654* 44* 280 3.A-B 52 40 7,8 910* 96 275 4.-B 44* 47* 2,6* 652* 62* 285 5. A-B 15* 77* 0,6* 946* 73* 280 6.- 46 47 6,8 560* 101 300 ABB A D DBA FD 7.-BAB 23 73 0,6 1157 102 230 8. -B 20 65 1,4 1613 80 240 9. -BAB 50 40 2,4 685 84 220 10. BA-AB 55 29 11,3 347 81 240 55 11. B 43 49 4,3 571 96 260 12. BABB 15 84 0,4 1342 132 240 13. -B 40 56 1,2 591 115 240 14. DB 22 77 0,4 642 126 160 15. EF-ABAB 47 39 6,2 563 59 150 16.A-BAB 47 49 2,1 430 74 100 17. D-DB 26 56 0,9 851 61 215 18.A- 45 53 0,9 540 87 165 AB 19.A-EFB 33 60 0,4 561 98 150 20.-B 50 49 0,4 470 113 95 EFAF* - FFCFF FF AFE C AF (CB ACF F….., 2009)

55 ABB (CBDB FDAA BB….., 2009), DBB FDA A A FB B D DBA FD, A BDB FA BDAB A DBADA FD, A BB A DAB FD B A (AB, FAB A, A A, FAB FD). EAB FA , DB A AA BA BA DAB FD, BDAB DBADA, A. A FDA B A DB DB B AA BDAB BBB. ADB AA BBB BB FDA A AA F, D D AB BB D B FDAA BBB: FD D AB BB, A FDAA BBB A. FDA A FDAA D 50% A 6 FD, FDA A FDAA D 20% (CBDB FDAA BB…, 2009).

B F, BA BBB – ABAA, FD AA, ABB BAB, BDBDA FDAA, AAB DBA DBBB DA A FDA DBDB DB BAB AA FDB. BB BAAB DB DAB BDB, AAAA, A AA DA – AABB D B DB, A BDB A D F AB BA A. AAB AB DBA BA F AB A BBB A BFBB A B A D AFDAB A BDBB , A B B BABAA ABAB DB B DA ADB. EAA , BDAA F DA D BBB.

56 2. FDB BDAB

F AA BDAB D DAAB BB B FB, DAA BD. AB B B B, F B BD A DB. DB AA BDAB AB AB AAB, .. B BAB, BD, F B B, AAAA D A AB ADA . A B DB. AA DB A D F DA AB BDAB DA D (DB, B, B .). DF A D FAA , ADBB DAA AFDAB, B BDA , BD D A DB AA AAB. D D F A BDAB, BA AA F.

2.1. BDAB

B D AA FAB, AA BDA FAB BA DBAA BB AA B B A - BDAB (DDAB, 1974). F B () – AFDAB B BAB ABB B DBBAA BB BDAB F DBA BA DABA () D DAB DAB, B, B AA BABB F F AAA A ABB BBDA BF (, 2010). F B ADB, FAB DBBBDBAA BDAB (Aber, Melillo, 2001). BABAA BAB BDAB, , B B B BAABA F 50- . ADA FDB ABB, DAA D, AA DBA BF, DAA A F AB. BAAB AB AA B FDB B AAB AAB B BDAB BDB DB AFDABB. -, DBB AA BDAB A AB, AB BF BA FF BB A AB AD A BD, D AB A A AFD B ADBB

57 A D A AB, AA D AA BDAB. -, BBA FAB AB DB D B BA ABBA AB BA B BB B DA AB. -B, DBB B, ABB FD DB BA D A A BFABB, AB, A FD, D BDD D A AAB BAAB BA . D B B AB B B BABAA BDAB DB FD DA AA B (A, , 2002). D B BABAA AFDAB, F D B BABBAA BDAB, BD D BBB B AB AB, B BB B BAAB AB BD BA F. AB F DF BF, , BABAA B, F, FB BAAB -DBF ADB BDB AB F. DB, D BAB, A FB BABBB, BDB BABB, DAB – BABB. BAB B BAB A BABBAA. AB BD D ADB D (Cairns et al., 1993): DBAB BAAB D ; AB A -DBF BA, AB A AB. FB B BDAB DBA BAB D , B D B, BB D, D A B BA D DAB AD B DBAB. AB DA F DAB B A B B AB D ABBA. BA , A B, A DAAB BBB, , ABDA D DAAA BB A B DB AB (BAB), DB A B AB BBB B B BAAB AB. B BAB FDB DA AB A 2 : DBB BAB (BA , A B, AA ) B BDBB (, A DAAB BBB, ABDA D DAAA BB) (B. 9).

58

BA 9 – BD BAB

D ABFD AA BB DB, D D B . DFAB AB A DBAB A DFAA BBB. D A BDAAB B B B DF DBBBB A ADB DBAA AB DBA B DB (, 1976). B BDABB A B BD B DB AB , AB A, AB A, BABDA B BDA , AB A DAA AAB B . D BDAB AB BD AA AFDAB AA B. DBBB D F AAAB A B AB. A B, D AA BAB DAAB B, A A B ABFD A BB DB. BB B A AB DAB ( ), AB (BB B ), BAABA, DBDA B AB, BAB B BB (, 1982). ADB AB DAB B BD DBA BDBB BDAB B FA A A AABB DA B (AF-) D B (D-F) (DA, 1972), B DAB AB DB DBBB BA (, 1973; 1975). BBB A-BFB ABA ADA DAB A FAA . ADA DAB FDDA BAA DBB FAB D , FAA DAB , B – BDBAAB DBB.

59 AAB BB B DBA. B, A A B D DBA BDB FD DBA F DB , B AB A D DF AB . 70% B A (, 1976). F AA , BB A D BABB BBB BB BBB: BBAA B D FDA AB, , D B A B , BDB B. AB BB AA A DBDA B B, B DA, BB DB , DAA A. B BBB BAA ADA AA, B AA B A DB, DA F D B BDA . B, AA A A AB D 40-50 , A A FD DBDA DA B. BBAB D ABAA DB B DA A, A DBDA B AA DB BDA . BAAB AA ADABB A A D B FB AAB DAB , FDDAA BDBAAB DBB B B. A BB AA D , DAA A AD BAABA AB B AA B DA. D F ABDA D DAAB A, BAB A B AA (A, 1978), A ADA BA DB, AA DBB A B DA A D 120-130 , A – FD 300 (, 1976). A B D DAB B A BAB, B A BDB FA , B. A BAB (Z) – D B BAB AB , ABBB B BAB A , B ABFD A D DABB D A FA (BD, FDB, 1991). ABB B BAB D DBBB, BD AB (DB AB F, AA B BDA , DAAA D, A BB BB B, B FD, D B F, DBA B DA B) B AA DAB. B F D BADB FD A BFBB,

60 DB FAAA, BAB B BFDB BB, AB . B BAB D D, BDB D , AA, D DBABB A FDA B DBABB AA DFAB A . ADB BDBB B DBBB BAB, BB B BA F (A FA) A BFBB F DA D. 2.2. AFDAB B BAB

2.2.1. DA ADB

A AD B, B DBB BAB, DA A DB A «ABAA» B «A». A AB , AAB DB DB DBBA «BA» DA DB A AB – ( BD, D 10 000 40 000 2). BAB, A D AB AAB DBBA D AA BBB. A D ADB BAA BABBDA. A B, BD, D D FBA ADB ABAA AA, DBF AB B B B BADBB D DA BAA B. B ABAA AA B ABB A DBBB B BD DABDA BABB DB BABB. CDA F, AB AA, AFB D AAB D DBB DBBA BA AFDAB. B , D DBB DA DB ABDA BB AAA, B D A FBA ADB AB ABB A DA 50 (CABA, A, 1976; , 2002). DB B A BB AB B ( BDAB DA BA , A BB, ABB B B). FD B «A» B ABAA AA DA DB BABAA BAB. «A» DBBB B B B AAB ABAAB: 1) ADBB DB BABB BA B B A AB; 2) B FA D B BDAB AA, AB, D BAB D DBAB B 3) A DBBB B, BD, BDA BFB, A AA.

61 ADB D F D BDAA DBAB BDBAB AA B AB AA. BBDB AA AB A BDAB BB D B AA AFDAB D DAB B ABAB BA . AA ADB F ADA AB B A AFDAB A DFDA D, B B ADB BDB. A AA ADB D A DBB DBBA (AB, B B FDA) ABA. AA AA B AAB AB (Kalnay, 2003). D B, B AA ADB B, ABA DBA XX . BB BBB AB, FAA DBB D ABBDB AA . AA D BBDB (B AA AFDAB D) AA BB DAB AFDDA B. F (Serreze et al., 2005) DA AB AA ADB ERA-40 D A FA EF, AB, A B AB B A, D AB DBDA D BAAB AAB AFDAB A AB. EA F B, AA ERA-40 AFB BD A, FAAB A FD, DB B A BAB BA B FDAB DA . A ABAB (Cullather et al., 2000), AA ADB (FD. 4) D DAB BABB BABB, B ADB B BAB. AABB ERA-40 D, ADB NCEP/NCAR (Serreze et al., 2005). FDB 4 – EAA F AA DA ADB B B B BBB

ADB EABB B AAA AB BABB B ( BAA B); AA AB (DB BAB B ) NCEP/NCAR NCEP/NCAR 1950-2001 2.5°×2.5°; 00, 12 www.esrl.noaa.gov (BADA A AB /BADA A A BDAB)

62 ADB EABB B AAA AB BABB B ( BAA B); AA AB (DB BAB B ) ECMWF ERA-40 ECMWF 1957-2002 2.5°×2.5°; (B A 00,06,12,18 AA A ) ECMWF ERA ECMWF 1989-2010 0.25°×0.25°; www.ecmwf.int INTERIM 00,06,12,18 (B A AA A , A) JRA-25 JMA/CRIEPI 1979-2009 2.5°×2.5°; www.jra.kishou.go.jp (A 00,06,12,18 DB A)

D AAB AA B ERA-40 , A BB F Bromwich & Fogt (2004) D AB. EAB ABDB AA ADB AAB DBB AB, DAA A A D. DB D ADB FD DA, AA, DAA 1970- ., F AAAB, D 1970 B AA D. B F Zakharova et al. (2009) A BFBB AA ADB ERA-40 B NCEP DB AAB DBB AB. ADB ERA-40, FAA AB AAB BABB, A AAB A D AB B DB DA B B BD BDAB DBBB BAAB (Serreze et al., 2005).

2.2.2. B F BABAA ABAB DB ()

BABAA ABAB DB B A D BDAB B B D DB AA BAB D A . DAB AA AB D F ABAB B B BABB F AA BDB B FB ABB D D FFB, ADB B B BDAB. ADA BABAA ABAB BAD FDB AA B, DA DB BA D BDAB .

63 BABAA BA DBA BBDBA: D B ABBA AB, DBB, BB, DBDBB, A BD, ABBA B A BB DAB, D, DBB, DBDBB, ABB B . (B, 2006). BABAA B ABAB A DBBB A BA: 1. , ADAA A B – B BAB BFAB: BB, DBDA, A; B; ; B BDBAB: DB, ; 2. BA BDAB – BB; FDBAB BAA; D BAA; BDA; 3. BAB F – BA B BA. BB, AD DBBB , AAA A A BA, A AB B DA BA DBBBB B BABAA ABAB (FD. 1 BD. 1) D B DAB A BA B, BBB AA BDAB, B BA, B ABB BDAB B ADBBB AA . B BA B A DB , BB DAA BB (A B, AA, B DBD BDAB, BB B BDAB BAA BA), B B, BB D BDAB F, A A FDA AD. BA BDB BA A BAB DABA BDAB, DA BAB F F BDAB, BD D DA BABB AA. B DC F AFDAB A DB B , A DBB BBAA B , B B, D A AADA BDB DBDA - B D. DA BB B FDBA BAA FD DABA . DAB D BBB . A A, D F BA AB , BB BDAB (AB DAA D BDB AA AA ), A – FAB, B A DAB B F. CDA B B B , BABAA ADB, D ADB B D, D ABDA AB .

64 AA A BB BB A B AABDA BAB. EAA BAAB B D B (AF, 1988; B, 2006). DBB BB B DAB BFAB, ABA DAB BB B FDBA BAA () BA, B- DAA A BB B F BDAB FD B BA DBA DA – B, DBD DA D BDAB. DBB F B F BDAB DAA BAD. FD DB AB , AAAA D AB A (FD. 1 BD. 1). B D A B AB: ABB NOAA (National Oceanic and Atmospheric Administration) AA BFB AVHRR (Advanced Very High Resolution Radiometer), FBBB AA AFDAB BB B BA (, 2010; Birkett, 2000; Moulin et al., 1997); AB Landsat – CDB DF (USGS), ABADA B A (NASA) B ABADA A BAB A B (NOAA). Landsat D A B ABFD A A B A AA . FD A AB (http://www.scanex.ru). AB B AFDAB A DB SPOT (Satellite Pour l’Observation de la Terre) BA BADA BB A ABB A DB B B. AD B AA AB (http://sirius.spotimage.fr). B BA BDA B, BDAB DB A BB B D BAA BA. BAB B BDA B AA A DABB DBBB: BDA B BADA. DAB DBB B B AF BAB D B B A A, AB BBB D B . B BAB F BA BDA BBB. D B, B B D F A BAA B B A D . – BAA, B BD BDA B BB B AB F. A BAB BDA

B DB AB BA (TB), B A D BDAB, A BB (Amlien, 2008). BBA BA BDA B D SSM/I (Special Sensor Microwave/Imager), FAA D DBB AFDAB AB

65 DMSP (Defense meteorological Satellite Program) . AA BAA B 7 BDA AD BADA (A 19.35 B 85.5 CC) B BDA (A 22,235 CC) DBB B D AB 25 2 (Grippa et al., 2005). D DAB AA BB AA FD FA AD DB (Chang et al., 1987, 1976; Foster et al., 1997; Grippa et al., 2004; Kelly & Chang, 2003; Mognard & Josberger, 2002). Grippa et al. (2004) DB, D BDA AB FAA BB DFBA AA A BFBB AFB BAAB BABB DB, AAA A AAA-AA BABB ABB A. Grippa et al. (2005) ADBBDB B B AA FA EFB B 1989 2001 . Zakharova et al. (2011) F (B BB BBB) ABDB D D A AA D B DAB A D F D, , B () A A BFBB AA DB ABB -D B B SSM/I A A BA . F F BABAA ABAB DB BA , B AB BDAB, ADBB AA . BA AB B A DA (DB) ABAB, DB () B A DBB. AB A A B AB. B D DAB B DBD, BB B BA . BAB B DB D D: ADAA D BAB BDAB F B FA BAB. DBB BDA, DA A BAB DF , BD B . A D A D AB AA D, A B BB BAABA BAB A . A AB FA FD BD DA B, A B D DBA AB BB DA BDAB (Fujii T., Fukuchi T., 2005). B DA B D Doppler LIDAR B ICESat LIDAR, AAAA D BAB B , DAB, B AA . (BBDB BB AB) – BAB B AA A BBB BA DB AB AB B ABBB B B ADAB . EAA B AAAB D DAB BAB D , A F AAA AB.

66 DEFA FF AB FD FA, D BA AA F D ADB BA F A BBB A BFBB. AB DBB D AB B AA BB BDAB (Fu, Cazenave, 2001). B BB AB DBBB BA (Vignudelli et al., 2010). EAA AB DBBB B B F DA A BA 10 B FDB 5. AB DBB – BA B BA . BAB F D , DB B B BAD ADABB AB (BDA), BAD AB B BAB F BAB. AD AB BAD B D AB AB A A A.

BA 10 – DBBB BAB B B F

FDB 5 – EAA AB DBBB BAB B B BBB (F, A, 2005; Fu, Cazenave, 2001)

DAAB B BA AAB () () B AD* F (B) (AD) GEOS-3 04/1975 12/1978 824 115 102 BA. Seasat 06/1978 10/1978 800 72 3, 17 Ku Geosat 03/1985 01/1990 800 72 17 Ku ERS-1 07/1991 03/2000 785 98.52 3, 35, 168 Ku TOPEX/Poseidon 08/1992 01/2006 1336 66 9.9156 Ku, C ERS-2 04/1995 785 81.5 35 Ku GFO 02/1998 11/2008 800 108 17 Ku Jason-1 12/2001 1336 66 9.9156 Ku, C ENVISAT 03/2002 800 98.55 35 Ku, S

67

DAAB B BA AAB () () B AD* F (B) (AD) Jason-2 06/2008 1336 66 9.9156 Ku, C Cryosat-2 04/2010 717 92 369 Ku SARAL (Satellite 2012 800 98.28 35 Ku with ARgos and ALtika) Sentinel-3 2013-2014 814.5 98.65 27 Ka HY-2 15/08/ 2011 971 99.3 2 : 2 - Ka, 14 , 1 -168 Jason-3 04/2014 1336 66 10 Ka

EFAF* – AAFA A, A AA AEE ACDEF:

 Ku (13,6 CC) D ABFD AAA BDAB, BD F AB TOPEX/Poseidon, Jason-1, ENVISAT, ERS B . ABD AB A ADBB (AA BD ABB), AB BA (DAA AAB BDB), BDAB A DAB.

 C (5,3 CC) – FD BDA BAA DAB BA, Ku, B A BDA DAB, AA B . EAA AB D ADAB B A BA A

Ku BA (TOPEX/Poseidon, Jason-1/2).  S (3,2 CC) B BBB, B C-BA (ENVISAT, ERS-1/2).

 Ka (35 CC) D A BD D, , F A, DA (D) B B A B. BAAA A D AB BAD D A BAB B- BDA , B A 1,5 /.  A BA (Ka, ; Ku, S; Ku, C), BAB F D BB BAA BFB B AB, BD B ENVISAT, TOPEX/Poseidon, HY-2.

D B, F F BB AB BF, ABB A, D . B BAB, B DB (B. 11–12). EA B A (B. 11), ABDA BAB, A A-DDBB (FD. 1, BD. 2). BFDBAB AB DB DDBB AB. CB A BABDA (AA) A

68 BBAA D DB, AB A B A (DDBAA, 1985). AAB B A (BDB ) D A B AA , D AB BA AB DBB. AB ABDA A-DDBB B AB A , DAA D FFB AA AB DBBB, B FB AB. D FD A A AB AFB B , AA AB BBAD , BAADAB BFB B AB BD AB. DBB H A AB (A, , B) AAB A-DDBB BD D:

H = Alt – c*t/2 – Rcorr (1) Alt – AB AAB A-DDBB; c – ; t – AB BAD AB AB B FA;

Rcorr – AB A A : A B, B A DA, BAA B, BDB DB, DABA B BAADA (Birket, 1995; Crétaux & Birket, 2006). BBB A AB DBBB D D: BD (D DB, B , A ) (D 1700 BD A), D BDA AB (AB), BD AB (, BDB D) B A AAA DB (Fu, Cazenave, 2001).

69

1. FB; 2. AB; 3. AB A A; 4. A AB; 5. A; 6. B; 7. D A; 8. A-DDBB.

BA 11 – DBBB BAB (www.aviso.oceanobs.com; Aviso User handbook, 1996); – FB B; – DA

EAB BD AAA AB D A () BB , DAAA AB () – A AAA (B. 12). BDA DAAB A, BDA B ABB BD. BAB ABA FAB D B D ADAB BAD A (Fu and Cazenave, 2001). BAB, B DB, AA A BDA BD, B B BAD 3 AAA (pulse-limited), B 0,3 CC. B F, BAD 3 AAA B B BD 1,2 , «» (footprint – BB B D, B DBB A A AB D FAB A A BD AB). B «A» DBB DBAB AB DA .

70

. EA D . CAA AF BA 12 – BB B D A BD AB, ABB BD EFAF – A AAFB FEB (t), A F ECD AF F AAFB A ACDEF. A AAFB ED ACA. FCFE FE AA A FB ECDA F, AE FE – A AAB ECDA. (www.aviso.oceanobs.com)

B AB AB B A ( ), ADBB DA, A DB AFC DCF (Vignudelli et al., 2011). DA D F BAAB AB DBBA B B BAD. B A BB AA DA DA B ABB AA DBB BAD A AB (B. 13): 1) AB DBB BAD A F A AFBB () (0), BB – D B AB B AB; 2) A FFF A ECDA, DB F AA BAD AB B AB BD. B A A BAB AB A B DB A A (Barrick and Lipa, 1985). (); 3) C ACA AF A ECDA () D F B AA BAD AB D BAB BDA DBBA AA BAD, BB 106 -1.

4) «D » (P0), F B DB AD BAAB A A. .

71

BA 13 – DB AA DA DBB DA, AA AB A (www.aviso.oceanobs.com) EFAF – 1 – F A AFBB, 2 – A FFF A ECDA, 3 – C ACA AF A ECDA, 4 – E AAA

AB DBB ADA FD A D BDAB AB A (Fu, Cazenave, 2001), AA DB BD B D ABBA A AB (Zwally et al., 1983); FAA D ADAB A BB A, D AB B CADABB (Legresy, Remy, 1997; Remy et al., 1999), BDBB D BAB A ABAADA A F (Birkett 1995, Cazenave et al. 1997, Alsdorf et al. 2001). ABBA DBA DA A DFDA B BADA A AFB D D ABAB DAA . AB BDA B AA , DAB , ABAADA AB AB D BD BDAB BAA, FB DBA BA DABA : BB, BAA (AVHRR (1981)) (Birkett, 2000; Moulin et al., 1997), BDA – BA B (SSMR (1978), SSM/I (1987)) (Justice et al., 1989; Njoku & Li, 1999; Sippel et al., 1998). FDAB ABAADAB AB BA BDA A ADB F AB ERS-1 (1991) B ERS-2 (1995), F C BA A 5 CC. ADA A FD A D BDAB DAB A A (Johnson, 1980), A ABD AB D BAB BDAB B (Frison & Mougin, 1996a). D A AB D BDAB ABAADA A BAA BA BBB. AB DBB D A BD AB DAB B, B B A FDA, BAB AA (Legresy & Remy, 1997).

72 BD AB DBB D BDAB DAB B FD BA AD 1980- AB Seasat, AA 1978 (Brenner et al., 1983). AB FDB A BDAB A FDB CADA DAB B B B AB DAB B. 1991 . FD A AB ERS-1, DD DA-FBDA AB DB A F. DA DB BA A DB ENVISAT (Partington et al., 1989; Remy et al., 1990; Legresy et al, 1997). DBB D BD BAAB A ABAADA (Birkett, 1995; Cazenave et al., 1997). D AB DBBB AA A DABB , A A BFABB AB, BD D BDAB DFAB A B . AA BAD D ABBA B B B A B (Birkett, 2000; Mercier et al., 2002). Kouraev et al. (2004) ABDB AB EF A BDB B AB TOPEX/Poseidon, ABDB AA AB AAB BDB D. D BABBBB ABDA DAB BAD TOPEX/Poseidon, D DAB A DB BAB, DA B F AA B F, FDB BAB, DB D DA D EFB. BA 14 DA AA A AA TOPEX/Poseidon B BDB D. AA , B DAB AB B BAB A FDBB AAB B BF BD 40 AA D 23 DAB B. EBF DAB A B BD 8% B 1–3% AA.

BA 14 – AA A AA TOPEX/Poseidon (B 187 B 112) B BDB ABB D (Kouraev et al., 2004)

73

CB DEFA FF F FD BF AB DBBB A B A D B B, A D BAB DA, .. AB B FAAAB, D A A B BABB BDBB A-BFBB ABA. AB AA BAD BDB BBA FA AB - E (backscatter coefficient) D AB B AA B BABAA ABAB DB. DAB FDB DBB E D A B A A A F, AA B DB: Birkett (1998), Papa et al. (2002; 2003; 2006), Legresy et al. (2005), Zhakharova et al. (2009), BBB BABD AAA B. AAB E A BA D AB AB, B A 10 , B D ABAADA (B, , A-FDA ) – 0 > 25 , A D B 40 (Rapley et al., 1987). E A A FD AAB E, A DAAA A. DBBA BB BD AB – D, A, BDAB. B, D A AB BAD BDA: E 15 . EAA BAD DF, AB, A FD FDB AFB DA DAA A, AB BB AB DB c FDBB B ABB, A B DA D BDB D. F Papa et al. (2003; 2006) AA AB TOPEX/Poseidon FD A ADB E B DA BB AA E A B A: BB D, AB, FDA B DA FDB, DA BD 50° 100° .. AAB E BA BBB AB : B, B ADBBB AA (BAD DF: 5-10 ) B D FAA B (BAD BDA: 25 ). AA BD, DAA A BA 15, BAAB AAB E BAAB B D. BFD FAAA DA A BFBB (68° 78° ..) B EF B B AAB E ( 40 ). B F, E D D A D AA BD BA B, A B D DA, DBB A A FAAAB.

74

BA – 15 DA BD E () BD (1993 .) AA AB TOPEX/Poseidon (Papa et al., 2006) EFAF – A AAFB – CA, A – AFF Ku AAF

2.3. FFB B ADB BABB

BA AA DBB, BDBB B BBB B . AFDAB A F AAA BDA D DAB BA AA. AB A DB D BDA FFAB BA BABB. BC FC BA F DF. A AB BBB FFB B ADB BABB D AA . A DB DDA AA AB BD D, BB A AB B BAAB B DAB. B AA D FDA DA: B AA AAB D, BDB A (A, F, 2010). DBB FF D DBB AFDAB, B D BAB DB BAB DB BDB D AB BDA , D DAAA DB D, BD AA DBB BDB B B AAA. BBB AA – A «BAA» , DA B AA A ABB BAD A B ADA AB. BBB AA D DBDBB AA. DBDBB AA FBA DB AA A, DFAB B BAAB AB AB. DBDB AA AA DB B , DBBB BBB, DAA D FFB B AA, F AB BBB

75 AB AB, DB AB B DBBB AA B D (F, DAB, 1978). DBA DB A A BDAB DBBB, B BDBB BB, DB BBB AA. D DAB BDA BBB AA DAA DBA . F DBA A A. B, D AB DBBB BB AA DBA D 25-50 D (, 1976). D AB BDBB BB DBA F A, DBBB.

2.4. EF BDAB F BDAB FA A FA, AB A BD-DBBB B FDA A A BFBB: I. A BFA DAAB B AA DFAAB, A FB FD – F D, , , . II. A BFA DAAB B D DBA FD – F A , A, , , , BA, A, , D A, A, , . III. A BAA BFA B A A A DAAB B A DFAAB, A DB A B A FD – F B E . IV. A AA DAAB B A DFAAB, A A A B DAA FD – D AB FA B E B FD A (BDB FA FD) EF- .

2.5. A BD, BD F

2.5.1. AA DBB AB B DA ADB

BA BABB D AB DBB BABB B A DBDB: 1) B B BDB BABB–B A AA (C–) – AA A AB DBB AB A BFBB (www.meteo.ru) B 2) AA DA ADB ERA-40 A AA A (www.ecmwf.int). D AFDAB A AB BDA AB D AD AA DA ADB. B BB BAB B AA.

76 F BC EF –. ADB AA B A BD AB 1936 2005 . (69 D AFDAB) B FBA 1926 2005 . (79 D). B ABB DA A BD BBB B FA D AAB AAB ADB. B AB DA B . A , – BA A A AB FDB A EF- . AA B B DA B. AA BA C- D BDAB AAA – AB B A BAB B B, AA A B . A A, AA AA BAADA AAA, AA, AB, A , FAA B D B BDA (EAA D…, 2008). BA ERA-40 D F D BDAA DBAB BDBAB AA B AB AA. A D ADB BAA BABBDA. ADB ERA-40 B BAA AA AFDAB BDD A F AA BABAA ABAB. B B AA B AF 1957 2002 . AAA AB 2,5° B B D D DA B B AB AB 6 . ADB AA B A BD AB B 1958 2001 . BBB AAB AA D DA B, A BB AA F

2.5.2. AA B ABAB

F BD AA DB TOPEX/Poseidon B ENVISAT. TOPEX/Poseidon (TOPOgraphy EXperiment) A 10 1992 . A B ABB, AA D DD BDAB BABB BB AB B BABB A. F AB ADA B: TOPEX BA B B Poseidon A B ABAA FDAB DABB (Raizonville et al., 1988). A BAB AB A A A D 1,7 (Fu, Pihos, 1994). AA F AB BAB D AB D 10 A (B BBB AA 10 C FB AAA

77 AB 580 ) B FB AFDAB A DB (A B A) D 66° . . 66° . . AB ABB B A D 300 (Fu, Cazenave, 2001). B BBB ABB B (B) TOPEX/Poseidon B ENVISAT DA A BA 16.

BA 16 – B A FA B TOPEX/Poseidon B ENVISAT EFAF – TOPEX/Poseidon – FE FE; ENVISAT – AFE FE

ENVISAT (Environmental Satellite) FD A A FB 2002 . FB FBDB , F AB ENVISAT D DAB F B AB ABBA (ESA, 2002). DBB B AB, A F ENVISAT FD ADA A DB (RA-2), FD A 13,575 CC B 3,2 CC. EBF BAB AB B A, B B BF, A BD 5 (Francis et al., 1993; ESA, 2002). D B, A F DB – D F B BBABAB DORIS (D BABBAA FBB BB ), FAA BADA A BB BDAB (CNES) A A BB B BDAB ABB (IGN), BDDB BAB B BB (GRGS). FA A D DAB AB A FB D ADB DBBB AA. D F BDA DB DAB AB, AFB A BA BAB. EA A , AB AA AB BABB BB, DAA B B ,

78 BBAAB BDB DB, DAB DAA BBB B A AB (www.aviso.oceanobs.com). B DORIS ( 2036,25 C B 401,25 C) F A D , D BAABB BAD, AA B F. B DORIS D F AB B D F AAA, BAB B A DFAB, A AD B FFB BABB, AA AA AB B (B. 17), FB AA B. A ABB BAD, BAB DORIS, AB A F AB, DA , B D, A B B. BAA AA AB A A ABB , A D A ABB, D AB D A AD, AB . D ABB. DA A AD AA F AA AB, BAB, FB AB. B AA BB B A.

BA 17 – AA AB B DORIS (IDS – International Doris service, http://www.aviso.oceanobs.com)

EAA D ENVISAT D ADAB AA AFDAB D A BB A DFDA A D ABBA BABB BB BA DAB, DAB D AB FAB ADB D B BBB. AA F AB BAB D AB D 35 A (B BBB AA 18 C FB AAA AB 380 D ), FB AFDAB A DB D 82,4° A B 82,4° A B AB ABB B A D 85 .

79 D ENVISAT BD F (DB F FFB BAD), B FD FA D F B AB: A (ocean) – DBB, D DAB B B ABAADA B A (Ice-1, Ice-2) B BDAB D (SeaIce). AA F BD Ice-2, DB, AA A DABB DA D ABAADA B AB. AA FD A BAA D DBBB AB ERS (Legresy & Remy, 1997; Remy et al., 1999) B AB A BD D AB ENVISAT.

FB F BC DEFA FF A AA AB DBBB FDB DA A A AFDAB – CTOH (Centre de Topographie des Océans et de l'Hydrosphère, http://ctoh.legos.obs-mip.fr/ French Observation Service dedicated to satellite altimetry studies) BAADA BF B A DBAB . 1) AA DDB F AAA BAD BAD D AB 0,1 , AAA AB 580 D AB TOPEX/Poseidon B 380 D ENVISAT. AB ABB B D TOPEX/Poseidon D 315 B 85 D ENVISAT. BA 18 DA B F B ABB B TOPEX/Poseidon B ENVISAT. B D BAD AB. D DAB A AA D DA ADB FAAAB BBB F C MapInfo DDB BA AB AB F ABB B.

BA 18 – - B F B BADB AB TOPEX/Poseidon B ENVISAT EFAF - TOPEX/Poseidon – AE FE; ENVISAT – E FE

80 2) EDD F DB DBBB BAB BD B DB BAB B AB, BB A A, DBBB AB A, B A D D BDB BA AB FAAA. A AA ( B , ) BDB AA ( B A B FD, , A ) B . EFAAA BBB D B

BBA FAAAB F, BD AAB DB BAB

A A A Nobs(ndB) F DB BAB Nobs AB BD:

F=Nobs(ndB)/Nobs*100% (2) B AAB BBA FA AB, DB DB FAAA A AFAAA, DB D F DDA 15 27 (B. 4). D (2) D DA ABFD

A FA BDD ABAB BBA FAAAB F, D AAB AAB E ABD BBBB BBB F, BAA, ABDA D AA

DAAA D A F, BDB AB B FDAAB (f+fF), B AB « AA …, 1978) B «CBDB FDAA BB» (2009), B «BDA A-BFB ABA» (1976).

BA 19 DA ABAB DAB F (%) BBB BA AAB E D FA . AA AB. A D, D TOPEX/Poseidon AAB ( FDAAB B AB BBB BB) A 25 , D ENVISAT – 17 . DAA AAB BDDB D D AB BABB FAAAB BD BBB. DB BAB Nobs 10-AA D TOPEX/Poseidon (49-753 ) B 35-AA D ENVISAT (1261-18509 ) AB BD BB DB

F. EBA, DBBA F BA AB A , D A – B ADA , B AAA-AA BAB FAAAB BD BBB.

81

BA 19 – CB BBA FAAAB (%) BBB AAB E () D . DAB AAB E

B F, DB BDAB, BA BBB, AA A FF D AA DAB BABB: 1) DA ADB DB B 2) AB DBBB.

82 3. AB FAFAA-AA BABFB EBF B DAAAFB A A DA BBB

AAB FAAB AAA-AA BABB BA D BBA B BDBA, BB B BA DAB , B, DB, FB B . AAA-AA BAB B AFAB DBB DBA (DBBB, BDBB, DBB B .), B (AA) ADAB. BB DB, AAA- AA BAB BA – BA B, A DB DBB ( , A ) B BDBB (, AB DAAB BBB, ABDA DB FAAA BB) BAB BDAB B AA ADB (AA ADB, AB DBBB). AD B AA AABB BAAB DB, ADB BA B FA A A AA DBB AB, DA ADB B AB DBBB.

3.1. AA AABB BAAB DB

DB XX–XXI . B AB AB DB A D A B FB DB, B D FDBA A BA B B AB A (D B ., 2002; IPCC, 2007). A XX . B ADB AA BAADA AFDAB D A, BAAB DFDA DB BB BAABA (D B ., 2002; A, 2001; IPCC, 1996, 2007). A AB, FA B DAB, D B AAA DBAB, AB AABB AB . A A, A A AFD B B B, AB AAA-FDDAA DAB XXI . BAB ABB AB AB B, B D (BD B ., 2008): 1) D BBDB FDB DFAB DBB B, BD B ABDA DAB, AB AA A A AAA DBAB;

83 2) AA DBBB DB, B FD ABB BAB, A A , BB DAB. E AA AB BBB D FA , B BBB AB DFDA DB; 3) AA AAB AB AA AA AFDAB. D F AA BAB DBDA , B DFDA DAB, AFDAB 100-150 D AA. DBAB DB A AB DA AB DBBB BAAB. F (Manabe, Stouffer, 1996) FDB ADBBA D DBB DB, AB 1000 D AA BBD BBB DB. D BBAB DB DBB, BB B A, DBDA BA 10 30 D. D DBDA ADBB D A ABD. A, FD DBDA ADBB FDDA AABB BB, B D B BDAA BAB F DB, BAB AAB B. BA BA B AAA D BB BABBDA FAAB A DA. B F, B BA-AAA DAB A D FA BB DFDA DAB (BD B ., 2008). CDFDA BAAB DB B BAAB DB BB (ABA B ., 1993; FBAA, D, 1966; , BAAB, 1976; C B ., 1977; C, A, 1980). AABA DAB 100 D (1901-2000 .) BD A D BBB BB 0,90°. B DAB XX A 1995 (DAAB A 1,9°). DBA XX . (1951- 2000) F AAB BAAB A A BBB BB B DBDA A. BFD BAABA A FD-FD (3,5°/100 D), B-B B A BFBB (C, A, 2004). A, DFDA DAB BBD AAA AA DB. D BAD DAB 1910-1945 . FD DF DAB 1946- 1975 ., 1976 AD A ABFD BAABA DAB (C, A, 2004). DAB 30 D, DB 6 D XXI . ABFD BAABA B BBB AB AB A BD DA F A BBB BB (), A BFBB B A

84 DA . B A DAB BD 0,4-0,6°/10 D. A BFBB AFD DBDA A, A AB A (0,4°/10 D), BBB AB A A A D A A BFBB. AFDAB 1976-2006 . A B DBB AB BB A (, 2009), ABFD BAABA B BBB AB DBAB BD A ( ), A A BFBB, A B A BFBB, B, A B A DA . DA B AB A BBB BB DA, B 1976-2006 FD DBAB . E, AA DBAB BD A A B A BFBB, BD. A B AA DBAB A DAAB . DBAB DAAB A-BFB 1961-1990 . BBD AA DB DA A (C, 2000). .. A (2008) FD DA FA ADB BABB DAAB ADA DA ( AA, FFDA). A, BA XXI A FD B BBB A-BFB A A B XX . AA DAAB B DF BAB. A B BAAB DAABB BB, AB F AAB D AB AB A DAAB. AB DBDA ADBB AA B 1991– 2005 . A 1961-1990 . AFD A FD B BBB BB. B ABFD AA DBDA ADBB BBA A , A FBA BB A B A BFBB, B B A (, 2009). D B, B DAB DB DA BB ADA D D BB (, 1997; D B ., 2008). BB A ADA D AB D 65% BBB B ABDA BFBB B DA (D, CB, 2000). B BA B B AAB D A. D BDBA BB A FD 30% AA AB A, D 60% BA , DB AA D B , FD BA, A DD, D B D, A BA B A . , A A BFBB A A DFBA (80-320 ) DAB B BDB (FD. 6) BD A 0,3–0,4°, A AAB

85 FDBB AD, A BDAB. A BAB 1977-1981 . BD BA 340 , DA BDB DBBD BA A 20 . B AB ADA D BDA A A DFBA 320 AFDD 1977-1981 . B ABD D DAB A A BFBB B - A BFBB, BB B A DA . D ADB FD DA, FDBA DB D AAB ADAD A D 320 A ABDB A A BBB A ADA D BB (, 2009). FDB 6 – BABDA B BDA AAB A A A A DFBA B A AAB (°) F D ( A BFBB) (, 2009)

3.2. ADB A ADAB B AA BAAB B A (1926-2005 .) AA DBB AB B DA ADB ERA-40

AAB DB A BA FD BABBDA B DB FB DFDA D. ADA, A BBB BFBB 1955-1990 . BBD ABDA FD AA, A A , DAB A AD 1990- . BAABA, B AB A AB DB AA DFAB (BADA ABBA…, 2000). AA (DB B ., 2008; FA, 2008) DAB BFBB DAB DBBB (30-DAB) B B AAA FBADA B AA DAB 0,5°C/10 D. B (FA, DB, 2004) FD A ADB AA AA FD AB, D, A BBB BFBB DFDA DAB, FA ADAB DBD , B A AAA. E ABFD BAABA DAB, BAABA AB 0,6°C/10 D, A BFBB DA A . BBB BABDAB (0,2°C/10 D) B DAB A A F A B A. AAB DB BFBB

86 B DBAB A BAB B (Serreze et al., 2000), DBA AA (DBA B ., 2007), A (BD B ., 2008), AB ADA D (ABB, DA, 1997), AB D (BBA B ., 2004; Smith, 2005; , , 2009) B BAAB A ( B ., 2000; B ., 2003; Peterson et al., 2002). AA D B FB BAAB B A , D AB DBAA A DBA B AB A. ADB A B A A FA (B. 20) BD DAA . AA AAB ADBBDB A , FDB BA DA BB ABB: B (F – D), A (-), D (BA- ), A (AF-AF). A ABB B A BB ABB A BB A D A 5% : = 0,05. D AB AA ADB ERA-40 B ADB AA DBBB ( B ) AB FDB DA AA ADB AFDABB A AB B FBA (B. 21). BBA DBAA A, A DBAA DBB (B AA A ABB = 0,05) B A AAB ADB B AB DA FDB 7.

87 BD – EBFBEB A (A, AB, 1969): .A BFA DAAB AB B DA B BDA DAAB 1 5 D; B.A BFA DAAB B AA DFAAB DA 1 5 D B BDA DAAB AB B 1 5 D;

.A BDA DAAB B DFAAB AB B DA 1 5 D B AA DAAB 1 5 D; D.A AA DAAB B BFA DFAAB 1 5 D B BDA DAAB AB B DA 1 5 D; E.A AA DAAB B BFA DFAAB AB B 1 5 D, AA DAAB DA 1 5 D; 1.A BFA DAAB B AA DFAAB; 1.A AA DAAB B BFA DFAAB. BDA A (F, 1996): 1. A; 2. DA; 3. A B A ; 4. A ; 5. (AA D); 6. DDBAA D; 7. A D; 8. ADA D; 9. A D; 10. .

BA 20 – - B BD F BAA DA ADB ERA-40 (CAB A A E..A, 2009) EFAF – AF F: 1 – DB, 2 – C, 3 – AE, 4 – , 5 – A, 6 – AE, 7 – BE, 8 – EFA, 9 – A, 10 – FFAB DA, 11 – AA, 12 – A, 13 – A, 14 – CD A, 15 – E, 16 – AA, 17 – ED, 18 – CAD FF A D- EFFDB, CF EC; A FCD – AB FF, FCF FCD – AB AA

88

F CA F CA F- A (ERA-40) 600 F- A (ERA-40) 4

500 2

E 0 , ,

, B

BCAD

400 0

A 89 A

-2 300

200 -4

1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

BA 21 – ADBB BB A (D) B A () AA DA ADB B DBB AB

89

DAB BA 21

EB EB (ERA-40) 2 EB EB (ERA-40) CB 800 CB

0 700

E 0 , ,

-2

600

, B BCAD

90 -4 500 A A

-6 400

-8 300 1950 1960 1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

90 FDB 7 – AAB BBA DBAA A, BBA DBB A B AAB ADB B DBB AB

0 A ( /10 D)/( /10 rxy rxy D) () (B) ADB (. ) 0,2 /15 0,99 0,77 0,2 /10 ADB (FD 0,3 /9 A EF- ) 0,97 0,73 FBA 0,4 /13

D AA ADB A A B BAAB DB A BD BBB, A . D B, DBB DA D B AA AFDAB F A , DA AB AA DB A FA, AA AFDAB A AB DDA. AA AB ADB AA A D, ABFD BDA DAB AFD A B ABA, BD BBA DBAA A, DAA BB A BA 22 (, F) B - A BA 23 (, F). AAB B (FA, 2008; Frey, Smith, 2003), BB BDAB A ABA. F, A AFD AB A A , A DB A 2 BB DBA , DBB DB DFAAB: 1) F D, , B , ABFD BDA DAB A F , B (0,35-370/10 D); 2) F A, , D A, A, E, FD A EF- B A ABB FBA (0,26- 0,340/10 D). AB DBAB A AFD A F: A , A, , , , , B A ABB (16,8-24,1 /10 D).

91 ) 0.4

A B E E

0 1

/ C D

0 0.3

E.B , E

B E

E

E

F E

E A 0.2

EB E

B

D.D

0.1 E F E

A A

0

-8 -6 -4 -2 0 2 ABC,0D 30 F) A

EB B C

20 A 0 A 1 /

D.D E , B

E

E

E 10 E E.B E

B E

E

0

F E

-10

360 400 440 480 520 560 600 EC B, BA 22 – A () B A (F), BBA DBAA A EFAF – «» A FA AA AEF F FEFAF A «» F EEF A A A

92

BA 23 – - DAB BBA DBAA A () A B (F) A

D DAB DB A BABB D A B A BA B A. AA BD AB DB A, B B . BA, DAA AA B, DFBA B, AB BABB D: DA-AA B BAA B BD. A BAB A A : B, A, D B A (BDA, EB, 2002). BBB AB BAABA DAB A F BB AAB A (-) 0,40 0,84°C/10 D (FD. 8). BFD BDA DAB AFD A ABA A F , D, B A BBAB DBAA A 0,76-0,84°C/10 D (FD. 8). D AB DBAB AAB BD A 15 F B ABB FBA. DBAB BAB AB D D ABB FBA BBA DBAA A 0,53°C/10 D. AAB DA B AA A A D AB BAAB, F B AB A 0,32°C/10 D DAB A.

93 AB DBAB DB BAB BB A F A, , BA, A AB B FBA BBAB DBAA A 4,0-6,4 /10 D. AAB B AB DBAB BB A F , , , A, , , BA, A, , D A B A ABB 5,1 9,9 /10 D. DAB A AB A BD D A F , . B 8,6 14,8 /10 D. AB DBAB AAB D A F B (8,8 /10 D). D A B, D BBB A BFBB AFD AA A B A . BFD BAABA DAB AFD A B ABA A ADA D. AAB AAB FD DBAB A A , BAB, DAB B AAB A. DAA D ADB AAB BDAB (Frey and Smith, 2003), BB A B B B B BA - DAB DFAB A BBB A BFBB AA DBB AB B 1958 1999 . DAA D AAB B ABFD BDA DABB AAB B (Krijov, 2002; Frey and Smith, 2003; EAA D…., 2008). DBAB AAB BB FD AA AAB B DBDAB BAA B, A – DBAB FAAAB BB A BA A. EFAAA BBB BB AAB DB A FDA (, BAB, ), DFAAB B AB AB BF DB A D F AA A BBB (A, 1975).

94

FDB 8 – AB ADAB B AA AAB BBA DBAA A B t-BBB (1958-2001 ERA-40; 1926-2005 DBB AB)

), ), ), ), ), ), ), A . . - - - -

B

AB F B ( D ( D ( (

DBB , °C/10

AB /10 /10 /10 /10 BB BB BB BB BB ° t- A ° t- t- A t- A ° A A D t- A ° 0,24 1,43 -0,10 -0,26 0,84 2,69 0,27 1,61 -0,11 -0,36 D 0,34 2,12 0,12 0,29 0,78 2,72 0,29 1,83 0,12 0,49 0,37 2,29 0,23 0,55 0,76 2,71 0,29 1,97 0,12 0,46 0,35 2,20 0,22 0,47 0,68 2,52 0,32 2,25 0,23 0,87 0,36 2,32 0,34 0,71 0,62 2,47 0,25 1,78 0,12 0,42 A 0,15 0,97 -0,05 -0,14 0,53 2,23 0,15 0,89 -0,07 -0,32 A 0,22 1,65 0,19 0,53 0,45 2,07 0,17 1,06 0,02 0,10 0,17 1,31 0,01 0,17 0,44 2,14 0,18 1,15 -0,04 -0,19 0,20 1,73 0,22 0,72 0,33 1,66 0,18 1,20 0,05 0,30

95 0,22 1,53 0,09 0,24 0,56 2,26 0,17 1,11 0,03 0,11 BA 0,24 1,89 0,15 0,40 0,63 2,42 0,19 1,29 0,09 0,39 A 0,34 2,24 0,26 0,63 0,72 2,50 0,19 1,36 0,12 0,47 0,33 2,14 0,32 0,70 0,61 2,52 0,24 1,73 -0,03 -0,10 D A 0,33 2,41 0,36 0,94 0,59 2,49 0,22 1,60 0,11 0,52 0,26 1,84 0,29 0,70 0,53 2,40 0,12 1,08 0,07 0,29 A 0,29 2,21 0,30 0,83 0,49 2,34 0,19 1,62 0,09 0,46 E 0,28 2,02 0,34 0,98 0,38 1,71 0,17 1,32 0,11 0,58 FD A EF- 0,27 2,14 0,43 1,26 0,37 1,79 0,11 1,0 0,15 0,75 0,05 0,73 0,02 0,10 0,20 1,22 0,03 0,45 -0,04 -0,28 FBA 0,26 5,98 0,53 4,00 0,40 4,73 0,06 1,29 0,10 1,33 EFAF – E E AF AEF = 0,05 F FA

FDB 9 – AB ADAB B AA AAB BBA DBAA A A B t-BBB (1958-2001 ERA-40; 1926-2005 DBB AB) ), ), ), ), A

/10 - - - - B . .

AB F B D D D D ( ( ( ( DBB AB ,

/10 /10 /10 /10 BB BB BB BB BB t- t- A t- A t- A D t- A A A -1,5 -0,20 2,5 1,2 1,7 0,59 -1,8 -0,31 -4,0 -1,09 D 5,1 0,55 4,0 1,74 5,4 1,76 -1,2 -0,19 -2,9 -0,77 7,1 0,86 3,4 1,43 5,1 2,05 2,8 0,52 -4,5 -1,15 14,0 1,83 3,6 1,38 6,2 2,55 7,9 1,51 -4,0 -0,95 20,1 2,80 4,9 1,69 7,6 3,20 8,6 2,31 -0,9 -0,21 A 16,8 2,43 0,8 0,43 5,6 1,82 9,7 2,32 0,3 0,08 A 22,8 2,52 5,8 2,54 6,1 2,21 6,9 1,11 3,5 1,05 19,9 2,19 0,3 0,11 1,5 0,44 9,5 1,50 8,0 1,96

96 24,1 2,80 4,1 1,57 5,8 2,06 5,3 0,93 8,8 2,48

23,9 2,56 4,0 2,20 9,5 2,61 14,8 2,73 -5,0 -1,24 BA 16,2 1,63 4,7 2,31 9,9 2,80 7,3 1,23 -6,3 -1,51 A 12,9 1,40 3,8 1,72 6,4 2,02 6,8 1,24 -4,7 -1,20 20,8 2,26 3,8 1,56 8,4 2,93 9,7 1,63 -1,7 -0,42 D A 12,1 1,00 2,1 0,19 6,7 2,21 2,3 0,36 0,5 0,15 11,7 1,45 3,2 1,39 3,3 1,02 4,7 0,88 0,1 0,03 A -1,6 -0,21 3,1 1,27 -0,7 -0,26 -3,9 -0,7 -0,6 -0,19 E -6,9 -0,91 2,6 1,14 -0,7 -0,31 -10,1 -1,76 0,7 0,20 FD . EF-. 9,5 1,34 3,0 1,28 1,0 0,40 5,2 1,22 -0,2 -0,06 19,8 3,91 6,4 5,25 5,4 2,92 2,1 0,58 4,5 1,81 FBA 4,3 1,27 4,3 4,54 0,9 0,71 -1,8 -0,66 1,1 0,87 EFAF – E E AF AEF = 0,05 F FA

96 3.3. AA BAB FAAAB A FA A-BFB ABA AA AB DBBB (TOPEX/Poseidon, ENVISAT)

D FD A BAAB B A , B BAAB B FAAAB. FAAA AB BB AB DAAB -DBF BBB, A B DBAA DBB AA (A, AB, 1969) BDB, F A AB, BAB AB DBB. AA D B AA BAB FAAAB F AA AB DB TOPEX/Poseidon B ENVISAT. D BBB AA BABB FAAAB A F (B A DAB – BABB D DAB ) F B A AB B FAAAB 1) AA A ( BAB) B 2) A AB (AA BAB). DA D B A B B (D, A, B).

3.3.1. B FAAAB F AFDAB AB TOPEX/Poseidon

FD DA AAB BBA FA AB (E), ADB AB FAAA B AFAAA DB F (FD. 10). D FD DAA DBBB A FA BBA FAAAB B DA FAAA B B D B D F. DD DBBA B AA BAB D FAAA (D B DAAA) BB AA AB TOPEX/Poseidon (1993-2001 .). D AB FAAAB DA (DB B, , FD) ADBBD AAB AA BAD, BDB BBA FA AB (E), AA BFD, B DA D BBB.

EBA, DBBA F BA AB A , D A – B ADA , B AAA-AA BAB DAAAB BD BBB. D ABAB FAAA B AFAAA A D BDA AAB BBA FA AB. AAB E BB B DA,

97 F D D F D FB BABBDA AAB BB. D DBBBDB B FA EFB BABDA BBA FAAAB DAB B, FAAB B DAAAB A F. D B, FD ABAB BBB A-BFB ABA A A F (BA, FBA, 1979; , 2003). B, DBBB .. (2003) AA A ADA BABB B A . AA F FD A, DAAB DB, BDB B, BB «ADA» D A B DFAB. ABAB BBB A BB A D A A AA AFDAB A BDBB , A B BDAB AB DBBB. BBAA F A A BDA ADB B DFAB BABDA D BBA FAAAB AB 8 D (B. 24) DA BB A. B AB D ADA EF- (FA E, A) B FA FD. A FBA B D B A B EF- (FA A , A, , B D A). D 2 : ) A , A, ; F) B D A. A DB B EF-AB (FA , , ). A FBA B D, B B BFBB D (FA , BA, B, A, , , , , D). AA D 4 F : ) , , ; F) D, ; ) A, B; ) BA, . DAA AB DBBB BD F AA BBA FAAAB A D DBBB .. (2003). AAB D, A ADA B EF- ( F B A), D B A B EF- , D B , B BFBB D. DA AB DA FD FA DAB F A . B BB F DA A BA 24.

98

FDB 10 – AA AAB BBA FAAAB D F AA AB TOPEX/Poseidon B ENVISAT F D A A BD BAB B BAB B EABDA D AA / F, BD AFDAB DAB F AAB DAB F AAB E DAAA D A 2 AFDAB 35-AA AA E () AA () FA DB (f+f), % 10-AA BD Nobs T/P, % (T/P) ENVISAT, % (ENVISAT) AB BD Nobs (ENVISAT) «…» BDAB (T/P) 1 2 3 4 5 6 7 8 9 10 11 1 11 830 - 1 261 - - 11 27 10 - 2 64 000 407 7 288 65 25 56 20 49 55 3 112 000 628 13 906 74 25 50 21 - 52 4 150 000 753 18 509 44 25 31 21 - 31 5 D 21 000 173 2 476 40 25 31 20 - 32 6 B 12 700 49 1 469 97 25 83 19 82 - 7 15 200 47 1 125 29 25 30 17 31 - 8 BA 15 900 56 1 966 88 25 71 20 73 - 9 76 700 261 8 750 46 25 47 17 47 - 10 A 55 600 209 6 198 90 25 63 22 62 - 11 35 600 156 3 595 39 25 29 21 30 -

99 12 32 300 101 3 268 29 25 21 19 22 - 13 A 91 150 299 7 161 24 21 25 15 24 - 14 A 72 800 218 7 248 54 21 34 15 53 - 15 A 61 800 161 5 963 34 20 30 15 33 - 16 D 34 700 91 3 408 32 20 31 15 35 - A 17 94 200 248 8 515 39 21 31 15 - - 18 EFD 115 500 229 9 824 22 21 20 15 - - AAA EF- 19 E 52 600 124 5 892 50 15 17 15 55 - 20 88 100 194 6 457 35 15 18 15 49 21 80 400 185 5 853 35 15 16 15 - - EFAF: f – A, f – FDAA

99

BA 24 – C F BABDA D BBA FAAAB AB TOPEX/Poseidon

100 DAB BA 24

BBAA F B BAB A AA DA ADB ERA-40 B B DAA AAB DB TOPEX/Poseidon. B ABB DA (F- D) B FD DA B AB AAB A F B B DBAB A F B . AB DBDA A D (BA-AF) B AFDD D A F B . DA F, D BAB BABDA FAAAB D D DAB A (B. 1. BD. 3). F A B DA B AA D. B, B AAB AFDD 1996 D F, – 2001 . BAB 1994 . A F B . FD A 3 F : D B 1996 . B BAB 1994 ., BA B 2000 . B A B 2001 . A FD BAB BBA FAAAB B B B AFDAB (8 D) D AB, A AFD AB AAB FAAAB FDB AAA EF- B A F B E. EA AB AAB A AA F AB A FD ADA. D DAB BB BBB BABDA FAAA AB DA B B DA B BDA BBA A DBAA DBB B B AA AB A BD F. D DA AD F ABB BBAB

DBB B AA A ABB = 0,05: . (rxy = 0,79) (rxy=

0,90), E (rxy = 0,93), A (rxy = 0,73), D (rxy = 0,77). B F, A 101 DB, FAAA BBB AA BB DA B. DAA FAAA B B D B D F BD DFFF BC FF D AB FAAAB B BABB. AA AB DB TOPEX/Poseidon 8-DAB B AFDAB A DBDB B AB A DB D DBA . DAB D F B E B FD AAA EF- . EA F E.. BBA (2011) A BBB EF- A FD DA AB A DFAB DAB 70 D. A, A DBA AA , A BABB B DAAB BBB. A DB, B DA F BB ADA BAAB FAAAB BB. D D BBB F DA BD FAAAB BBB BDAB AA AB ENVISAT.

3.3.2. DBBB F BBA FAAAB AA AB ENVISAT

Zakharova et al. (2009) F, BBB BABD AAA B, ABDB DBBA B BAB DB D B DAAA BB FA D, , B () (B. 25). AA F FD BDA ABAA AAB E, A 20 .

BA 25 – AB B B ENVISAT F (Zhakharova et al., 2009)

102 DAA D DA BB A BA 26, AA BAB FAAAB F A, A B BB: AAB B AAB, BAB ABB. B BB AA , B BBA A AD. B A AAB D, A FA BA, AAB BBA FAAAB 85% D , ( 66%). D ABB A FAAAB, A, FA FD DAAA D D AAB, DB ABAB FD FDBA. B BA AAB , AFD AF, BB AABB BBA FAAAB – 81% D , 79% D , 56% D D B 52% D . D B, AAB B DA-AAB B B B BA BB AABB BBA FAAAB, A AA AB B DA-AAB AAB D. A , AABDA AB AB B BAB A FA DB AA FAAB AB B DBAB DAB . AB BAB D AFD AABB BBA FAAAB 35% D D, 68% D , 70% D B 42% D . B F, AB DBB D A AB DBBA B BAB DB D B DAAA BB A F . AA BAB FAAAB B D 20% D , , B 40% D D. B AA B A , B. DAB DB BDB BAABA B . D AB DAA DBBB 21 F A A AA (AB ) BBA FAAAB AAB 20 (Zakharova et al., 2009). D ADB DA 3 F B AA BABB. DA FB A B ADA B EF- B FA FD, B D. D F B D B F B . DB D B B A B A-BFB ABA (FD. 11). CBB DBBB F DA A BA 1 BDAB 4.

103 FDB 11 – C F AA BABB AA AB ENVISAT (Zakharova et al., 2009)

C B BB F AA BABB I. B DBDA D 1 B B AA DAB BAB: FD AAA EF- , E, , A , , A. Ia. B DBDA D 2- BB B AA DAB BAB: , , D A B A. II. DBDA D AABDA DAB BAB: A, B, BA, , III. A DBDA D 2- BB B AA DAB BAB:, , , , D, ,

a) , 100 B (FE) () (%) AE 80 (FE

B )

60 A (FE F)

40 FC

20 E 0

b) E ) 5000 ) / 3 FE

4000 ( (

3000 B

CB

2000 )

1000 () ( FE B (FE) 0 2002 2003 2004 2005 2006 2007 2008 2009 BA 26 – AA BAB () BBA FAAAB (DB BAB DBB AB ENVISAT, DBBBAA , % F DB BAB FA) (F) B F B (3/) (Zhakharova et al., 2009)

AAB E BB B DA B, A , D F AA AB ENVISAT FBDB BABBDA AAB BB. DAA D DBBBB F BB DA A BA 27. D AA AB ADB FD DA BB A, D AB, DAA AA AB TOPEX/Poseidon. B AB D ADA EF-

104 (FA E, A, D A) B FA FD, FA B B . AA D 2 : ) , D A, A, E B ; F) FD AAA EF- B FA B E. A FBA B D (FA A , A, , ). D 2 : ) A , A; F) B . A DB B EF–AB (FA B ). A FBA B D, B B BFBB D (FA , BA, B, A, , , , , D). AA D 3 F : ) , , D; F) , , A, B, BA; ) B . D AB FD A ADB BABB D D B DAAA BB ( BABDA D) AAB AB FAAAB B 2003 2008 . (B. 28). F A B DA B AA D. B AAB AFDD 2007 A F , E, D A, 2008 A F , A B FDB AAA EF- . BAB AAB AA A B D F , , D A, A 2003 B 2006 A F B E B FDB AAA EF- . B AAB AFDD 2006 . A F A , A B 2008 . A F , B BAB 2004 A F AA . B BDB B 2008 B BAB 2003 . B AAB 2006 FD A D , , D B B 2008 D B, BA, A, B . BAB AAB 2003 D D , , A B , 2004 D B, BA, 2005 D B B 2006 D D B D. A FD BAB BBA FAAAB (BABDA DA) B B B AFDAB (5 D) D AB, A AFD DBAB FAAAB B A: 1) A F A B , 2) B , 3) , 4) B B BA (B. 28).

105

BA 27 – C F BBA FAAAB (BABDA D) AA AB ENVISAT

106 DAB BA 27

AA BA 28 D AAB BBA DBAA A B FAAAB ABFDBB AABB FA BA, A B . A BA B B D A BB D A AB (A 4) (. B. 5, D. 1). F Grippa et al. (2007) FD DA B B B B AA AB (Fraction Water Surface) AA B SSM/I A A : A A ADA D ( D), A ADA D (BFBB D) B A FA ADA D (A A-AB) (1988-2002 .). ADB AA AA AB A D A BD AB DBAB FAAAB. EA AB A FD FAA A A-AB. B AABB AB AA BBBB AB FD ADA, AB FAAAB A A B D 1-28% D AB TOPEX/Poseidon B 1-9% D ENVISAT (BDAB D D F E B ) (. FD. 10). FD AB FAAAB TOPEX/Poseidon B BBBB AAB DA AA A F D B , B BFBB D. F Papa et. al (2006) D, A FAAAB A F AB TOPEX/Poseidon F A FAAB FB BB AB. AA F BDDB FAAA A-FDA B A EFB B AB TOPEX/Poseidon. D DA, A FAAAB A AA BBB A BD, D 773 2, FDB 100%. BBA AB FAAAB, BB AA AB, F BDAB A (ocean), , A, AAB BAD.

107 DBB AB TOPEX/Poseidon, ENVISAT BD (Ice-2), DB, AA A DABB DA D ABAADA B AB, D D FD A BAB DA, AB, AB FAAAB BB. A DBA AA FB AB (5 B 8 D), D AB, BB AAB FAAAB AA AB TOPEX/Poseidon A F B E B FDB AAA EF- . DBAB FAAAB B 2003 2008 . BB A F BA, B, A, , , B . BAB ABAB BDBA BDBB , D A B D AA ABAB FAAAB. B A DB, F BB B DAA ADAA BAAB FAAAB BB. B BDAB AA FD F DA BDAB A AB DBBB.

BA 28 – BAB FAAAB FA A, , , , , B, BA (A D F , A AFD BB DBAB FAAAB)

108 EAB

EAA B D F DB:

1. AA AB B ADB BDA BAB BAAB B A FA , B A BD-DBBB B FDA A. ADB AA (1958-2001 .) D, ABFD BDA DAB AFD A B ABA A F B (0,370/10 D), AB DBAB A AFD D B A F , , B . AAB DBAB A AFD BBB ABA, F A B E, B BDAB AB A. 2. ADB AA BAAB B A BD D: • AB DBAB AFD A ABFD BDA DAB A ABA, A ABB FBA (0,40– 0,840/10 D); • AB DBAB A AFD BAB, AAB B DAB A. EA AAB A AB DBAB AFD A FDBA F ABA, DAA BD-DBB B FDA A. 3. AAB B A B BAAB B FAAAB BBB, FD AA AB DBBB. DBD AB DBBA B B AA BAB FAAAB F EF FA. 4. D AB ADAB BAAB BBA FAAAB BD F DAB A B BAAB A AB DA AAB E D F AB TOPEX/Poseidon B ENVISAT. 5. AA AB TOPEX/Poseidon DA DBBB A FA BABDA DA BBA FAAAB, DA BB A. AA DBBB D DBBB BABB DFAB . 6. DA F, D BAB FAAAB AA AB TOPEX/Poseidon D DAB A ADB 1993-2001 .

109 7. ADA, 8-DAB B AFD AB AAB FAAAB (TOPEX/Poseidon) FDB AAA EF- B A F B E. 8. BDAB AA AB ENVISAT FD A DBBB F B AB BBA FAAAB. DA 4 A, D DB AB, DAAB AA AB TOPEX/Poseidon. DBAB FAAAB FD FAA A F D, D, EF- AB , A F B A. C DAA BDAB EB AFFBAF DAA FABE FBFBB FAABB AEB FAB DAAAFB A D B FAFAA-AA BABFB. EFB DAB BDAB. DAB BDAB F ADA A AAB AAB E D DAB DA, DBB A A FAAAB B DAB, B BDAB BABB B FAAAB A B ADAB B.

110 BFF

1. ABB E.., DA .. DBAB BAAB DB A A D A DBB // DB B BDB. – 1997. – 5. – . 71-80. 2. ABA .., DB .., A .. B . B DB DFDA BAAB B DB. – .: AB BA ADB , 1993. – 49 . 3. B B A-BDD BAB BDB BABB – B A AA (C- ) [DAA ]. – URL: http: // www.meteo.ru. 4. A .., F .. ADB AA B ABAB / .. A, .. F. – 2- B., F. B . – .: BAA B BB, 2010. – 319 . 5. BA .C., A .. ADB DBAB FDAAB F A BDA AA D D BBB ADA B A A-BFB ABA // CAA BDB BAB. – CBB. – 1983. – . 303. – . 63-75. 6. .. CBB A . – .: CB., 1947. – 397 . 7. DA . CB DB: 2 . / . DA. – .: , 1972. – . 1. – 864 . 8. A-CBA .. B ABDA // CAA BDB BAB. – CBB. – 1953. – . 39 (93). – . 80-95. 9. D A BFBB, B AB B BDBB B / . .. A, .. B. – : CBB, 1976. – 448 . 10. D A BFBB: B D FB / . ... – : . . A-, BFBB AA-BDDB BAB , 2000. – 72 . 11. .., BA .. B FD . – .: , 1979. – 188 . 12. . . AAB DB. – .: CBB, 1974. – 280 . 13. . ., BAAB . . CDFDA DAB // DB B BDB. – 1976. – 7. – . 16-26. 14. D .. AAA AB DA B AB FD BADA BDAB (A B A BFBB): B. A B. . . - . A AA D / .. D. – , 1996. – 63 . 15. DBA E.., A H.H., .. AAB BB AA A BBB BB DAB BDB // CAA

111 AB B A-BDD BAB BDB BABB – B A AA. – 2007. – . 173. – . 54-62. 16. .. CBDBB ADB AA D DA A A– BFB ABA // BB BFBB. – 1978 . – . 10. – . 69-89. 17. BD A.A., .., DA .C. BAB ADA- D A BFBB B BAABB DB // B DB. – 2008. – . XII, 2. – . 10-18. 18. D .., D .., .., BA- .., BBA .., .., D .., .., .., BBA .. CA A-FDA B B D (CA D) // AB . . A-. – 2010. – . 9, 1. – . 119-137. 19. CDBA .., CBD .C., A .., A .. BAAB BD B D BB BAB FD // CAA BDB BAB. – CBB. – 1949. – . 13. – . 5-25. 20. CABA .., A .. BBB BABB DBB AA. – .: CBB, 1976. – . 63-76. 21. CB .., BD .. BB B . (B ). – 3- B., B. B . – .: D, 1978. – 512 . 22. CBDBB DB A-BFB ABAAB / DBA [B .]. – .: , 1967. – 214 . 23. CBB A BFBB / . .. A. – : . . A- , 1961. – 169 . 24. CBDB FDAA BB A ADA D A BFBB / . .. B F.: , 2009. – 536 . 25. CDA .. AAB: FAB D A / .. CDA, .. A, .. . – .: D, 2005. – 216 . 26. CDF .., .C. B . DDA A BFBB , D B DA. – .: , 1968. – 150 . 27. CAA C.., CA .., AB .., BB .., D .. AB BAB A A D A-BFB BADB, FDDAA BB AA // AA, FDAB A-BFB -A A FA, B BAB DB B FD AAAB. – 2008. – . 58-60. 28. C .., EDAB .C., B .C. F DA BABAA- BDBDA B A A F-ADB D BDAB BADA 112 BA-DBBB // BDBDA ADBB. – 2007. – . 12. . . 3. – . 20-29. 29. C C.., DA .., A .. EF BAAB B A BBB B BAADA AFDAB // DB B BDB. – 1977. – 1. – . 13-25. 30. C C.., A .. B BAB AFD DB. A DB. – .: CBB, 1980. – 72 . 31. CB .. FDA D B DB BAABA BB / . .. CB, .. // D. , 1965. – . 162, 1. – . 151-154. 32. C C.. [DAA ]: DDA BAAB DB. EF AB B AAB BAAB DB BB 2000 . URL: http://climatechange.igce.ru. 33. C C.., A .. EFAAB BAAB DB: AB, BABB B DAB DB // BA AAB BAAB DB, , 29 AF – 3 F 2003 . // . – .: FDB-BA. – 2004. – . 101-110. 34. B A AA A [DAA ]. – URL:http://www.ecmwf.int. 35. .. DBAB AABB BAB A DFAB (A B FDFAB B ADAB) // AB . . A-. – 2011. – 3. – . 199-206. 36. .. ADB AB BAB B BAAA-DB ABABB (A B A-BFB DB). – .: - . A-, 1976. – 121 . 37. .. B D B A DFDA DABB DB // B FDA AD. – 1997. – 2. – . 70-74. 38. .. EFB AAB B D B DAAB A BBB . : CBB, 1982. – 227 . 39. A BFB / . CB .., FA .. – .: - BB A , 1963. – 486 . 40. .. CDB A-BFB ABA (A B ADA B). – : - . . A-, 1976. – 344 . 41. .., .., B E.C. AAB A A A BFBB DBB // AADA FD B A A F DB. . A. A. A. – , 2000. – . 321-324. 113 42. .. FD BFBB D // BB BFBB. – 2001. – . 24. – . 7-17. 43. .. E ADA BABB A A BFBB // AB . . A-. – 2003. – . 4. – 3. – . 137-139. 44. A .. CBDB FD. – .: CBB, 1953. – 299 . 45. A .. EA BDBB FD DA A. ., CBB, 1957. – 500 . 46. AAB DB. EFFAA D. D FB I, II B III D F A BDAA BAAB DB // . ..A. – BA DB ABB, , 2001. – 215 . 47. AAA DB / . . .. . – - . A-, 1976. – .2. – 495 . 48. DB .., FA .., .., .. AA BA- DBBB BAAB BFBB: A BA B DAB // CB B BA . – 2004. – 3. – . 90-96. 49. .. A B. 1. AB BB A BBB BB B DA A. – .: - . A-, 2002. – 192 . 50. D .., D .., ABA .. DB BDBA B AA BAAB DFDA DB // DB B BDB. – 2002. – 1. – . 22-32. 51. DB .., FA .., BA .., BA .. B BAB DBB D A B BBB BB B BAABA DFDA DAB // AD BF. DA A-. – BDB, 2008. – . 1. – 4. – . 323-344. 52. A .C. AAB B BB-B ABAB. – .: D, 1991. – 365 . 53. FA .. AAB DBBB B BA BAAB BFBB // AD BF. DA A-. – BDB. – 2008. – . 1. – 4. – . 312-322. 54. .. B FD B A B B B AAB. – .: CB, 1948. – 320 . 55. BBA .., F .., .. B . AB B BAB BDA DFB FD - A-BFB ABA // . A. – - F . – 1995. – . 80. – 8. – . 29-39.

114 56. BBA .., D .., F .. BAB FBB DFB FD A-BFB ABA BAB DFDA DBBB BAAB // AB . . A-. –2003. – 7. – . 122-134. 57. BBA .., BA .., BA- .., DA . «EFDA» A-BFB FB B AABB DFDA DBBB BAAB // DBB, ABA B BA A DAB (BD III AA AA-B AABB (21- 23 F 2004 .). – : . . A-, 2004. – . 163-169. 58. BD .., BA .., D .., DBBA .., C.., .., A .., A .. A DBB FAAB A- ABA DB DAB 21 : – .: , 2008. – 292 . 59. A .. AA A BBB . – .: CBB, 1978. – 180 . 60. .., .C. AAB DBA A BB DAB 30 D // B DB. –2009. – . 13. – 2. – . 16- 26. 61. F .., DAB C.. DBDB FF DB BABB. – .: CBB, 1978. – 296 . 62. AF . BABAA BAB DB: EA B BABAA BDAB DBB. – .: B, 1988. – 343 . 63. BA .., FBA .. CBB AAB BDB B . – .: CBB, 1979. – 200 . 64. F .., A .C. AB DBB B . – : - , 2005. – 366 . 65. A .., AB .. DAAA A-BFB ABA. – .: CBB, 1969. – 168 . 66. BABA .., D .., .. BABDA B BB DAA A FA // B B AB DA AAA A. – 1968. – . 163-170. 67. BD .., FDB .. EF BDB: F. D . . . – .: . ., 1991. – 368 . 68. A . ., . . BBB BAB BABAA ABBA A AB // FD B BA . – 2002. – 4. – C.17-21.

115 69. BD .. CDB ABAB A-BFB ABAAB // A- DBB B BBB. – 1962-. – . 27. – . 4-23. 70. B .., .. E B B DBBBB FB FD // CAA BDB BAB. – 1979. – . 261. – . 3-13. 71. ED .. BB B DFDA A A BFBB. – .: , 1968. – 172 . 72. EAA D F BAAB DB B B DB A BBB B BB. DB BAAB DB. – : B, 2008. – 2. – 288 . 73. ED .. A BFB. DB . – .: CBB, 1962. – 564. 74. D .., CB C.. A D B AA DB // B. – 2000. – 4. – . 10-18. 75. DDBAA .. B. .: , 1985. – 128 . 76. A .. B ABB. – .: - BB , 1955. – 279 . 77. BADA ABBA . BA-DBBB BAAB. – : C E, 2000. . 4. – 270 . 78. AA . D B A BFB. – . 3. . 15. BAB B BA EF. – .: CBB, 1973. – 423. 79. B .C. EA BABAA ABAB. – .: A, 2006. – 336 . 80. A . . B FDA B B AA DAB B A BBB A BFBB // B FD B BAB B DBBBB. – 1974. – . 167-173. 81. FBAA . ., D . C. AA BAAB DB. – : CBB, 1966. – 268 . 82. BA .. AA A BFBB B B // EF AB, 1996. – 1. – . 22-31. 83. .. DFAB A AB BA B // B. – 1947. – 5. – 51-54. 84. A (AAA-ADBB A) [DAA ]. – URL: http://www.scanex.ru. 85. DA .. BA DA B A FB AAB // II A B . – 1948. – . I. – . 258-269. 86. . . AB AB B. – - , 1978. – 320 . 87. .. B AB B FD DF B – DA BAB BAAA – BDBB DB // B 116 AA-BDD BAB BD. B BAA.DBB. – 1973. – . 62. – . 108-114. 88. E.. EFF B BAB AA BABAA ABAB DB: FA FB. – - . DB. A-, 2010. – 148 . 89. DDAB .. EBB DA. – .: , 1974. – 252. 90. .. B FD A B A-BFB ABA // CAA BDB BAB. – 1983. – 303. – . 3-11. 91. BDA .., EB .. AA B B A-BFB ABA. – : - DA, 2002. – 404 . 92. D .., DBA .., DA .., .., BA .., BBA E.., BA .C. BAB A D ADAD A A BDBA B DBA AB DBBB BAAB // B DB. – 2008. – . XII. – 1. – . 3-11. 93. A .., B .. AAB DAAB FFDA ABAA DA BB DB DFDA DAB. FD DB ABBA B DBAB B. – F.: CBB, 2008. – .XXII. – . 66-80. 94. BD .. DA BA A BFBB D A FDB // D A- BB BFBB B DA . – 1969. – 23. – . 14-21. 95. .. DB A-BFB ABA . .: , 1976. – 113 . 96. .. A AAB // CDA BB FBB. – 1973. – . 303. – . 93-103. 97. .. A B A BBB . – .: CBB, 1976. – 302 . 98. .. A AAAB AB D DAA ADAB // CDA BB FBB. – 1975. – . 341. – . 87-97. 99. .. AAB DB B B DB A ADA D BB. – EFABA: C C-, 2009. – 127 . 100. Aber J.D., Melillo J. M. Terrestrial Ecosystems / A Harcourt Academy Press. – 2001. – 556 p. 101. Alsdorf D., Birkett C.M., Dunne T., Melack J., and Hess L. Water level change in large Amazon lake measured with space born radar interferometry and altimetry // Geophysical Research Letters. – 2001. – Vol. 28. – P. 2671-2674.

117 102. Amlien J. Remote sensing of snow with passive microwave radiometers – A review of current algorithms / Report 1019. – Norsk Regnesentral. – 2008. – 58 p. 103. AVISO/Altimetry. “AVISO User Handbook for Merged TOPEX/Poseidon Products”. – AVI-NT-02-101-CN, Edition 3.0., 1996. – 194 p. 104. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data). – URL: http://www.aviso.oceanobs.com. 105. Barrick D.E., and Lipa B.J. Analysis and interpretation of altimeter sea echo in Satellite Oceanic Remote Sensing // Advances in Geophysics. – 1985. – Vol. 27. – P. 61-100. 106. Bartsch A., Kidd R.A., Pathe C., Scipal K., and Wagner W. Satellite radar imagery for monitoring inland wetlands in boreal and subarctic environments // Aquatic Conserv: Marine and Freshwater Ecosystems. – 2007. – Vol. 17. – P. 305-317. 107. Birkett C.M. The contribution of TOPEX/Poseidon to the global monitoring of climatically sensitive lakes // Journal of Geophysical Research. – 1995. – Vol. 100. – P. 25179-25204. 108. Birkett C. M. Synergetic remote sensing of lake Chad: Variability of basin flooding // Remote Sensing of Environment. – 2000. – Vol. 72(2). – P. 218-236. 109. Brenner A.C., Bindschadler R.A., Thomas R.H., Zwally H.J. Slope-induced errors in radar altimetry over continental ice sheets // Journal of Geophysical Res. – Ocean. Atmos. – 1983. – Vol. 88. – P. 1617-1623. 110. Brohan P., Kennedy J. J., Harris I., Tett S. F. B., and Jones P. D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850 // Journal of Geophysical Research. – 2006. – Vol. 111. – P. 21. 111. Bromwich D.H., and Fogt R.L. Strong trends in the skill of the ERA-40 and NCEP/NCAR reanalyses in the high and middle latitudes of the Southern Hemisphere 1958-2001 // Journal of Climate. – 2004. – Vol. 17. – P. 4603-4619. 112. Brown J., Ferrians O.J. Jr., Heginbottom J.A., and Melnikov E.S. Circum-Arctic map of permafrost and ground-ice conditions, 1998. – URL: http://nsidc.org/data/ggd318.html. 113. Cairns J. Jr., McCormick P. V. and Niederlehner B. R. A proposed framework for developing indicators of ecosystem health // Hydrobiologia. – 1993. – Vol. 263(1). – P. 1- 44. 114. Callaghan T.V. and Jonasson S. Arctic terrestrial ecosystems and environmental change // Phil. Trans. Roy. Soc. Lond. – 1995. A 352. – P. 259-276. 115. Cazenave A., Bonnefond P., and Dominh K. Caspian Sea level from TOPEX/Poseidon altimetry: level now falling // Geophysical Research Letters. – 1997. – Vol. 24. – P. 881- 884.

118 116. Chang A.T. C., Foster J.L., and Hall D.K. Nimbus- SMMR derived global snow cover parameters // Annals of Glaciology. – 1987. – Vol. 9. – P. 39-44. 117. Crétaux J.-F., Birkett C. Lake studies from satellite radar altimetry // Internal Geophysics. – 2006. – Vol. 338. – P. 1098-1112. 118. Cullather R. I., Bromwich D. H., and Serreze M. C. The atmospheric hydrologic cycle over the Arctic Basin from reanalyses. Part I: Comparison with observations and previous studies // Journal of Climate. – 2000. – Vol. 13. – P. 923-937. 119. ENVISAT RA-2/MWR Level 2 User Manual. – ESA, 2002. – 150 p. 120. Foster J.L., Chang A.T. C., and Hall D.K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology // Remote sensing of environment. – 1997. – Vol. 62. – P. 132-142. 121. Francis C. R., Caporali A., Cavaleri L., Cenci A., Ciotto P., Ciraolo L., Gurtner W., Massmann F. H., Rosso D., Scharroo R., Spalla P., and Vermaat E. The Calibration of the 1 Radar Altimeter – The Venice Calibration Campaign // ESA Report ER-RP-ESA-RA-0257, issue 2.0. ESA/ESTEC, Noordwijk, The Netherlands, 1 March, 1993. 122. Frey K.E. and Smith L.C. Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation // Polar Research. – 2003. – Vol. 22 (2). – P. 287-300. 123. Frison P.L., and Mougin E. Use of ERS-1 wind scatterometer data over land surfaces // I.E.E.E. Transactions of Geoscience and Remote Sensing. – 1996(a). – Vol. 38. – P. 1794- 1803. 124. Fu L.L., Pihos G. Determining the response of sea level to atmospheric pressure forcing using TOPEX/Poseidon data // Journal of Geophysical Research. – 1994. – Vol. 99 (12). – P. 24633-24642. 125. Fu L.L., Cazenave A. (2001). Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. – Academic Press. San Diego, California, 2001. – 459 p. 126. Fujii T., Fukuchi T. Laser remote sensing. –Taylor and Francis, 2005. – 912 p. 127. Grippa M., Mognard N. M., Letoan T., and Josberger E.G. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm // Remote sensing of environment. – 2004. – Vol. 93. – P. 30-41. 128. Grippa M., Mognard N., Letoan T. Comparison between the interannual variability of snow parameters derived from SSM/I and the Ob river discharge // Remote sensing of environment. – 2005. – Vol. 98. – P. 35-44. 129. Grippa M., Mognard N. M., Letoan T., and Biancamaria S. Observations of changes in surface water over the Western Siberia lowland // Geophysical Research Letters. – 2007. – Vol. 34. – L. 15403. 119 130. Hansen J., Sato Mki., Ruedy R., Nazarenko L., Lacis A., Schmidt G.A., Russell G., Aleinov I., Bauer M., Bauer S., Bell N., Cairns B., Canuto V., Chandler M., Cheng Y., Genio A., Faluvegi G., Fleming E., Friend A., Hall T., Jackman C., Kelley M., Kiang N.Y., Koch D., Lean J., Lerner J., Lo K., Menon S., Miller R.L., Minnis P., Novakov T., Oinas V., Perlwitz J.P., Perlwitz Ju., Rind D., Romanou A., Shindell D., Stone P., Sun S., Tausnev N., Thresher D., Wielicki B., Wong T., Yao M. and Zhang S. Efficacy of climate forcings // Journal of Geophysical research. – 2005. – Vol. 110. – P. 45. 131. Justice C. O., Townshend J. R. G. and Choudhury B. J. Comparison of AVHRR an SMMR data for monitoring vegetation phenology on a continent scale // International Journal of Remote Sensing. – 1989. – Vol. 10(10). – P. 1607-1632. 132. Johnson J. W., Williams L.A. Jr, Bracalente E.M., Beck F.B., Grantham W.L. Seasat – a scatterometer instrument evaluation // IEEE Oceanic Engineering. – 1980. – Vol. OE-5 (2). – P. 138-144. 133. Kalnay E. 2003. Atmospheric modeling, data assimilation, and predictability. – Cambridge University Press, 2003. – 341 p. 134. Kelly R. E. J. and Chang A.T. C. Development of a passive microwave global snow depth retrieval algorithm for Special sensor Microwave Imagery (SSM/I) and Advanced Microwave Scanning Radiometer-EOS (AMSR–E) data // Radio Science. – 2003. – Vol. 38 (4). – P. 8076. 135. Kouraev A.V., Zakharova E.A., Samain O., Mognard N.M., Cazenave A.. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002) // Remote sensing of environment. – 2004. – Vol. 93. – P. 238-245. 136. Legresy B. and Remy F. Altimetric observations of surface characteristics of the Antarctic ice sheet // Journal of Glaciology. – 1997. – Vol. 43(144). – P. 265-275. 137. Lugina K. M., Groisman P. Ya., Vinnikov K. Ya., Koknaeva V. V., and Speranskaya N. A. Monthly surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe (1881–2005). – 2005. – URL: http:// cdiac.esd.ornl.gov/trends/temp/lugina/lugina.html. 138. Manabe S., Stouffer R.J. Low-frequency variability of surface air temperature in a 1000- year integration of a coupled atmosphere-ocean-land surface model // Journal of Climate. – 1996. – Vol. 9 (2). – P. 376-393. 139. Moulin S., Kergoat L., Viovy N. and Dedieu G. Global scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements // Journal of Climate. – 1997. – Vol. 10(6). – P. 1154-1170.

120 140. Mognard N. M. and Josberger E.G. Northern Great Plains 1996/97 seasonal evolution of snowpack parameters from satellite passive microwave measurements // Annals of Glaciology. – 2002. – Vol. 34 (1). – P. 15-23. 141. Mercier F., Cazenave A., and Maheu C. Interannual lake fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean/atmosphere interactions over the Indian Ocean // Global and Planetary Change. – 2002. – Vol. 32. – P. 141-163. 142. Njoku E. G. and Li L. Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz // IEEE Transactions on Geoscience and Remote Sensing. – 1999. – Vol. 37(1). – P. 79-93. 143. Papa F., Mognard N. V., Josberger E.G. and Remy F. Snow signature with the ERS-2 radar altimeter // IGARSS Proceedings, Sydney, Australia, CD-Rom, 2001. 144. Papa F., Legresy B., Remy F. Use of the TOPEX-Poseidon dual-frequency radar altimeter over land surfaces // Remote sensing of Environment. – 2003. – Vol. 87. – P. 136-147. 145. Papa F., Legresy B., Mognard N. V., Josberger E.G. and Remy F. Estimating terrestrial snow depth with the TOPEX/Poseidon altimeter and radiometer // IEEE Transactions on Geoscience and Remote Sensing. – 2002. – Vol. 40 (10). – P. 2162-2169. 146. Papa F., Prigent C., Rossow W.B., Legresy B. and Remy F. Flooded wetland dynamics over boreal regions from remote sensing: the use of Topex/Poseidon dual-frequency radar altimeter observations // International Journal of Remote Sensing. – 2006. – Vol. 27 (21). – P. 4847-4866. 147. Partington K.C., Ridley J.K., Rapley C.G., Zwally H.J. Observations of the surface properties of the ice sheets by satellite radar altimetry // Journal of Glaciology. – 1989. – Vol. 35. – P. 267-275. 148. Raizonville P., Lannelongue N., Anne J.C., De Chateau, Thierry P. Poseidon solid state altimeter // Acta Astronautica. – 1988. – Vol. 17 (1). – P. 23-30. 149. Peterson B.J., Holmes R.M., McClelland J.W., Vörösmarty C.J., Lammers R.B., Shiklomanov A.I., Shiklomanov I.A., Rahmstorf S. Increasing river discharge into the arctic ocean // Science. – 2002. – Vol. 298 (5601). – P. 2171-2173. 150. Remy F., Brossier C., Minster J.F. Intensity of satellite radar-altimeter return power over continental ice. A potential measurement of katabatic wind intensity // Journal of Glaciology. – 1990. – Vol. 36. – P. 133-142. 151. Remy F., Schaeffer P. and Legresy B. Ice flow physical processes derived from ERS-1 high resolution map of the Antarctica and the Greenland ice sheets // Geophysical Journal International. – 1999. – Vol. 139. – P. 645-649.

121 152. Serreze M.C., Barrette A., and Lo F. Northern high latitude precipitation as depicted by atmospheric reanalysis and satellite retrievals // Monthly Weather Review. – 2005. – Vol. 133. – P. 3407-3430. 153. Sippel S. J., Hamilton S. K., Melack J. M. and Novo E. M. Passive microwave observations of flooding area and the area/stage relation in the Amazon river floodplains // International Journal of Remote Sensing. – 1998. – Vol. 19. – P. 3055-3074. 154. Smith L. C., Sheng Y., McDonald G. M., and Hinzman L. D. Disappearing Arctic lakes // Science. – 2005. – Vol. 308 (5727). – P. 1429. 155. Serreze M.C., Walsh J.E., Chapin F.S., Osterkamp T., Dyurgerov M., Romanovsky V.E., Oechel W.C., Morison J., Zhang T., and Barry R.G. Observational evidence of recent change in the northern high-latitude environment // Climatic Change. – 2000. – Vol. 46. – P. 159-207. 156. SPOT Catalog: http://sirius.spotimage.fr 157. Vignudelli S., Kostianoy A.G., Cipollini P., Benveniste J. Coastal Altimetry. – Springer- Verlag Berlin Heidelberg, 2011. – 578 p. 158. Zakharova E.A., Kouraev A.V., Kolmakova M., Mognard, N.M., Zemtsov V.A., Kirpotin S.N. The modern hydrological regime of the Northern Western Siberia from in situ and satellite observations // International Journal of Environmental Studies. – 2009. – Vol. 66. (4). – P. 447-463. 159. Zakharova E.A., Kouraev A.V., Biancamaria S., Kolmakova M.V., Mognard N.M., Zemtsov V.A., Kirpotin S.N., Decharme B. Snow cover and spring flood flow in the northern part of the Western Siberia (The Poluy, Nadym, Pur and Taz rivers) // Journal of Hydrometeorology. – 2011. – Vol. 12 (6). – P. 1498-1511. 160. Zwally H.J., Bindschader R.A., Brenner A.C., Martin T.V. and Thomas R.H. Surface elevation contours of Greenland and Antarctica ice sheets // Journal of Geophysical Research. – 1983. – Vol. 88. – P. 1589-1596.

122

BAB 1

FDB 1. DBBB BABAA ABAB DB

EFBA BF BA BF CBDB; BA / CBDB; BA ; CBDB; A ADBAB: EAA E: FBE E: B – Doppler LIDAR, ICESat LIDAR ABB NOAA: BF • , • ABBA : BAB B , DAB, AVHRR • DBDA , AABB ABB Landsat: – B BF • B A AB, BF ETM+ D • BAB A BFAB ABB SPOT • FBBB BAB; • B, • EAA FD

123 • BAAB BAAB -

BB B FBEB BDA , • BABBB B A

EFBA BF BA BF EFFB: DA FBFB; DBFB D E : D FBEA :

• ENVISAT (RA-2)*, B – SSM/I*, SMMR, MIMR: B BAB • TOPEX/Poseidon*, • DAB AA , BFAB: SAR, ASAR • ERS, • A ABAB: BAAB B

BF • Jason, , DA ,

B F BAB • Cryosat, BFAB - AFEF: • Altika Quick SCAT

• AB BB • A ABBA, A, • ABBA DA, • BAB A

BEA • DA

124 ABAADA A F, • ABBA DA

FABE BFB

CB – GRACE, CHAMP, GOCE • AB DFDA BBAA D, – • ADB A AB,

BF • BDB ABB AB, • AA B A . BFBEB

124 BAB 2

FDB 2. EAA BA , BD F

AB FBA ABE FFFB AAB EFBA BF Active remote sensing systems B, B ABB BDAB B DBFABAA ADBAB ADBBB AA CF BF Altitude AB A AB A DDBB BDB B A A AB. FB BD FBBB AA CF A AFB Height B A FB B AB AB BD AB BD Geoid DA B DA, ABAA AA A A

BBEB EB Geophysical corrections BD D BB BA DAB (AB, A, BAA B). B (D) Decibel ABDA DBB BAB, BD

125 D BAB DBA BBB DBBA, BAB A BB D.

BFABAA ADBAB Remote sensing D BDB DAB BABB F B () F, AB BDB DAB ADB AA, FAA F A B F CF FABE AD AF Range AB AB BD AB AF FAB Repeat cycle , AB A A

125

AB FBA ABE FFFB AAB BBAF FA AB Backscatter EAAB BD, AA AB B () = FAA BA (°) A BDAA ABB , AA BFD (). BF Orbit B BAB BB D - AB BAB , FD BA ADA D BA BF Passive systems B, BB D BDAB DBFABAA ADBAB F, A A FDA AD (.. F) BE Pixel BAB DBB DA A B BFAB. FD BD A BAB DB B BFAB, FD A DA. DA Radar echo EAA BAD D E Side-looking radar D BBAD, ADAA A

126 D FBEA Nadir D BBAD, ADAA BDA

(ADB) DABB (BD AB DBBB) A-BBD Reference ellipsoid CBB BDA B, ABDB F BFDBA ABDA B B, ABDA DA BB BDAB B B BB BB

126

AB FBA ABE FFFB AAB FEE Retracker DB F FFB BAD

E (F) Track BAB B ABDA DB A Waveform DA BDB A , BAAB AB DBBA B BAD

FBAF DA FBF Footprint radar altimeter BB B D, B DBB A A AB D FAB A A BD AB. B BA DBB DBAB DB DA

127

127 BAB 3

BA 1. B F AA AB TOPEX/Poseidon B DA ADB

C 1

EEE E 300 40

250 100 350 50 250 30 300 200 80 200 40 250 150 60 150 20 200 30

100 100 40 150 20 10 100 50 50 20 10 50 0 0 0 0 0 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

C 2

128 D .D EB B

350 35 400 80 450 70 300 30 350 70 400 60 350 250 25 300 60 50 300 250 50 200 20 250 40 200 40 150 15 200 30 150 30 150 100 10 20 100 20 100 50 5 10 50 10 50 0 0 0 0 0 0 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

128

C 3

C

400 60 350 45 350 40 50 300 35 300 250 40 250 30 200 25 200 30 150 20 150 20 15 100 100 10 10 50 50 5 0 0 0 0 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

C 4

129

E B

90 350 100 300 80 300 90 80 70 250 300 80 250 70 60 70 250 200 60 200 60 50 50 200 50 150 40 150 40 150 40 30 100 30 100 30 100 20 20 20 50 50 50 10 10 10 0 0 0 0 0 0 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

129 C 4F

A

50 300 60 300 45 250 50 250 40 35 200 40 200 30

25 150 30 150 20 100 15 20 100 10 50 5 10 50 0 0 0 0 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

C 4

130 E A

100 400 40 93 90 350 92 80 35 300 91 70 250 90 60 30 50 200 89 40 88 150 25 30 87 100 20 20 86 10 50 85 0 0 15 84 1992 1994 1996 1998 2000 2002 1992 1994 1996 1998 2000 2002

BA – 1 B F BBA FAAAB (DA BABDA) AA AB TOPEX/Poseidon B A D B (BA-AF) AA DA ADB ERA-40 EFAF - F – FA F, F – EE AEF A ( CF – F F (%) (AB E FE), A – EEA A (EE) (AB E FE)

130 BAB 4

BA 2. B F AA BABB AA AB ENVISAT

C I

EEE DE D , 100 100 100 80 80

, % 80

, % 60 60 60 BEEE %

40 40 40 20

20 E 20 E

BEEE BEEE 0 0 0 E 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

131

B E

100 100 100

, % 80 80 80 , %

60 , % 60 60

40 40 40

E 20 20 E 20 BEEE BEEE 0 E BEEE 0 0 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

131 C I

100 100

, %

80 80 , % 60 60 40 40 20 20 E E

BEEE 0

BEEE 0 0 1 2 3 4 56 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

132 E EB

100 100

, % , 80 , % 80 60 60 40 40 20 E 20 E BEEE BEEE 0 0 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

132 C II

E A E , 100 100 100

, % 80 , % 80 80 60 60 60 BEEE %

40 40 40

E 20 E 20 20 BEEE BEEE 0 0 0

0 1 2 3 4 5 6 7 8 9101112 E 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

F

133 100 100

, % , % 80 80 60 60 40 40 E E 20 20 BEEE BEEE 0 0 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

133

C III

A C A

100 100 100

, %

80 , % 80 % , 80 60 60 60 40 40 40

E 20 20 E 20 E BEEE BEEE BEEE 0 0 0 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112

134 B

100 100 100

, % , % , % 80 80 80 60 60 60 40 40 40

E 20 20 20 E BEEE E BEEE 0 0 BEEE 0 0 1 2 3 4 5 6 7 8 9101112 0 1 2 3 4 5 6 7 8 9101112 0 12 3 45 6 78 9101112

BA 1 – B F AA BABB (AB ) AA AB ENVISAT EFAF - AAB AAFA AE FACFA AC. 11 FDF CAF FA.

134 AUTHOR: Maria Kolmakova TITLE: Hydrological and climatic variability in the river basins of the West Siberian Plain (from meteorological stations, model reanalysis and satellite altimetry data)

PhD ADVISORS: Alexei Kouraev and Valeriy Zemtsov

DEFENCE DATE AND PLACE: 17 December, 2012, Tomsk (Russia)

ABSTRACT:

Because of high level of swamping in West Siberia and a sparse network of hydrometeorological stations, monitoring of hydrological regime is hindered. In such a situation, it is necessary to involve model reanalysis and satellite altimetry data that ensure the regular coverage of the whole West Siberian Plain, making it possible to supplement field studies and to considerably expand the area of research. This determines the relevance of the thesis. Chapter 1 describes the physic and geographic factors that determined the evolution of the West Siberian Plain; chapter 2 is devoted to methods used in the study; the analysis of trends of air temperature and precipitation is presented in the 3rd chapter as well as the estimation of temporal variability of moisture regime of watersheds from satellite altimetry. The originality of the thesis is to apply satellite altimetry data for estimation of spatio- temporal variability of flooded zones based on the analysis of a reflected signal.

KEYWORDS: West Siberian Plain, river basins, climate change, flooded zones, satellite altimetry, model reanalysis, seasonal and interannual variability, backscatter coefficient

DISCIPLINE: Hydrology

LABORATORY: Laboratoire d’Etudes en Géophysique et Océanographie Spatiales 14 avenue Edouard Belin 31400 Toulouse France Department of Hydrology, Tomsk State University 36 avenue Lenina 634050 Tomsk Russia AUTEUR: Maria Kolmakova

135 TITRE: La variabilité hydrologique et climatique dans les bassins versants de la Sibérie Occidentale (selon les données des stations météorologiques, de ré-analyse météorologique et d’altimétrie satellitaire)

DIRECTEURS DE THESE: Alexei Kouraev and Valeriy Zemtsov

LIEU ET DATE DE SOUTENANCE: Tomsk (Russie), le 17 décember, 2012

RESUME:

Le caractère fortement marécageux du territoire de la Sibérie Occidentale et la rareté des stations d’observations hydrométéorologiques compliquent le suivi du régime hydrologique des bassins versants. Dans une telle situation, la prise en compte des données de ré-analyse météorologique et d’altimétrie satellitaires, assurant une couverture régulière de l'ensemble du territoire étudié, permet de compléter les observations in situ et d'élargir considérablement la portée des recherches, ce qui détermine la pertinence de ce travail. Le premier chapitre décrit les principaux facteurs physiques et géographiques qui ont déterminé le développement de la zone d'étude ; le deuxième chapitre est consacré aux méthodes d’étude; le troisième chapitre présente les résultats d’analyse de la variabilité des caractéristiques climatiques et hydrologiques dans les bassins fluviaux. L’originalité de cette thèse est d’appliquer une nouvelle approche de la quantité d’eau de la zone étudiée.

MOTS-CLES: Plaine de Sibérie occidentale, bassins versants, changement climatique, zones inondées, altimétrie satellitaire, ré-analyse météorologique, variabilité saisonnière et annuelle, coefficient de rétrodiffusion

DISCIPLINE: Hydrologie

LABORATOIRE: Laboratoire d’Etudes en Géophysique et Océanographie Spatiales 14 avenue Edouard Belin 31400 Toulouse France Département d’hydrologie de l’Université d’Etat de Tomsk 36 avenue Lenina 634050 Tomsk Russie

136