Magnetic Disunity the Path to Consistent Cgs Magnetic Units Has Been Long and Winding, As Is the Process of Universally Adopting SI Units

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Disunity the Path to Consistent Cgs Magnetic Units Has Been Long and Winding, As Is the Process of Universally Adopting SI Units measure for measure Magnetic disunity The path to consistent cgs magnetic units has been long and winding, as is the process of universally adopting SI units. Andreas Trabesinger peeks into the history of the field. hen, in 1820, the Danish Some progress came with the 1900 experimentalists, interested primarily in the physicist and chemist International Electrical Congress, held in physical manifestation of a phenomenon, WHans Christian Ørsted observed Paris, where at least two magnetic units and theoreticians, driven by the interest in that a wire carrying electrical current can were assigned, the maxwell as the cgs the interdependence of the basic deflect a compass needle, the significance unit of magnetic flux and the entities, set up a system of of that discovery was quite evident to him. gauss for the cgs unit of the units. The consequences He penned down his findings in Latin, had magnetic-field strengthH . B of ‘rationalizing’ the them printed at his own expense, and sent The recommendation units — making them A m–1 copies to peers all over Europe. His strategy of the Paris meeting G coherent with one proved successful: others quickly took up notwithstanding, another — has left exploring electromagnetism, and Ørsted’s the gauss kept us with slightly text was promptly translated into French, being merrily used M J awkward values such English, German, Italian and Danish1. for either H or as 4π × 10–7 N A–2 Elsewhere in Europe, Carl Friedrich the magnetic flux for μ0 in SI units. Gauss ventured into new territory of density B — or Oe T And two conventions his own. In 1833 he (later jointly with both — as consensus of how to relate Wilhelm Weber) started developing a on whether B and H H B to H remain in system to relate measurements of terrestrial are distinct physical use: according to the magnetism to mechanical units, providing fields was yet to emerge. Kennelly convention, a powerful framework for quantifying The decision-making process B = μ0H + J (J being the magnetic moments and magnetic fields. dragged on, involving the creation magnetic polarization), and Gauss and Weber went on to found the of ever-new international bodies and according to the convention introduced by Magnetische Verein (Magnetic Club) in meetings across Europe and in the US. At Arnold Sommerfeld, B = μ0(H + M), with Göttingen, to promote the systematic study long last, a committee of the International M the magnetization per unit volume. of spatial and temporal variations of the Electrotechnical Commission voted in Magnetism fundamentally pervades Earth’s magnetic field across the world. 1930 that B and H were to be considered our understanding and use of physical It is somewhat ironic then that the physically distinct quantities. This implied, phenomena. Its history is intertwined with history of magnetic units bearing the importantly, that the constant relating B to that of geology, physics, engineering and names of Gauss and Ørsted is one H, the permeability of free space μ0, is not numerous other fields. It might therefore characterized by confusion rather than just a number, but has physical dimensions. be of little surprise that this is one of the clarity. With the flurry of activity in the The unit name gauss was then assigned few remaining areas where SI units are still field of electromagnetism by engineers to B, reversing the decision made in Paris not universally accepted. Calls for unity and scientists alike, a slew of conventions in 1900, whereas for H the unit oersted are yet to be heard4. But one lesson to be and notations sprang into existence. “Since was recommended. But further-reaching learned should be that at the very least units, 1890 incipiently, and since 1900 definitely, changes were needed, and in 1935 the notations and conventions should be used there has been widespread ambiguity in decision was taken to adopt a system with consistently and declared clearly. Ørsted and the world’s magnetic literature, over the four basic units: metre, kilogram, second Gauss deserve no less. ❐ definitions, names and symbols of certain (MKS) “and a fourth fundamental unit to be magnetic-circuit units, and especially in chosen later”3 — eventually, the ampere took ANDREAS TRABESINGER is an NMR regard to the gauss”, observed the Irish that place. spectroscopist turned science writer. electrical engineer Arthur Kennelly in In the International System of Units e-mail: [email protected] 1933 (ref. 2). (SI), B is now expressed in tesla, and H in On the electrical side, a set of units based amperes per metre. Many issues related References 1. Steinle, F. in The Oxford Handbook of the History of Physics on the centimetre–gram–second (cgs) to the early developments, however, still (eds Buchwald, J. Z. & Fox, R.) Ch. 18.3 (Oxford Univ. system had been internationally adopted linger in today’s ‘magnetic literature’. The Press, 2013). by 1893, agreed in a series of International long discussion regarding the physical 2. Kennelly, A. E. Proc. Natl Acad. Sci. USA 19, 144–149 (1933). 3 3. Silsbee, F. B. J. Res. Natl Bur. Stand. 66C, 137–183 (1962). Electrical Congresses. For magnetic units, nature of B and H has been summarized 4. Crangle, J. & Gibbs, M. Phys. World 7, 31–32 however, the situation remained unclear. in terms of the differences in how (November, 1994). 716 NATURE PHYSICS | VOL 13 | JULY 2017 | www.nature.com/naturephysics ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. .
Recommended publications
  • Electro Magnetic Fields Lecture Notes B.Tech
    ELECTRO MAGNETIC FIELDS LECTURE NOTES B.TECH (II YEAR – I SEM) (2019-20) Prepared by: M.KUMARA SWAMY., Asst.Prof Department of Electrical & Electronics Engineering MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution – UGC, Govt. of India) Recognized under 2(f) and 12 (B) of UGC ACT 1956 (Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India ELECTRO MAGNETIC FIELDS Objectives: • To introduce the concepts of electric field, magnetic field. • Applications of electric and magnetic fields in the development of the theory for power transmission lines and electrical machines. UNIT – I Electrostatics: Electrostatic Fields – Coulomb’s Law – Electric Field Intensity (EFI) – EFI due to a line and a surface charge – Work done in moving a point charge in an electrostatic field – Electric Potential – Properties of potential function – Potential gradient – Gauss’s law – Application of Gauss’s Law – Maxwell’s first law, div ( D )=ρv – Laplace’s and Poison’s equations . Electric dipole – Dipole moment – potential and EFI due to an electric dipole. UNIT – II Dielectrics & Capacitance: Behavior of conductors in an electric field – Conductors and Insulators – Electric field inside a dielectric material – polarization – Dielectric – Conductor and Dielectric – Dielectric boundary conditions – Capacitance – Capacitance of parallel plates – spherical co‐axial capacitors. Current density – conduction and Convection current densities – Ohm’s law in point form – Equation of continuity UNIT – III Magneto Statics: Static magnetic fields – Biot‐Savart’s law – Magnetic field intensity (MFI) – MFI due to a straight current carrying filament – MFI due to circular, square and solenoid current Carrying wire – Relation between magnetic flux and magnetic flux density – Maxwell’s second Equation, div(B)=0, Ampere’s Law & Applications: Ampere’s circuital law and its applications viz.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • Magnetism Known to the Early Chinese in 12Th Century, and In
    Magnetism Known to the early Chinese in 12th century, and in some detail by ancient Greeks who observed that certain stones “lodestones” attracted pieces of iron. Lodestones were found in the coastal area of “Magnesia” in Thessaly at the beginning of the modern era. The name of magnetism derives from magnesia. William Gilbert, physician to Elizabeth 1, made magnets by rubbing Fe against lodestones and was first to recognize the Earth was a large magnet and that lodestones always pointed north-south. Hence the use of magnetic compasses. Book “De Magnete” 1600. The English word "electricity" was first used in 1646 by Sir Thomas Browne, derived from Gilbert's 1600 New Latin electricus, meaning "like amber". Gilbert demonstrates a “lodestone” compass to ER 1. Painting by Auckland Hunt. John Mitchell (1750) found that like electric forces magnetic forces decrease with separation (conformed by Coulomb). Link between electricity and magnetism discovered by Hans Christian Oersted (1820) who noted a wire carrying an electric current affected a magnetic compass. Conformed by Andre Marie Ampere who shoes electric currents were source of magnetic phenomena. Force fields emanating from a bar magnet, showing Nth and Sth poles (credit: Justscience 2017) Showing magnetic force fields with Fe filings (Wikipedia.org.) Earth’s magnetic field (protects from damaging charged particles emanating from sun. (Credit: livescience.com) Magnetic field around wire carrying a current (stackexchnage.com) Right hand rule gives the right sign of the force (stackexchnage.com) Magnetic field generated by a solenoid (miniphyiscs.com) Van Allen radiation belts. Energetic charged particles travel along B lines Electric currents (moving charges) generate magnetic fields but can magnetic fields generate electric currents.
    [Show full text]
  • 08. Ampère and Faraday Darrigol (2000), Chap 1
    08. Ampère and Faraday Darrigol (2000), Chap 1. A. Pre-1820. (1) Electrostatics (frictional electricity) • 1780s. Coulomb's description: ! Two electric fluids: positive and negative. ! Inverse square law: It follows therefore from these three tests, that the repulsive force that the two balls -- [which were] electrified with the same kind of electricity -- exert on each other, Charles-Augustin de Coulomb follows the inverse proportion of (1736-1806) the square of the distance."" (2) Magnetism: Coulomb's description: • Two fluids ("astral" and "boreal") obeying inverse square law. • No magnetic monopoles: fluids are imprisoned in molecules of magnetic bodies. (3) Galvanism • 1770s. Galvani's frog legs. "Animal electricity": phenomenon belongs to biology. • 1800. Volta's ("volatic") pile. Luigi Galvani (1737-1798) • Pile consists of alternating copper and • Charged rod connected zinc plates separated by to inner foil. brine-soaked cloth. • Outer foil grounded. • A "battery" of Leyden • Inner and outer jars that can surfaces store equal spontaeously recharge but opposite charges. themselves. 1745 Leyden jar. • Volta: Pile is an electric phenomenon and belongs to physics. • But: Nicholson and Carlisle use voltaic current to decompose Alessandro Volta water into hydrogen and oxygen. Pile belongs to chemistry! (1745-1827) • Are electricity and magnetism different phenomena? ! Electricity involves violent actions and effects: sparks, thunder, etc. ! Magnetism is more quiet... Hans Christian • 1820. Oersted's Experimenta circa effectum conflictus elecrici in Oersted (1777-1851) acum magneticam ("Experiments on the effect of an electric conflict on the magnetic needle"). ! Galvanic current = an "electric conflict" between decompositions and recompositions of positive and negative electricities. ! Experiments with a galvanic source, connecting wire, and rotating magnetic needle: Needle moves in presence of pile! "Otherwise one could not understand how Oersted's Claims the same portion of the wire drives the • Electric conflict acts on magnetic poles.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • F = BIL (F=Force, B=Magnetic Field, I=Current, L=Length of Conductor)
    Magnetism Joanna Radov Vocab: -Armature- is the power producing part of a motor -Domain- is a region in which the magnetic field of atoms are grouped together and aligned -Electric Motor- converts electrical energy into mechanical energy -Electromagnet- is a type of magnet whose magnetic field is produced by an electric current -First Right-Hand Rule (delete) -Fixed Magnet- is an object made from a magnetic material and creates a persistent magnetic field -Galvanometer- type of ammeter- detects and measures electric current -Magnetic Field- is a field of force produced by moving electric charges, by electric fields that vary in time, and by the 'intrinsic' magnetic field of elementary particles associated with the spin of the particle. -Magnetic Flux- is a measure of the amount of magnetic B field passing through a given surface -Polarized- when a magnet is permanently charged -Second Hand-Right Rule- (delete) -Solenoid- is a coil wound into a tightly packed helix -Third Right-Hand Rule- (delete) Major Points: -Similar magnetic poles repel each other, whereas opposite poles attract each other -Magnets exert a force on current-carrying wires -An electric charge produces an electric field in the region of space around the charge and that this field exerts a force on other electric charges placed in the field -The source of a magnetic field is moving charge, and the effect of a magnetic field is to exert a force on other moving charge placed in the field -The magnetic field is a vector quantity -We denote the magnetic field by the symbol B and represent it graphically by field lines -These lines are drawn ⊥ to their entry and exit points -They travel from N to S -If a stationary test charge is placed in a magnetic field, then the charge experiences no force.
    [Show full text]
  • Magnetic Flux and Flux Linkage
    Magnetic Flux and Flux Linkage To be able to calculate and explain the magnetic flux through a coil of wire To be able to calculate the magnetic flux linkage of a coil of wire To be able to calculate the magnetic flux linkage of a rotating coil Magnetic Flux, Magnetic flux is a measure of how many magnetic field lines are passing through an area of A m2. The magnetic flux through an area A in a magnetic field of flux density B is given by: BA This is when B is perpendicular to A, so the normal to the area is in the same direction as the field lines. Magnetic Flux is measured in Webers, Wb The more field pass through area A, the greater the concentration and the stronger magnetic field. This is why a magnet is strongest at its poles; there is a high concentration of field lines. We can see that the amount of flux flowing through a loop of wire depends on the angle it makes with the field lines. The amount of flux passing through the loop is given by: θ is the angle that the normal to the loop makes with the field lines. Magnetic Flux Density We can now see why B is called the magnetic flux density. If we rearrange the top equation for B we get: B So B is a measure of how many flux lines (field lines) passes through each unit area (per m2). A A flux density of 1 Tesla is when an area of 1 metre squared has a flux of 1 Weber.
    [Show full text]
  • Appendix H: Common Units and Conversions Appendices 215
    Appendix H: Common Units and Conversions Appendices 215 Appendix H: Common Units and Conversions Temperature Length Fahrenheit to Celsius: °C = (°F-32)/1.8 1 micrometer (sometimes referred centimeter (cm) meter (m) inch (in) Celsius to Fahrenheit: °F = (1.8 × °C) + 32 to as micron) = 10-6 m Fahrenheit to Kelvin: convert °F to °C, then add 273.15 centimeter (cm) 1 1.000 × 10–2 0.3937 -3 Celsius to Kelvin: add 273.15 meter (m) 100 1 39.37 1 mil = 10 in Volume inch (in) 2.540 2.540 × 10–2 1 –3 3 1 liter (l) = 1.000 × 10 cubic meters (m ) = 61.02 Area cubic inches (in3) cm2 m2 in2 circ mil Mass cm2 1 10–4 0.1550 1.974 × 105 1 kilogram (kg) = 1000 grams (g) = 2.205 pounds (lb) m2 104 1 1550 1.974 × 109 Force in2 6.452 6.452 × 10–4 1 1.273 × 106 1 newton (N) = 0.2248 pounds (lb) circ mil 5.067 × 10–6 5.067 × 10–10 7.854 × 10–7 1 Electric resistivity Pressure 1 micro-ohm-centimeter (µΩ·cm) pascal (Pa) millibar (mbar) torr (Torr) atmosphere (atm) psi (lbf/in2) = 1.000 × 10–6 ohm-centimeter (Ω·cm) –2 –3 –6 –4 = 1.000 × 10–8 ohm-meter (Ω·m) pascal (Pa) 1 1.000 × 10 7.501 × 10 9.868 × 10 1.450 × 10 = 6.015 ohm-circular mil per foot (Ω·circ mil/ft) millibar (mbar) 1.000 × 102 1 7.502 × 10–1 9.868 × 10–4 1.450 × 10–2 2 0 –3 –2 Heat flow rate torr (Torr) 1.333 × 10 1.333 × 10 1 1.316 × 10 1.934 × 10 5 3 2 1 1 watt (W) = 3.413 Btu/h atmosphere (atm) 1.013 × 10 1.013 × 10 7.600 × 10 1 1.470 × 10 1 British thermal unit per hour (Btu/h) = 0.2930 W psi (lbf/in2) 6.897 × 103 6.895 × 101 5.172 × 101 6.850 × 10–2 1 1 torr (Torr) = 133.332 pascal (Pa) 1 pascal (Pa) = 0.01 millibar (mbar) 1.33 millibar (mbar) 0.007501 torr (Torr) –6 A Note on SI 0.001316 atmosphere (atm) 9.87 × 10 atmosphere (atm) 2 –4 2 The values in this catalog are expressed in 0.01934 psi (lbf/in ) 1.45 × 10 psi (lbf/in ) International System of Units, or SI (from the Magnetic induction B French Le Système International d’Unités).
    [Show full text]
  • Automatic Irrigation : Sensors and System
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1970 Automatic Irrigation : Sensors and System Herman G. Hamre Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Hamre, Herman G., "Automatic Irrigation : Sensors and System" (1970). Electronic Theses and Dissertations. 3780. https://openprairie.sdstate.edu/etd/3780 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. AUTOMATIC IRRIGATION: SENSORS AND SYSTEM BY HERMAN G. HAMRE A thesis submitted in partial fulfillment of the requirements for the degree Master of Science, Major in Electrical Engineering, South Dakota State University 1970 SOUTH DAKOTA STATE UNIVERSITY LIBRARY AUTOMATIC IRRIGATION: SENSORS AND SYSTEM This thesis is approved as a creditable and independent investi­ gation by a candidate for the degree, Master of Science, and is accept­ able as meeting the thesis requirements for this degree, but without implying that the conclusions reached by the candidate are necessarily the conclusions of the major department. �--- -"""'" _ _ -���--- - _ _ _ _____ -A>� - 7 7 T b � s/./ifjvisor ate Head, Electrical -r-oate Engineering Department ACKNOWLE GEMENTS The author wishes to express his sincere appreciation to Dr. A. J. Kurtenbach for his patient guidance and helpful suggestions, and to the Water Resources Institute for their support of this research.
    [Show full text]
  • Lecture 8: Magnets and Magnetism Magnets
    Lecture 8: Magnets and Magnetism Magnets •Materials that attract other metals •Three classes: natural, artificial and electromagnets •Permanent or Temporary •CRITICAL to electric systems: – Generation of electricity – Operation of motors – Operation of relays Magnets •Laws of magnetic attraction and repulsion –Like magnetic poles repel each other –Unlike magnetic poles attract each other –Closer together, greater the force Magnetic Fields and Forces •Magnetic lines of force – Lines indicating magnetic field – Direction from N to S – Density indicates strength •Magnetic field is region where force exists Magnetic Theories Molecular theory of magnetism Magnets can be split into two magnets Magnetic Theories Molecular theory of magnetism Split down to molecular level When unmagnetized, randomness, fields cancel When magnetized, order, fields combine Magnetic Theories Electron theory of magnetism •Electrons spin as they orbit (similar to earth) •Spin produces magnetic field •Magnetic direction depends on direction of rotation •Non-magnets → equal number of electrons spinning in opposite direction •Magnets → more spin one way than other Electromagnetism •Movement of electric charge induces magnetic field •Strength of magnetic field increases as current increases and vice versa Right Hand Rule (Conductor) •Determines direction of magnetic field •Imagine grasping conductor with right hand •Thumb in direction of current flow (not electron flow) •Fingers curl in the direction of magnetic field DO NOT USE LEFT HAND RULE IN BOOK Example Draw magnetic field lines around conduction path E (V) R Another Example •Draw magnetic field lines around conductors Conductor Conductor current into page current out of page Conductor coils •Single conductor not very useful •Multiple winds of a conductor required for most applications, – e.g.
    [Show full text]
  • Electricity and Magnetism
    Lecture 10 Fundamentals of Physics Phys 120, Fall 2015 Electricity and Magnetism A. J. Wagner North Dakota State University, Fargo, ND 58102 Fargo, September 24, 2015 Overview • Unexplained phenomena • Charges and electric forces revealed • Currents and circuits • Electricity and Magnetism are related! 1 Newton’s dream I wish we could derive the rest of the phenomena of Nature by the same kind of reasoning from mechanical principles, for I am induced by many reasons to suspect that they may all depend upon certain forces by which the particles of bodies, by some cause hitherto unknown, are either mutually impelled towards one another, and cohere in regular figures, or are repelled and recede from one another. from the preface of Newton’s Principia 2 What were those mysterious phenomena? 900 BC: Magnus, a Greek shepherd, walks across a field of black stones which pull the iron nails out of his sandals and the iron tip from his shepherd’s staff (authenticity not guaranteed). This region becomes known as Magnesia. 600 BC: Thales of Miletos(Greece) discovered that by rubbing an ’elektron’ (a hard, fossilized resin that today is known as amber) against a fur cloth, it would attract particles of straw and feathers. This strange effect remained a mystery for over 2000 years. 1269 AD: Petrus Peregrinus of Picardy, Italy, discovers that natural spherical magnets (lodestones) align needles with lines of longitude pointing between two pole positions on the stone. 3 ca. 1600: Dr.William Gilbert (court physician to Queen Elizabeth) discovers that the earth is a giant magnet just like one of the stones of Peregrinus, explaining how compasses work.
    [Show full text]
  • Physics, Chapter 30: Magnetic Fields of Currents
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 30: Magnetic Fields of Currents Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 30: Magnetic Fields of Currents" (1958). Robert Katz Publications. 151. https://digitalcommons.unl.edu/physicskatz/151 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 30 Magnetic Fields of Currents 30-1 Magnetic Field around an Electric Current The first evidence for the existence of a magnetic field around an electric current was observed in 1820 by Hans Christian Oersted (1777-1851). He found that a wire carrying current caused a freely pivoted compass needle B D N rDirection I of current D II. • ~ I I In wire ' \ N I I c , I s c (a) (b) Fig. 30-1 Oersted's experiment. Compass needle is deflected toward the west when the wire CD carrying current is placed above it and the direction of the current is toward the north, from C to D. in its vicinity to be deflected. If the current in a long straight wire is directed from C to D, as shown in Figure 30-1, a compass needle below it, whose initial orientation is shown in dotted lines, will have its north pole deflected to the left and its south pole deflected to the right.
    [Show full text]