<<

Prospects for CMB observations

V(!)

!

Hiranya Peiris STFC Halliday Fellow University of Cambridge #OMPOSITIONOFAND+ECosmic HistoryY%VENTS$ UR/ INGTHE%CosmicVOLUTIONOFTHE5 MysteryNIVERSE

presentpresent energy energy

Y density "7totTOT = 1(k=0)K density DAR

RADIATION KENER dark energy

YDENSIT DARK G (73%)

DARKMATTER Y G ENERGY

DARK MA(23.6%)TTER TIONOFENER WHITEWELLUNDERSTOOD DARKNESSPROPORTIONALTOPOORUNDERSTANDING BARYONS BARbaryons(4.YONS AC 4%) FR !42 !33 !22 !16 !12 Fractional Energy Density 10 s 10 s 10 s 10 s 10 s 1 sec 380 kyr 14 Gyr ~1015 GeV SCALEFACTimeTOR ~1 MeV ~0.2 MeV      4IME TS TS TS TS TS TSEC TKYR T'YR Y Y GUT Y T=100 TeV nucleosynthesis Y IES TION TS EOUT DIAL ORS TIONS G TION TION Z T Energy THESIS

symmetry (ILC XA 100) MA EN EE WNOF ESTHESIS V

IMOR GENERATEOBSERVABLE IT OR ELER ALTHEOR TIONS

EF SIGNATURESINTHE#-" EAKSYMMETR EIONIZA INOFR Y% OMBINA R E6 EAKDO #X ONASYMMETR SIC W '54SYMMETR IMELINEOF EFFWR Y Y EC TUR O NUCLEOSYN ), * +E R 4 PLANCKENER Generation BR TR TURBA UC PH Cosmic Microwave NEUTR OUSTICOSCILLA BAR TIONOFPR ER A AC STR

of primordial ELEC non-linear growth of P 44 LIMITOFACC Background Emitted perturbations perturbations: GENER

ES carries signature of signature on CMB TUR GENERATIONOFGRAVITYWAVES INITIALDENSITYPERTURBATIONS acoustic#-"%MITT oscillationsED NON LINEARSTR andUCTUR EIMPARTS #!0-!0OBSERVES#-" ANDINITIALDENSITYPERTURBATIONS GROWIMPARTINGFLUCTUATIONS CARIESSIGNATUREOFACOUSTIC SIGNATUREON#-"THROUGH *throughEFFWRITESUPANDGR weakADUATES WHICHSEEDSTRUCTUREFORMATION TO#-" OSCILLATIONSANDPpotentiallyOTENTIALLYPR IMORprimordialDIAL GRAVITATIONALLENSING IGNA

3 GRAVITYWAVES INTHE#-" gravitational waves gravitational lensing

Figure: J. McMahon, adapted by HVP ΛCDM: The “Standard Model” of Cosmology

Homogeneous background Perturbations 60 K

Ωb, Ωc, ΩΛ,H0, τ As,ns,r

•atoms 4% •nearly scale-invariant •cold dark matter 23% •adiabatic •dark energy 73% •Gaussian Λ? CDM? ORIGIN?? History of CMB temperature measurements

60 K 2.725 K

TOCO (1998) BOOMERANG (1998, 2003) MAXIMA (2000) (2002) CBI (2002) ACBAR (2002) VSA (2002) State of the art: temperature

4 10 Figure: M. Brown

!CDM 3 10 ] 2 K [µ

" WMAP5 /2 l QUaD ACBAR l(l+1)C 2 10 QUaD 150 GHz QUaD 100 GHz SZA 30 GHz CBI

1 10 500 1000 1500 2000 2500 3000 3500 4000 4500 Multipole Moment l

!Sachs-Wolfe plateau and the late time Integrated Sachs-Wolfe effect !Acoustic peaks at “adiabatic” locations !Damping tail and photon diffusion !Weak gravitational lensing (detected in cross-correlation, Smith et al. 2007) SCALARANDTENSORPOWERSPECTRAScalar & tensor power spectra(r =0.2)

E For scalar perturbations (left), δγ oscillates π/2 out of phase with vγ Cl peaks • T ⇒ at minima of Cl scalar tensor

Figure: A. 31Challinor Types of CMB

CMB polarization can be decomposed into two orthogonal modes. E- mode is the curl-free mode (“Electric”). B-mode is the divergence- free mode (“Magnetic”).

E-mode B-mode

B mode discriminates between scalar and tensor perturbations Generation of CMB polarization

• Temperature quadrupole at the surface of last scatter generates polarization.

isotropic no net polarization

Thomson anisotropic net polarization

Quadrupole generated by velocity gradients at Last Scattering Surface Temperature-Polarization Correlation

Temperature quadrupole at Radial pattern around cold spots z~1089 generates polarization Tangential pattern around hot spots

Figure: E. Komatsu CorrelatedCORRELATED polarization POLARIZATION INin REAL real SPACE space

On largest scales, infall into potential wells at last scattering generates e.g. • tangential polarization around large-scale hot spots

Sign of correlation scale-dependent inside horizon •

Figure: A. Challinor29 Gravitational waves GRAVITATIONAL WAVES

Tensor metric perturbations ds2 = a2[dη2 (δ + h )dxidxj] with δijh =0 • − ij ij ij – Shear h˙ gives anisotropic redshifting ∝ ij ⇒ 1 ˙ i j Θ(ˆn) 2 dη hijnˆ nˆ ≈− ! 1 – Only contributes on large scales since hij decays like a− after entering horizon

Figure: A. 22Challinor History of CMB polarization measurements

60 K

First detected by DASI in 2002

Figure: WMAP Science Team (2006) State of the art: polarization

!Acoustic peaks at “adiabatic” locations

!E-mode polarization and cross-correlation with T

!Large angle polarization from

!BICEP limit from BB- alone: T/S < 0.73 (95% CL)

Figure: Chiang et al. (2009) Planck: Planck

ESA

Extract essentially all information in primary CMB temperature anisotropy; big advance in polarization measurements.

What’s next? Next frontier: secondary anisotropies

Use the CMB as a backlight to illuminate the growth of cosmological structure.

•Sunyaev-Zel’dovich (SZ) clusters •First galaxies •Diffuse thermal SZ Universe is reionized •Kinetic SZ • weak lensing •Ostriker-Vishniac/kSZ • •Rees-Sciama/ISW

Watch this space because experiments like & Atacama Cosmology Telescope are well under way.

Figure: L. Verde Next frontier: polarization

!B-mode polarization circumvents from dominant linear density perturbations; current upper limits (e.g. BICEP) same ballpark as from TT.

!Next generation (, EBEX, QUIET etc) targeting T/S>0.01. !Requires exquisite control of systematics and removal of polarized Galactic foregrounds. Figure: A. Challinor Inflation

• Solves the flatness/horizon problems if the early universe inflates by factor ~1030. • Cosmological perturbations arise from quantum fluctuations, evolve classically.

2 ¯h H4 PR ! scalar 2 4 2 ˙2 H π ! φ "k=aH Pφ(k) ! ¯h !2π " 2¯h H 2 P ! tensor h 2 π !mPl "k=aH

• Don’t know the dynamics of inflation: parameterize weakly scale-dependent functions with a few numbers to pin down observationally.

ns 1 nt k − k Ph(k0) P (k) As Ph(k) At r = R ! k ! k0 P (k0) ! 0 " ! " R Slow roll inflation consistent with WMAP+

! Superhorizon, adiabatic Peiris et al. (WMAP fluctuations collaboration) (2003) - T and E anticorrelated at superhorizon scales

! Flatness tested to 1%.

! Gaussianity tested to 0.1%.

! nearly scale-invariant fluctuations - red tilt indicated at ~2.5 !

!Still testing basic aspects of inflationary mechanism rather than specific implementation.

Spergel, Verde, Peiris et al. (2003), Komatsu et al. (2003), Peiris et al. (2003), Spergel et al (WMAP Collaboration) (2006), Dunkley et al & Komatsu et al (WMAP Collaboration) (2008) Fingerprints of the early universe

V (φ)

V, V’, V’’, V’’’ CMB LSS

21 cm? V, V’ GWO?

φ Solar Horizon System small large scales scales What is the physics of inflation?

V (φ) Why did the field start here?

Where did this function come from? Why is the potential so flat?

φ

How do we convert the field energy completely into particles? Primordial gravitational waves: a smoking gun

!Temperature only sensitive to scalars. Polarization can differentiate between scalars (density) and tensors (gravitational waves).

!Current limit r CMB < 0 . 2 . “Realistically” observable: rCMB 0.01 ≥

!Measurement gives two critical pieces of info: r 1/4 -energy scale of inflation: V 1/4 CMB 1016 GeV ∼ 0.01 ! " ∆φ r 1/2 -super-Planckian field variation: > (1) CMB MPl O 0.01 ! " Large field inflation

!Important class of models where inflaton is driven by e.g. a monomial potential: V (φ) φp ∼

!Field evolves over a super-Planckian distance during inflation: ∆φ >M Pl !Large amplitude of gravitational waves produced by QM fluctuations.

Image: D. Baumann Lyth Bound

In a de Sitter spacetime, H2 2 P ∝ ∝ 2 H tensors: h M 2 scalars: Ps H ˙ Pl ! φ "

2 Ph 1 dφ tensor to scalar ratio: r ≡ =8 Ps !MPl dNe " http://www.apple.com/iwork/trial/ H where dNe ≡ d ln a = Hdt = dφ ! φ˙ " field variation relates ∆φ φCMB 1 = dN r(N ) to tensor signal: e" e MPl !φend 8

Useful if this can be Useful if this can be computed from a constrained via microscopic theory! observations! Lyth (1996) Primordial gravitational waves: the challenges

Gravity’s waves are Traceless; which does not mean they Can never be found.

Haiku by Peter Coles Challenge I: what is the amplitude?

red blue 1 η > 0 4 3 2 0.1 η < 0 1

∆ φ > M pl r 2/3 large-!eld 0.01 2 q 1/3 ∆ φ < M pl natural 2/3 small-!eld 1 0.001 2

WMAP very small-!eld in"ation 0.92 0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.02 ns

!r determines whether model is large or small field.

!ns determines whether spectrum is red or blue.

!a combination of ns and r determines the curvature of the potential η .

Figure: D. Baumann / CMBPol Mission Study (amended by HVP) Tensors: B-mode contribution is small! B-MODECONTRIBUTIONISSMALL!

R.m.s. B-mode signal from gravity waves < 200 nK •

r =0.28 r =0.0

63 Figure: A. Challinor Relative Amplitudes of CMB power spectra

Figure: CMBpol Mission Concept Study Challenge II: Weak Lensing

!Generated by weak lensing of the E-mode by large scale structure; subdominant on large scales, dominates on small scales. (Seljak & Zaldarriaga 1998)

!Use cross-correlation/ map non-Gaussianity to “de-lens”? (Okamoto & Hu/Lewis/KnoxGRAVITATIONAL & Song/Smith) WAVES IN THE CMB

suborbital experiments target l~100 peak.

reionization peak weak lensing peak

Figure: A. Challinor via A. Jaffe. Cosmic variance of dominant scalar fluctuations limits ∆r =0.07 from T and • ∆r =0.02 if include E – Degeneracies make actual limits worse; WMAP5 alone r<0.43 (95% CL)

3 Challenge III: Detectors

!Polarization-sensitive bolometers -Good above ~ 100 GHz. (e.g. BOOMERanG, DASI)

!HEMT polarimeters -Good below ~100 GHz (e.g. WMAP)

TRMS + Treceiver Limited by photon shot noise ∆Trms = √∆ν∆t

Need detector arrays to beat down noise limit/detector } heavy! Wide frequency coverage to keep foregrounds in check

low l lensing-free ! large sky coverage weight } Space ! systematic control ! stability restrictions! Challenge IV: we live inside a galaxy!

RMS polarized Galactic emission at 1 deg.

QUIJOTE

“anomalous” dust E

B (r!=!0.1) thermal dust Synchrotron

Figure: P. Leahy via A. Jaffe K Band (23 GHz)

Dominated by synchrotron. Note polarization direction perpendicular to magnetic field lines.

Figure: WMAP Science Team (2008) Ka Band (33 GHz)

Synchrotron drops as !-3.2 from K to Ka.

Figure: WMAP Science Team (2008) V Band (61 GHz)

Polarized FG emission is lowest in V band (notice noise is larger in ecliptic plane).

Figure: WMAP Science Team (2008) W Band (94 GHz)

Synchrotron smallest in W band, but there may be polarized dust contamination.

Figure: WMAP Science Team (2008) Foreground uncertainties vs CMB at l=80

SYNCHROTRON

DUST

r=0.1

r=0.001

Verde, HVP & Jimenez (2005) Foreground uncertainties vs CMB at l=4

SYNCHROTRON DUST

r=0.1

r=0.001

Verde, HVP & Jimenez (2005) Foregrounds vs CMB at 90 GHz

lensing

Dust

Synchrotron

primordial

CMBpol Mission Concept Study: Foreground Removal Working Group Report (arxiv: 0811.3915) FG cleaning residuals from simulated maps

CMBpol Mission Concept Study: Foreground Removal Working Group Report (arxiv: 0811.3915) Forecasted CMBpol constraints for r=0.01

!EPIC-LC: “low cost” CMBpol proposal !EPIC-2m: “mid cost” CMBpol proposal

Computed for CMBpol Concept Study by Adshead, Easther, Peiris, Verde (arxiv: 0811.3919) Forecasted CMBpol constraints for r=0.01

CMBpol Mission Concept Study: Inflation Working Group Report (arxiv: 0811.3919) Approximate range of primordial tensors accessible to upcoming experiments

V 1/4 ! 3.3 × 1016r1/4 GeV

TT: temp EE: E-pol BB: B-pol

2 Text

2 X 1016 GeV

5 X 1015 GeV Science enhanced by precision polarization

(a non-comprehensive and idiosyncratic list) Primordial non-Gaussianity

Gaussian quantum fluctuation δη

2 non-Gaussian inflaton fluctuation δφ g (δη + f δη ) ∼ δφ δη

non-Gaussian curvature fluctuation ζ g (δφ + f δφ2) ∼ ζ δφ

non-Gaussian CMB anisotropy δT g (ζ + f ζ2) T ∼ T ζ

Addition of polarization data improves estimator for “fNL” by 160%!

Could be critical in reaching slow roll inflation prediction fNL ~ 1.

CMBpol Mission Concept Study: Inflation Working Group Report (arxiv: 0811.3919) (a) Unmodulated

CMB Polarization: Testing Statistical Isotropy

!Isotropy Polarization“anomalies” identified Field in WMAP temperature field (e.g. hemispherical asymmetry, quadrupole-octupole alignment)

!Any physical model of temperature2 anomalies provides testable predictions for √6 dτ τ(D) (Q iU)(nˆ)=statistics of polarizationdD e− field; goes beyondT2m(D anˆ posteriori) 2Y2m(nˆ inferences.) ± − 10 ! dD × ± m"= 2 −

(b) Dipole Modulated !Dn x x

Dn observer ˆ Drecn

Drec recombination surface reionization

recombination Dvorkin, Peiris & Hu (astro-ph/0711.2321) CMB Polarization: Is Potential Smooth?

!“Glitches” in WMAP TT spectrum at large scales: statistics, systematics, or new physics?

!Features in inflationary power spectrum?

!Test: polarization transfer function narrower than temperature one.

!Disentangle from complex reionization history?

Mortonson, Dvorkin, Peiris & Hu (0903.4920) For the full science case see...

arxiv:0811.3919 Also...

arxiv:0811.3915 Prospects for polarized foreground removal arxiv:0811.3816 Gravitational lensing arxiv:0811.3918 Reionization Science with the CMB arxiv:0811.3920 Foreground Science knowledge

Summary

arxiv:0811.3911 CMBPol Mission Concept Study: A mission to map our origins Future observational prospects

• Go to small scales. Much better measurements of the primordial scalar power spectrum shape. – Planck l~3000 (k~0.2/Mpc) – ACT, SPT l~10000 (k~0.7/Mpc) [secondary effects] – Galaxies k~1/Mpc [non-linearity & bias] – Lyman alpha k~5/Mpc [gas phys. & radiation feedback] – Reionization k~50/Mpc [much is unknown] • Detecting gravitational waves. – CMB: BICEP, QUIET, , PolarBeaR, EBEX, SPIDER, Planck, CMBPOL/B-Pol etc… [large scales] – GWO: direct detection of primordial gravitational waves (BBO) [solar system scales] • Detecting primordial non-Gaussianity.

– Can we detect fNL~1 or fNL >> 1? – Can we distinguish shape dependence? scale dependence? THE END