A Brief Review of Modern Uses of Scattering Techniques Daniel M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
High-Energy Astrophysics
High-Energy Astrophysics Andrii Neronov October 30, 2017 2 Contents 1 Introduction 5 1.1 Types of astronomical HE sources . .7 1.2 Types of physical processes involved . .8 1.3 Observational tools . .9 1.4 Natural System of Units . 11 1.5 Excercises . 14 2 Radiative Processes 15 2.1 Radiation from a moving charge . 15 2.2 Curvature radiation . 17 2.2.1 Astrophysical example (pulsar magnetosphere) . 19 2.3 Evolution of particle distribution with account of radiative energy loss . 20 2.4 Spectrum of emission from a broad-band distribution of particles . 21 2.5 Cyclotron emission / absorption . 23 2.5.1 Astrophysical example (accreting pulsars) . 23 2.6 Synchrotron emission . 24 2.6.1 Astrophysical example (Crab Nebula) . 26 2.7 Compton scattering . 28 2.7.1 Thomson cross-section . 28 2.7.2 Example: Compton scattering in stars. Optical depth of the medium. Eddington luminosity 30 2.7.3 Angular distribution of scattered waves . 31 2.7.4 Thomson scattering . 32 2.7.5 Example: Compton telescope(s) . 33 2.8 Inverse Compton scattering . 34 2.8.1 Energies of upscattered photons . 34 2.8.2 Energy loss rate of electron . 35 2.8.3 Evolution of particle distribution with account of radiative energy loss . 36 2.8.4 Spectrum of emission from a broad-band distribution of particles . 36 2.8.5 Example: Very-High-Energy gamma-rays from Crab Nebula . 37 2.8.6 Inverse Compton scattering in Klein-Nishina regime . 37 2.9 Bethe-Heitler pair production . 38 2.9.1 Example: pair conversion telescopes. -
Measurements of Elastic Electron-Proton Scattering at Large Momentum Transfer*
SLAC-PUB-4395 Rev. January 1993 m Measurements of Elastic Electron-Proton Scattering at Large Momentum Transfer* A. F. SILL,(~) R. G. ARNOLD,P. E. BOSTED,~. C. CHANG,@) J. GoMEz,(~)A. T. KATRAMATOU,C. J. MARTOFF, G. G. PETRATOS,(~)A. A. RAHBAR,S. E. ROCK,AND Z. M. SZALATA Department of Physics The American University, Washington DC 20016 D.J. SHERDEN Stanford Linear Accelerator Center , Stanford University, Stanford, California 94309 J. M. LAMBERT Department of Physics Georgetown University, Washington DC 20057 and R. M. LOMBARD-NELSEN De’partemente de Physique Nucle’aire CEN Saclay, Gif-sur- Yvette, 91191 Cedex, France Submitted to Physical Review D *Work supported by US Department of Energy contract DE-AC03-76SF00515 (SLAC), and National Science Foundation Grants PHY83-40337 and PHY85-10549 (American University). R. M. Lombard-Nelsen was supported by C. N. R. S. (French National Center for Scientific Research). Javier Gomez was partially supported by CONICIT, Venezuela. (‘)Present address: Department of Physics and Astronomy, University of Rochester, NY 14627. (*)Permanent address: Department of Physics and Astronomy, University of Maryland, College Park, MD 20742. (C)Present address: Continuous Electron Beam Accelerator Facility, Newport News, VA 23606. (d)Present address: Temple University, Philadelphia, PA 19122. (c)Present address: Stanford Linear Accelerator Center, Stanford CA 94309. ABSTRACT Measurements of the forward-angle differential cross section for elastic electron-proton scattering were made in the range of momentum transfer from Q2 = 2.9 to 31.3 (GeV/c)2 using an electron beam at the Stanford Linear Accel- erator Center. The data span six orders of magnitude in cross section. -
A CMB Polarization Primer
New Astronomy 2 (1997) 323±344 A CMB polarization primer Wayne Hua,1,2 , Martin White b,3 aInstitute for Advanced Study, Princeton, NJ 08540, USA bEnrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA Received 13 June 1997; accepted 30 June 1997 Communicated by David N. Schramm Abstract We present a pedagogical and phenomenological introduction to the study of cosmic microwave background (CMB) polarization to build intuition about the prospects and challenges facing its detection. Thomson scattering of temperature anisotropies on the last scattering surface generates a linear polarization pattern on the sky that can be simply read off from their quadrupole moments. These in turn correspond directly to the fundamental scalar (compressional), vector (vortical), and tensor (gravitational wave) modes of cosmological perturbations. We explain the origin and phenomenology of the geometric distinction between these patterns in terms of the so-called electric and magnetic parity modes, as well as their correlation with the temperature pattern. By its isolation of the last scattering surface and the various perturbation modes, the polarization provides unique information for the phenomenological reconstruction of the cosmological model. Finally we comment on the comparison of theory with experimental data and prospects for the future detection of CMB polarization. 1997 Elsevier Science B.V. PACS: 98.70.Vc; 98.80.Cq; 98.80.Es Keywords: Cosmic microwave background; Cosmology: theory 1. Introduction scale structure we see today. If the temperature anisotropies we observe are indeed the result of Why should we be concerned with the polarization primordial ¯uctuations, their presence at last scatter- of the cosmic microwave background (CMB) ing would polarize the CMB anisotropies them- anisotropies? That the CMB anisotropies are polar- selves. -
12 Light Scattering AQ1
12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue -
Solutions 7: Interacting Quantum Field Theory: Λφ4
QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below. -
Arxiv:2008.11688V1 [Astro-Ph.CO] 26 Aug 2020
APS/123-QED Cosmology with Rayleigh Scattering of the Cosmic Microwave Background Benjamin Beringue,1 P. Daniel Meerburg,2 Joel Meyers,3 and Nicholas Battaglia4 1DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK, CB3 0WA 2Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands 3Department of Physics, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275, USA 4Department of Astronomy, Cornell University, Ithaca, New York, USA (Dated: August 27, 2020) The cosmic microwave background (CMB) has been a treasure trove for cosmology. Over the next decade, current and planned CMB experiments are expected to exhaust nearly all primary CMB information. To further constrain cosmological models, there is a great benefit to measuring signals beyond the primary modes. Rayleigh scattering of the CMB is one source of additional cosmological information. It is caused by the additional scattering of CMB photons by neutral species formed during recombination and exhibits a strong and unique frequency scaling ( ν4). We will show that with sufficient sensitivity across frequency channels, the Rayleigh scattering/ signal should not only be detectable but can significantly improve constraining power for cosmological parameters, with limited or no additional modifications to planned experiments. We will provide heuristic explanations for why certain cosmological parameters benefit from measurement of the Rayleigh scattering signal, and confirm these intuitions using the Fisher formalism. In particular, observation of Rayleigh scattering P allows significant improvements on measurements of Neff and mν . PACS numbers: Valid PACS appear here I. INTRODUCTION direction of propagation of the (primary) CMB photons. There are various distinguishable ways that cosmic In the current era of precision cosmology, the Cosmic structures can alter the properties of CMB photons [10]. -
The Cosmic Microwave Background: the History of Its Experimental Investigation and Its Significance for Cosmology
REVIEW ARTICLE The Cosmic Microwave Background: The history of its experimental investigation and its significance for cosmology Ruth Durrer Universit´ede Gen`eve, D´epartement de Physique Th´eorique,1211 Gen`eve, Switzerland E-mail: [email protected] Abstract. This review describes the discovery of the cosmic microwave background radiation in 1965 and its impact on cosmology in the 50 years that followed. This discovery has established the Big Bang model of the Universe and the analysis of its fluctuations has confirmed the idea of inflation and led to the present era of precision cosmology. I discuss the evolution of cosmological perturbations and their imprint on the CMB as temperature fluctuations and polarization. I also show how a phase of inflationary expansion generates fluctuations in the spacetime curvature and primordial gravitational waves. In addition I present findings of CMB experiments, from the earliest to the most recent ones. The accuracy of these experiments has helped us to estimate the parameters of the cosmological model with unprecedented precision so that in the future we shall be able to test not only cosmological models but General Relativity itself on cosmological scales. Submitted to: Class. Quantum Grav. arXiv:1506.01907v1 [astro-ph.CO] 5 Jun 2015 The Cosmic Microwave Background 2 1. Historical Introduction The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson, reported in Refs. [1, 2], has been a 'game changer' in cosmology. Before this discovery, despite the observation of the expansion of the Universe, see [3], the steady state model of cosmology still had a respectable group of followers. -
Neutron Scattering
Neutron Scattering Basic properties of neutron and electron neutron electron −27 −31 mass mkn =×1.675 10 g mke =×9.109 10 g charge 0 e spin s = ½ s = ½ −e= −e= magnetic dipole moment µnn= gs with gn = 3.826 µee= gs with ge = 2.0 2mn 2me =22k 2π =22k Ek== E = 2m λ 2m energy n e 81.81 150.26 Em[]eV = 2 Ee[]V = 2 λ ⎣⎡Å⎦⎤ λ ⎣⎦⎡⎤Å interaction with matter: Coulomb interaction — 9 strong-force interaction 9 — magnetic dipole-dipole 9 9 interaction Several salient features are apparent from this table: – electrons are charged and experience strong, long-range Coulomb interactions in a solid. They therefore typically only penetrate a few atomic layers into the solid. Electron scattering is therefore a surface-sensitive probe. Neutrons are uncharged and do not experience Coulomb interaction. The strong-force interaction is naturally strong but very short-range, and the magnetic interaction is long-range but weak. Neutrons therefore penetrate deeply into most materials, so that neutron scattering is a bulk probe. – Electrons with wavelengths comparable to interatomic distances (λ ~2Å ) have energies of several tens of electron volts, comparable to energies of plasmons and interband transitions in solids. Electron scattering is therefore well suited as a probe of these high-energy excitations. Neutrons with λ ~2Å have energies of several tens of meV , comparable to the thermal energies kTB at room temperature. These so-called “thermal neutrons” are excellent probes of low-energy excitations such as lattice vibrations and spin waves with energies in the meV range. -
Thermal History FRW
Cosmology, lect. 7 Thermal History FRW Thermodynamics 43πGpΛ a =−++ρ aa To find solutions a(t) for the 33c2 expansion history of the Universe, for a particular FRW Universe , 8πG kc2 Λ one needs to know how the 22=ρ −+ 2density ρ(t) and pressure p(t) aa 2 aevolve as function of a(t) 33R0 FRW equations are implicitly equivalent to a third Einstein equation, the energy equation, pa ρρ ++30 = ca2 Important observation: the energy equation, pa ρρ ++30 = ca2 is equivalent to stating that the change in internal energy U= ρ cV2 of a specific co-expanding volume V(t) of the Universe, is due to work by pressure: dU= − p dV Friedmann-Robertson-Walker-Lemaitre expansion of the Universe is Adiabatic Expansion Adiabatic Expansion of the Universe: • Implication for Thermal History • Temperature Evolution of cosmic components For a medium with adiabatic index γ: TVγ −1 = cst 4 T Radiation (Photons) γ = T = 0 3 a T 5 = 0 Monatomic Gas γ = T 2 (hydrogen) 3 a Radiation & Matter The Universe is filled with thermal radiation, the photons that were created in The Big Bang and that we now observe as the Cosmic Microwave Background (CMB). The CMB photons represent the most abundant species in the Universe, by far ! The CMB radiation field is PERFECTLY thermalized, with their energy distribution representing the most perfect blackbody spectrum we know in nature. The energy density u(T) is therefore given by the Planck spectral distribution, 81πνh 3 uT()= ν ce3/hν kT −1 At present, the temperature T of the cosmic radiation field is known to impressive precision, -
Arxiv:2006.06594V1 [Astro-Ph.CO]
Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel'dovich effect with CMB-S4 1, 2, 2, 1, 3, 4, 5, 6, 5, 6, Marcelo A. Alvarez, ∗ Simone Ferraro, y J. Colin Hill, z Ren´eeHloˇzek, x and Margaret Ikape { 1Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA 2Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3Department of Physics, Columbia University, New York, NY, USA 10027 4Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA 10010 5Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada 6David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada The epoch of reionization is one of the major phase transitions in the history of the universe, and is a focus of ongoing and upcoming cosmic microwave background (CMB) experiments with im- proved sensitivity to small-scale fluctuations. Reionization also represents a significant contaminant to CMB-derived cosmological parameter constraints, due to the degeneracy between the Thomson- scattering optical depth, τ, and the amplitude of scalar perturbations, As. This degeneracy subse- quently hinders the ability of large-scale structure data to constrain the sum of the neutrino masses, a major target for cosmology in the 2020s. In this work, we explore the kinematic Sunyaev-Zel'dovich (kSZ) effect as a probe of reionization, and show that it can be used to mitigate the optical depth degeneracy with high-sensitivity, high-resolution data from the upcoming CMB-S4 experiment. -
Compton Sources of Electromagnetic Radiation∗
August 25, 2010 13:33 WSPC/INSTRUCTION FILE RAST˙Compton Reviews of Accelerator Science and Technology Vol. 1 (2008) 1–16 c World Scientific Publishing Company COMPTON SOURCES OF ELECTROMAGNETIC RADIATION∗ GEOFFREY KRAFFT Center for Advanced Studies of Accelerators, Jefferson Laboratory, 12050 Jefferson Ave. Newport News, Virginia 23606, United States of America kraff[email protected] GERD PRIEBE Division Leader High Field Laboratory, Max-Born-Institute, Max-Born-Straße 2 A Berlin, 12489, Germany [email protected] When a relativistic electron beam interacts with a high-field laser beam, the beam electrons can radiate intense and highly collimated electromagnetic radiation through Compton scattering. Through relativistic upshifting and the relativistic Doppler effect, highly energetic polarized photons are radiated along the electron beam motion when the electrons interact with the laser light. For example, X-ray radiation can be obtained when optical lasers are scattered from electrons of tens of MeV beam energy. Because of the desirable properties of the radiation produced, many groups around the world have been designing, building, and utilizing Compton sources for a wide variety of purposes. In this review paper, we discuss the generation and properties of the scattered radiation, the types of Compton source devices that have been constructed to present, and the future prospects of radiation sources of this general type. Due to the possibilities to produce hard electromagnetic radiation in a device small compared to the alternative storage ring sources, it is foreseen that large numbers of such sources may be constructed in the future. Keywords: Compton backscattering, Inverse Compton source, Thomson scattering, X-rays, Spectral brilliance 1.