Arxiv:2006.06594V1 [Astro-Ph.CO]
Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel'dovich effect with CMB-S4 1, 2, 2, 1, 3, 4, 5, 6, 5, 6, Marcelo A. Alvarez, ∗ Simone Ferraro, y J. Colin Hill, z Ren´eeHloˇzek, x and Margaret Ikape { 1Berkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA 2Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3Department of Physics, Columbia University, New York, NY, USA 10027 4Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA 10010 5Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada 6David A. Dunlap Department of Astronomy and Astrophysics, University of Toronto, 50 St George Street, Toronto ON, M5S 3H4, Canada The epoch of reionization is one of the major phase transitions in the history of the universe, and is a focus of ongoing and upcoming cosmic microwave background (CMB) experiments with im- proved sensitivity to small-scale fluctuations. Reionization also represents a significant contaminant to CMB-derived cosmological parameter constraints, due to the degeneracy between the Thomson- scattering optical depth, τ, and the amplitude of scalar perturbations, As. This degeneracy subse- quently hinders the ability of large-scale structure data to constrain the sum of the neutrino masses, a major target for cosmology in the 2020s. In this work, we explore the kinematic Sunyaev-Zel'dovich (kSZ) effect as a probe of reionization, and show that it can be used to mitigate the optical depth degeneracy with high-sensitivity, high-resolution data from the upcoming CMB-S4 experiment.
[Show full text]