Optoelectronics: Fast Silicon Photodiodes

Total Page:16

File Type:pdf, Size:1020Kb

Optoelectronics: Fast Silicon Photodiodes news & views OPTOELECTRONICS Fast silicon photodiodes There is typically a compromise between speed and efficiency when designing silicon photodiodes. Now, researchers have exploited microstructuring to achieve fast and thin devices that are also efficient. Michael B. Johnston ow much Internet traffic did you a Intensity (z) b Intensity (z) generate today? Perhaps more than kphoton kphoton you realize given the increasing I I H 0 0 popularity of streaming audio or video content, ‘cloud’ data storage and social media. It is estimated that approximately 21 1 zettabyte (10 bytes) of Internet traffic n n 1 was transmitted globally last year , which Ii Ii is the equivalent of about 360 MB per e– – – + e e– e h + day per person in the world. Much of the i i h + + h long-distance high-volume Internet traffic h is transmitted via near-infrared (NIR) light through optical-fibre waveguides. At the p p end of the optical fibre, the optical signal is turned into an electrical signal, typically for use in silicon-based integrated circuits. z z However, at present, most receivers for long-distance optical-fibre communications systems are based on photodiodes made Figure 1 | Schematic of a silicon p–i–n photodiode. The diagram shows propagation of light with from other semiconductors such as intensity I0 and wavevector kphoton incident normal to the surface of a p–i–n photodiode. Absorption – + InxGa1–xAs or Ge, which are challenging of photons in the high-electric-field i region of the device leads to electron (e ) and hole (h ) pair and costly to integrate with silicon CMOS production that rapidly contributes to the photocurrent. Ii is the drop in intensity of light associated electronics on a single chip. with absorption in the i region. a, For propagation straight through a conventional thin device only Now writing in Nature Photonics, Ii/I0 of photons are absorbed in the i region, with a significant fraction of photons passing though the Gao and co-workers report a silicon active region. b, If, however, light can be scattered into a lateral mode, a much higher proportion of photodiode that utilizes photonic photons can be absorbed in the active region, as the lateral extent of a fast p–i–n photodiode is many microstructuring to develop a photodiode times the thickness of the i region. For conceptual clarity, changes in refractive index between air and that is both fast and responsive2. As their the layers are ignored. technology is compatible with current silicon CMOS technology, this work could lead to cheaper and better integrated fibre- hitting the device per second. The more photogenerated electrons and holes that optic communications systems. closely the electrical signal can follow determines the speed of the diode. In the Fibre optics is an excellent technology changes in the intensity of light, the faster case of a p–i–n diode, speed is typically for transmitting large volumes of the photodiode. This speed or response limited by diffusion of photogenerated information. The good news is that we time of a diode is important as the faster electrons and holes to the high-electric- are, at present, only exploiting a small the photodiode, the more closely spaced in field ‘depletion region’ of the device; the fraction of the available bandwidth of time the 1’s and 0’s (that is, on’s and off’s) of ‘drift’ transit time of electrons and holes light (~200 THz for NIR light) in our a digital signal can be, and hence the faster under the influence of the electric field in communications systems. However, information can be transmitted. the depletion region; and the capacitance of to increase the density of information So what limits the speed of a the device4. transfer we need to continually develop photodiode? Consider the operation To minimize the effect of slow diffusion, technologies to modulate the light at of a conventional p–i–n photodiode most light should be absorbed in the high- higher frequencies, control dispersion that consists of a sandwich of thin electric-field i layer, rather than in the n and in the optical fibres and be able to detect p-doped, intrinsic (i) and n-doped layers p layers. In addition, to minimize the drift increasingly shorter pulses of light3. of semiconductors. Light is absorbed time and achieve low-voltage operation the The purpose of a photodiode is to according to Beer’s law through the p, i and i region should be thin. Efficient and high- turn an optical signal into an electrical n layers. The transit of photons through the speed photodiodes can be realized with signal. The electrical current generated device and the generation of electron–hole direct-bandgap semiconductors, such as by an ideal photodiode illuminated with pairs occurs on a femtosecond timescale InGaAs, which have very high absorption light of a particular wavelength is directly and this does not limit the photodiode coefficients for NIR light. However, silicon proportional to the number of photons speed. Instead, it is the collection of the is an indirect-bandgap semiconductor 268 NATURE PHOTONICS | VOL 11 | MAY 2017 | www.nature.com/naturephotonics ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. ©2017 Mac millan Publishers Li mited, part of Spri nger Nature. All ri ghts reserved. news & views and has a very low absorption coefficient However, these devices typically require temperature, thereby limiting efficient for NIR light. For example, NIR light higher externally applied voltages than the photodiode operation to wavelengths (λ = 850 nm) needs to travel through just devices described by Gao and colleagues. <1,100 nm. Although 800–900 nm 0.14 μm of In0.53Ga0.47As for half the photons An alternate technology is metal– was originally used for optical-fibre to be absorbed compared with 13 μm for semiconductor–metal (MSM) photodiodes, communications, it is uncommon now silicon. Thus, to create a conventional which consist of interdigitated Schottky for long-distance links owing to high photodiode from silicon, the i region needs contacts on a silicon layer5. This MSM attenuation of optical fibres at these to be 100 times thicker, leading to a long technology is highly compatible with wavelengths (~3 dB km–1 at 850 nm) and drift transit time and hence much lower CMOS technology, and is relatively high less-mature fibre amplifier technologies in speed of operation. speed owing to low capacitance, however, this band as compared with low-dispersion So, is there a way that the speed of the sensitivity is much lower than that of 1,300 nm (O band) and low-loss 1,550 nm silicon diodes can be increased without APD or p–i–n photodiodes. (C band) wavelength regions. The C band compromising their efficiency? Gao So why bother with silicon if direct- is most commonly used owing to excellent and co-workers have come up with a gap semiconductors such as InGaAs erbium-based fibre amplifiers and low photonic solution to this problem. By can already provide us with high-speed, attenuation (~0.2 dB km–1). However, micropatterning a silicon p–i–n photodiode efficient photodiodes? The issue is with for shorter communication links, such they were able to redirect normal incident compatibility with integrated circuits as ‘last mile’ internet links, device-to- light laterally along the plane of the that are dominated by silicon-based device connections or intranets, where photodiode. This thereby allowed them technologies, such as CMOS. Silicon cheap single-chip solutions are needed, to maintain a thin intrinsic region in photodiodes integrate well with other sensitive and fast CMOS-integrated silicon their photodiode with a high ‘vertical’ silicon-based components, even on single photodiodes look most promising. ❐ electric field and short drift-time (creating chips. On the other hand, Ge or InGaAs fast photodiodes) while also keeping photodetectors are usually built as discrete Michael B. Johnston is in the Department of Physics, the absorption, and hence efficiency, of components, or are combined with CMOS University of Oxford, Clarendon Laboratory, Parks their devices high. Thus, they avoid the integrated circuits by wafer-bonding or Road, Oxford OX1 3PU, UK. compromise between speed and sensitivity flip-chip techniques that add expensive e-mail: [email protected] by exploiting the larger lateral dimensions additional steps in the device fabrication of the photodiode to increase the effective process. However, alternative methods of References absorption of their device (Fig. 1). direct growth of Ge on Si (ref. 6) or III–V 1. White Paper on The Zettabyte Era: Trends and Analysis (Cisco, 2016). There are a number of other nanowires on Si (ref. 7) could lead to more 2. Gao, Y. et al. Nat. Photon. 11, 301–308 (2017). 3. Caplan, D. O. J. Opt. Fiber Commun. Rep. 4, 255–362 (2007). methods to achieve silicon-integrated integrated competing technologies. 4. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn fast photodetectors. Silicon avalanche Probably the biggest drawback of silicon (Wiley, 2016). photodetectors (APDs) utilize a photodiode technologies for optical-fibre 5. Eng, P. C., Song, S. & Ping, B. Nanophotonics 4, 277–302 (2015). 6. Michel, J., Liu, J. & Kimerling, L. C. Nat. Photon. 4, 527–534 (2010). multiplication effect to achieve very high communications is the bandgap of silicon. 7. Koblmüller, G. & Abstreiter, G. Phys. Status Solidi RRL speed and up to single-photon sensitivity3. Silicon’s bandgap energy is 1.12 eV at room 8, 11–30 (2014). METAMATERIALS A low-energy Cherenkov glow Hyperbolic metamaterials are shown to enable the emission of Cherenkov radiation from low-energy charged particles travelling at slow speeds.
Recommended publications
  • Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time- Stretched ADC
    UCLA UCLA Previously Published Works Title Two-dimensional spatio-temporal signal processing for dispersion compensation in time- stretched ADC Permalink https://escholarship.org/uc/item/1p65n9cp Journal Journal of Lightwave Technology, 25 ISSN 0733-8724 Authors Tarighat, Alireza Gupta, Shalabh Sayed, Ali H. et al. Publication Date 2007-06-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1580 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007 Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time-Stretched ADC Alireza Tarighat, Member, IEEE, Shalabh Gupta, Student Member, IEEE, Ali H. Sayed, Fellow, IEEE, and Bahram Jalali, Fellow, IEEE Abstract—Time-stretched analog-to-digital converters (ADCs) have offered revolutionary enhancements in the performance of electronic converters by reducing the signal bandwidth prior to digitization. An inherent limitation of the time-stretched ADC is the frequency-selective response of the optical system that reduces the effective number of bits for ultrawideband signals. This paper proposes a solution based on spatio-temporal digital processing. The digital algorithm exploits the optical phase diversity to create a flat RF frequency response, even when the system’s transfer function included deep nulls within the signal spectrum. For a 10× time-stretch factor with a 10-GHz input signal, simulations show that the proposed solution increases the overall achievable signal-to-noise-and-distortion ratio to 52 dB in the presence of linear distortions. The proposed filter can be used to mitigate the Fig. 1. TS-ADC concept. dispersion penalty in other fiber optic applications as well. Index Terms—Analog-to-digital conversion (ADC), optical sig- a parallel array of slow digitizers, each clocked at a fraction nal processing, spatio-temporal digital processing, time-stretched of the Nyquist rate.
    [Show full text]
  • Optoelectronics – the Science and Technology at the Heart Cure St of 21 Century Telecommunications
    Higher Physics Topical Investigation Skin Cancer—Prevention and Optoelectronics – the science and technology at the heart Cure st of 21 century telecommunications 2 Researching Physics Higher Investigation Brief Suntan creams stop harmful UV radiation reaching the skin. Manufacturers’ products are rated with a Sun Protection Factor (SPF). Suntan creams can have SPF values from 6 to over 50. UV radiation monitors normally measure Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Contents Advice to students Page 3 Overview of the unit and activities Page 4 Organising your work and carrying out the activities Page 5 Assessment issues Web-based research briefs Page 6 Initial research activity - Optoelectronics devices – what are they? Page 7 Research activity 1 - Light Emitting Diodes Page 8 Research activity 2 - Optical Fibres Page 9 Research activity 3 - Liquid Crystal Displays Practical investigation briefs Page 10 Research activity 1A - Investigating LEDs and Colour Page 11 Research activity 1B - Investigating LEDs and Brightness Page 12 Research activity 1C - Investigating the Spectra of LEDs Page 13 Research activity 1D - Investigating the Energy Use of Light Sources Page 14 Research activity 2A - Investigating Optical Fibres and Bending Page 15 Research activity 2B - Investigating Optical Fibres and Length Page 16 Research activity 3A - Investigating Polarisation Page 17 Research activity 3B - Investigating Polarisation using a Liquid Crystal Shutter Page 18 Research activity 3C - Investigating Colour Mixing Page 19 Further Information Page 2 Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Overview of the unit and activities.
    [Show full text]
  • Technology and Economic Assessment of Optoelectronics
    NBSIR-86/3369 A111DE M 3 b 2 7 3 PLANNING REPORT Technology and Economic Assessment of Optoelectronics Gregory Tassey Senior Economist National Bureau of Standards October 1985 100 • U56 86-3369 1985 C. 2 ww BttAtCN mPMMAEQS CEHTQ PLANNING REPORT 23 TECHNOLOGY AND ECONOMIC ASSESSMENT OF OPTOELECTRONICS Gregory Tassev Senior Economist National Bureau of Standards October 1985 ABSTRACT Optoelectronics is one of the two major technologies driving the revolution in communications, which will not only have profound effects on the economy but on social and political structures as well. The other technology, optical fibers, is already beginning to mature, but optoelectronics is rapidly catching ud, enabling the acceleration of the "information age". Future productivity advances in optoelectronics will come from integration of the various signal processing functions and from improved manufacturing technologies . Integration may occur in two important stages. The first, referred to "hybrid" integration, is almost at the point of commercialization. Hybrid devices use oxide-based (ceramic) materials and integrate some of the signal processing functions. Total or "monolithic" integration, based on gallium arsenide and related materials may not reach commercialization for another 8-10 years. In both cases, the economic impact will be substantial as information technologies become a critical element of most industries. As a result, the U.S. and its major competitors, especially Japan, are making major R&D investments in optoelectronics. Worldwide R&D expenditures are expected to reach $1 billion by 1987. In terms of market penetration, fiberoptic systems will attain annual sales of more than S3 billion by 1989. The Japanese have made a national commitment to becoming the world leader in this market, borrowing from their substantial expertise in semiconductor technology.
    [Show full text]
  • Recent Advances in Silicon Photonic Integrated Circuits John E
    Invited Paper Recent Advances in Silicon Photonic Integrated Circuits John E. Bowers*, Tin Komljenovic, Michael Davenport, Jared Hulme, Alan Y. Liu, Christos T. Santis, Alexander Spott, Sudharsanan Srinivasan, Eric J. Stanton, Chong Zhang Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA *[email protected] ABSTRACT We review recent breakthroughs in silicon photonics technology and components and describe progress in silicon photonic integrated circuits. Heterogeneous silicon photonics has recently demonstrated performance that significantly outperforms native III-V components. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors and silicon electronics is reviewed. Keywords: Heterogeneous silicon platform, integrated optoelectronics, optoelectronic devices, semiconductor lasers, silicon-on-insulator (SOI) technology, silicon photonics 1. INTRODUCTION Heterogeneous silicon photonics, due to its potential for medium- and large-scale integration, has been intensively researched. Recent developments have shown that heterogeneous integration not only allows for a reduced cost due to economy of scale, but also allows for same or even better performing devices than what has previously been demonstrated utilizing only III-V materials. Furthermore we believe that optical interconnects are the only way to solve the scaling limitation in modern processors, and that heterogeneous silicon photonics with on-chip sources is the best approach in the long term as it promises higher efficiency and lower cost. We address both beliefs in sections that follow. In this paper we plan to briefly address heterogeneous silicon approaches, and point-out that the heterogeneous silicon platform is more than just III-V on silicon but can have advantages for isolators, circulators and nonlinear devices (Section 2).
    [Show full text]
  • Photonics and Optoelectronics
    Photonics and Optoelectronics Effects of Line Edge Roughness on Photonic Device Performance through Virtual Fabrication ...................................... 43 Reprogrammable Electro-Chemo-Optical Devices ............................................................................................................... 44 On-chip Infrared Chemical Sensor Leveraging Supercontinuum Generation in GeSbSe Chalcogenide Glass Waveguide ............................................................................................................................... 45 Sensing Chemicals in the mid-Infrared using Chalcogenide Glass Waveguides and PbTe Detectors Monolithically Integrated On-chip ......................................................................................................... 46 Broadband Low-loss Nonvolatile Photonic Switches Based on Optical Phase Change Materials (O-PCMs) ............... 47 Chalcogenide Glass Waveguide-integrated Black Phosphorus mid-Infrared Photodetectors .......................................... 48 An Ultrasensitive Graphene-polymer Thermo-mechanical Bolometer ................................................................................ 49 Nanocavity Design for Reduced Spectral Diffusion of Solid-state Defects ......................................................................... 50 Two-dimensional Photonic Crystal Cavities in Bulk Single-crystal Diamond ....................................................................... 51 Quasi-Bessel-Beam Generation using Integrated Optical Phased Arrays ..........................................................................
    [Show full text]
  • Avalanche Photodiode a User Guide Understanding Avalanche Photodiode for Improving System Performance
    High performance sensors APPLICATION NOTE Avalanche photodiode A User Guide Understanding Avalanche photodiode for improving system performance Introduction Contents Avalanche photodiode detectors (APD) APD structures have and will continue to be used in APD noise many diverse applications such as laser Photon counting technique range finders, data communications or photon correlation studies. This paper discusses APD structures, critical Applications performance parameter and excess noise Light detection factor. Laser range finder For low-light detection in the 200- to Photon counting 1150-nm range, the designer has three Datacomm basic detector choices - the silicon PIN Optical Tomography detector, the silicon avalanche LIDAR photodiode (APD) and the photomultiplier Fluorescence detection tube (PMT). Particle sizing APDs are widely used in instrumentation and aerospace applications, offering a combination of high speed and high sensitivity unmatched by PIN detectors, and quantum efficiencies at >400 nm unmatched by PMTs. www.optoelectronics.perkinelmer.com APPLICATION NOTE Table of Contents What is an Avalange photodiode 3 Selecting an APD 5 Excess Noise Factor 6 Geiger Mode 7 Applications 8 www.optoelectronics.perkinelmer.com Avalanche photodiode 2 APPLICATION NOTE What is an Avalanche Photodiode? APD Structures In order to understand why more than one APD structure exists, it is important to appreciate the design trade-offs that must be accommodated by the APD designer. The ideal APD would have zero dark noise, no excess noise, broad spectral and frequency response, a gain range from 1 to 106 or more, and low cost. More simply, an ideal APD would be a good PIN photodiode with gain! In reality however, this is difficult to achieve because of the need to trade-off conflicting design requirements.
    [Show full text]
  • System-On-Chip Photonic Integrated Circuits (Invited)
    System-On-Chip Photonic Integrated Circuits (Invited) Fred Kish, Fellow IEEE, Vikrant Lal, Peter Evans, Scott Corzine, Mehrdad Ziari, Tim Butrie, Mike Reffle, Huan-Shang Tsai, Andrew Dentai, Fellow IEEE, Jacco Pleumeekers, Mark Missey, Matt Fisher, Sanjeev Murthy, Randal Salvatore, Parmijit Samra, Scott Demars, Naksup Kim, Adam James, Amir Hosseini, Pavel Studenkov, Matthias Lauermann, Ryan Going, Mingzhi Lu, Jiaming Zhang, Jie Tang, Jeff Bostak, Thomas Vallaitis, Matthias Kuntz, Don Pavinski, Andrew Karanicolas, Babak Behnia, Darrell Engel, Omer Khayam, Nikhil Modi, Mohammad R. Chitgarha, Pierre Mertz, Wilson Ko, Robert Maher, John Osenbach, Jeff Rahn, Han Sun, Kuang-Tsan Wu, Matthew Mitchell, David Welch, Fellow IEEE electronic IC concept to photonics. This photonic integrated Abstract—Key advances which enabled the InP photonic circuit, or PIC, was first proposed by Miller [6] in 1969. Over integrated circuit (PIC) and the subsequent progression of InP the past 47 plus years since this publication, there have been PICs to fully integrated multi-channel DWDM system-on-chip numerous research demonstrations of PICs; however, the (SOC) PICs are described. Furthermore, the current state-of-the- ability for the economic value derived from an integrated art commercial multi-channel SOC PICs are reviewed as well as key trends and technologies for the future of InP-based PICs in component to outweigh the cost of the integration itself has optical communications. limited their commercial success as well as the investment in their development. To date, the application that has primarily Index Terms— Photonic Integrated Circuit, optical receivers, driven the introduction and scaling of PICs has been their use optical transmitters.
    [Show full text]
  • Photonic Integrated Circuit (PIC) Device Structures
    https://ntrs.nasa.gov/search.jsp?R=20160011213 2019-08-29T16:37:41+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server _____________________________________________________________________________________ Title: Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects Author: Shannon Alt, Author Jonathan Pellish, Technical Management NASA Electronic Parts and Packaging (NEPP) Program NASA Goddard Space Flight Center Date: April 15th, 2016 _____________________________________________________________________________________ BOK Executive Summary: Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such “building-block” structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems—particularly in data communications— warrants additional investigations when considering reliability for space systems development.
    [Show full text]
  • Introduction to Optoelectronics
    Introduction to Optoelectronic Devices Dr. Jing Bai Associate Professor Department of Electrical Engineering University of Minnesota Duluth October 8th, 2015 1 Outline What is the optoelectronics? Optics and electronics Major optoelectronic devices Current trend on optoelectronic devices Nanoscale optoelectronic devices My research on optoelectronics 2 What Did the Word “Opto- Electronics” Mean? Optoelectronics is the study and application of electronic devices that interact with light Electronics Optics (electrons) (light or photons) Optoelectronics 3 What is optics Behaviors and properties of light Visible , ultraviolet and infrared light Light is an electromagnetic wave Light is also treated as particle-like energy-packet, or “photons” Applications include visual assistance, imaging and optical communication 4 What is electronics Electronic circuits including analog circuits and digital circuits Electronic components, such as transistors, diodes, and integrated circuits (ICs), interconnectors Most electronic devices are made by semiconductor materials for electron control Applications include information processing, signal processing and telecommunication 5 Examples of Optoelectronic Devices 6 Light-Emitting Diodes (LEDs) Light-emitting diode (LED) is a semiconductor diode that emits incoherent light over relatively wide spectral range when electrically biased in the forward direction of the 7 p-n junction. Semiconductor Materials vs. LED Color General Brightness GaP GaN GaAs GaAIAs -- Green, Red Blue Red, Infrared Red, Infrared -- Super Brightness GaAIAs GaAsP GaN InGaN GaP Red Red, Yellow Blue Green Green Ultra Brightness GaAIAs InGaAIP GaN InGaN -- Red Red, Yellow, Orange Blue Green -- 8 Laser Cavity Design Total reflector Current Partial reflector GaAs N+ GaAs P+ Electrodes Laser cavity design: • Laser medium is similar to LEDs, • Extra components a in laser cavity are the mirrors at two facing planes (facets) for lasing mode selection.
    [Show full text]
  • 332:466/591 Optoelectronics I
    332:466/591 Optoelectronics I Instructor: Wei Jiang Sec. 1. Introduction About Instructor •Dr. Wei Jiang • Room: EE 215 • Phone: (732) 445-2164 • Email: [email protected] 2 332:591 Optoelectronics I (W. Jiang) About this Course • Class Time: T,Th 6:40 pm – 8:00 pm (change to Thur 6:40 – 9:20 pm??) • Location: ECE 240 • Office hours: T.Th 4:00-5:00pm or by appointment • Prerequisites: – Undergrad: 332:382 EM Fields and 332:361 Electronic Devices – Graduate: (332:580 EM waves) and (332:581 Introduction to SOLID STATE ELECTRONICS or 583 SEMICONDUCTOR DEVICES I) • Homework: 5 assignments • Two exams and Final exam 3 332:591 Optoelectronics I (W. Jiang) Textbooks • B. E. A. Saleh & M. C. Teich, Fundamentals of Photonics, Wiley-Interscience,2nd edition (2007), ISBN 0471358320 (primary text). •S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice-Hall, • (2001), ISBN 0201610876 (substitute) • Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall; 2nd edition (1996), ISBN 0134956567 (supplement on Semiconductors). • Amnon Yariv, Quantum Electronics, ISBN 0471609978, (advanced) • All material will be covered in lecture notes. 4 332:591 Optoelectronics I (W. Jiang) Course Outline • Goal: Overview optoelectronic device technology • Emphasis: device physics/operating principles (mainly concepts, less on maths), along with some structural engineering, fabrication • Introduction • Dielectric Waveguides and Optical Fibers • Review Quantum Mechanics & Semiconductor Physics • LEDs, Lasers, and Optical
    [Show full text]
  • Optoelectronics and Photonics: Principles and Practices
    Second Edition Optoelectronics and Photonics: Principles and Practices S.O. Kasap University of Saskatchewan Canada Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo ©2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved A01_KASA1498_02_SE_FM.INDD 1 18/09/12 6:45 PM Vice President and Editorial Director, ECS: Marcia J. Horton Executive Editor: Andrew Gilfillan Sponsoring Editor: Alice Dworkin Editorial Assistant: William Opaluch Marketing Manager: Tim Galligan Marketing Assistant: Jon Bryant Permissions Project Manager: Karen Sanatar Senior Managing Editor: Scott Disanno Production Project Manager: Clare Romeo Creative Director: Jayne Conte Cover Design: Suzanne Behnke Cover Illustration/Photo: Courtesy of Teledyne-DALSA Image Permission Coordinator: Karen Sanatar Full-Service Project Management/Composition: Integra Software Services, Pvt. Ltd. Printer/Binder: Courier/Westford Typeface: 10/12 Times LT Std Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text. Copyright © 2013, 2001 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department. Library of Congress Cataloging-in-Publication Data Kasap, S. O. (Safa O.) Optoelectronics and photonics: principles and practices/S.O.
    [Show full text]
  • Liquid Crystal Polarization Volume Hologram for Augmented
    LIQUID CRYSTAL POLARIZATION VOLUME HOLOGRAM FOR AUGMENTED REALITY APPLICATIONS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Xiayu Feng May 2021 © Copyright All rights reserved Except for previously published materials Dissertation written by Xiayu Feng B.S., University of Science and Technology of China, Hefei, China 2015 M.S., Kent State University, Kent, USA 2018 Ph.D., Kent State University, Kent, USA 2021 Approved by Dr. Philip J. Bos , Chair, Doctoral Dissertation Committee Dr. Liang-Chy Chien , Members, Doctoral Dissertation Committee Dr. Elizabeth K. Mann , Dr. Qiang Guan , Dr. Samuel Sprunt , Accepted by Dr. Antal Jákli , Chair, Chemical Physics Interdisciplinary program Dr. Mandy Munro-Stasiuk , Interim Dean, College of Arts and Sciences TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................... IX LIST OF TABLES ..................................................................................................................... XX DEDICATION.......................................................................................................................... XXI ACKNOWLEDGEMENTS .................................................................................................. XXII CHAPTER 1 OVERVIEW .......................................................................................................... 1 1.1 Background ..............................................................................................................................
    [Show full text]