System-On-Chip Photonic Integrated Circuits (Invited)

Total Page:16

File Type:pdf, Size:1020Kb

System-On-Chip Photonic Integrated Circuits (Invited) System-On-Chip Photonic Integrated Circuits (Invited) Fred Kish, Fellow IEEE, Vikrant Lal, Peter Evans, Scott Corzine, Mehrdad Ziari, Tim Butrie, Mike Reffle, Huan-Shang Tsai, Andrew Dentai, Fellow IEEE, Jacco Pleumeekers, Mark Missey, Matt Fisher, Sanjeev Murthy, Randal Salvatore, Parmijit Samra, Scott Demars, Naksup Kim, Adam James, Amir Hosseini, Pavel Studenkov, Matthias Lauermann, Ryan Going, Mingzhi Lu, Jiaming Zhang, Jie Tang, Jeff Bostak, Thomas Vallaitis, Matthias Kuntz, Don Pavinski, Andrew Karanicolas, Babak Behnia, Darrell Engel, Omer Khayam, Nikhil Modi, Mohammad R. Chitgarha, Pierre Mertz, Wilson Ko, Robert Maher, John Osenbach, Jeff Rahn, Han Sun, Kuang-Tsan Wu, Matthew Mitchell, David Welch, Fellow IEEE electronic IC concept to photonics. This photonic integrated Abstract—Key advances which enabled the InP photonic circuit, or PIC, was first proposed by Miller [6] in 1969. Over integrated circuit (PIC) and the subsequent progression of InP the past 47 plus years since this publication, there have been PICs to fully integrated multi-channel DWDM system-on-chip numerous research demonstrations of PICs; however, the (SOC) PICs are described. Furthermore, the current state-of-the- ability for the economic value derived from an integrated art commercial multi-channel SOC PICs are reviewed as well as key trends and technologies for the future of InP-based PICs in component to outweigh the cost of the integration itself has optical communications. limited their commercial success as well as the investment in their development. To date, the application that has primarily Index Terms— Photonic Integrated Circuit, optical receivers, driven the introduction and scaling of PICs has been their use optical transmitters. for optical communications. This paper will review the many seminal contributions, inventions and discoveries that were critical to the development I. INTRODUCTION of PICs in the field of optical communications. The progression he modern electronics era began with the invention of the from the first PICs to today’s fully integrated system-on-chip Ttransistor and the discovery of minority carrier injection (SOC) state-of-the-art devices used in optical communications [1]. The amazing advances of modern electronics are applications will also be examined. Furthermore, promising underpinned by the scalable nature of semiconductor technologies for future generations of PICs will be discussed to technology and the invention of the integrated circuit (IC) further enable PIC scaling and more ubiquitous use of PICs in [2, 3]. The IC has had unparalleled impact on our modern world optical communications. as a result of the ability of semiconductor and transistor II. PRE-HISTORY OF PHOTONIC INTEGRATED CIRCUITS technology to continually increase the functionality, performance, and reliability of solid-state circuits, while A. Foundational Work reducing their size, power, and costs. This IC scaling has been The invention of the transistor [1] and electronic IC [2,3] laid exponential, resulting in chips today that contain over a billion the foundation for the photonic IC. In this section, we recognize transistors at a cost per transistor of <0.1 microcents. An the essential role of many contributions in science and essential value of the IC is the ability to realize many of the technology that built upon this foundation to realize the first aforementioned improvements by eliminating the need to photonic IC and the progression of PICs used in optical discretely package and assemble individual devices or smaller communications. circuits by providing the device and circuit connections via Table I shows a list of some key foundational advances that semiconductor batch and wafer scale processing. enabled photonic ICs. One of the most significant such The development of the semiconductor laser [4], the advances was the invention of the laser in 1960 [7]. As semiconductor alloy laser [5], and the associated viability of referenced previously, the transistor enabled the discovery of compound semiconductor alloys [5] (which enabled device minority carrier injection. This phenomenon, applied to direct structures with “tunable” bandgaps), led the groundwork for gap semiconductors [8], led to the study of band-to-band light modern optoelectronics and the possibility of extending the generation from carrier recombination, and ultimately, in Manuscript received September 22, 2016. Authors are with Infinera Corporation, Sunnyvale, CA 94089 USA (corresponding author: Fred A. Kish: 408-572-5200; e-mail: [email protected]). Digital Object Identifier 10.1109/JSTQE.2017.2717863 1077-260X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information. JSTQE-INV-IPIP2018-06851-2017 2 conjunction with the invention of the laser, led to the realization Several points were essential in the statement of the proposal of the semiconductor laser [4]. Almost coincidentally, the first for the photonic IC by Stewart. First, was the statement “…if III-V alloy laser was demonstrated by Holonyak and Bevaqua realized”. This is important to underscore as by 1969, while the [5]. This work was foundational in that it demonstrated alloy most of the key science concepts were established, many of the disorder and defects were not intrinsic to III-V alloys. Thus, underlying technologies to realize a photonic IC had not been III-V alloy materials were viable to make semiconductor developed. Secondly, was the phrase “….economy should devices (including optoelectronic devices) wherein the bandgap ultimately result”. Even after their realization, PICs have been could be “tuned’ by varying the alloy composition. A further generally economically challenged to provide the same value seminal invention in the development of semiconductor lasers proposition as electronic integrated circuits for a number of was the proposal to utilize heterojunctions to simultaneously reasons as described by Kaminow [14], including: provide optical and carrier confinement [9]. This advance enabled the development of the first room-temperature (RT) 1) Active photonic devices require a much more diverse set continuous wave (cw) operation of a semiconductor laser [10] of semiconductor materials (binary, ternary, quaternary) by virtue of employing a double heterostructure (DH) device that are harder to control and manufacture than electronic design. The III-V alloy and hetorojunction are the basis for ICs; virtually all III-V optoelectronic commercial devices deployed 2) The fundamental size limit for photonic device sizes is today. significantly larger than that of electrical devices (photon versus electron wavelength) and hence are not subject to TABLE I the same level of dimensional scaling; SOME KEY FOUNDATIONAL ADVANCES ENABLING PHOTONIC ICS (PICS) 3) PICs require a more diverse set of building blocks than electronic ICs (lasers, detectors, modulators, Year Technology Break-Through Reference multiplexers, demultiplexers, attenuators, amplifiers, 1883 Light detection in a semiconductor [12] polarization management devices, phase adjusters, etc.); 1947 Transistor (including the discovery of minority [1] 4) Applications and circuit designs are not as scalable (using carrier injection) repeated blocks); 1959 Electronic integrated circuit (IC) [2], [3] 5) Progressively complex and sizeable applications have not 1960 Invention of the LASER [7] 1961 Light modulation in a III-V semiconductors [11] emerged to fund continuous investment in the technology 1962 Semiconductor injection laser [4] and manufacturing. 1962 III-V alloy injection laser [5] 1963 Heterojunction semiconductor laser proposal [9] In order to overcome these challenges, a new set of fabrication 1966 Low-loss fiber-optic transmission [13] processes and set of optical device building blocks needed to be 1969 Double heterojunction injection laser (RT, cw) [10] 1969 Photonic IC proposal [6] developed to realize practical photonic ICs. Table II shows some of the key process technologies that were required to be RT = room temperature; cw = continuous wave. developed to realize viable photonic ICs for optical communications. Around this time, it was also shown that a III-V semiconductor could modulate [11] light with an external TABLE II applied voltage. This phenomenon, combined with the ESSENTIAL NEW FABRICATION PROCESSES FOR PHOTONIC ICS previously known light-detectivity of semiconductors [12] laid Year Technology Break-Through Reference the science foundation for the key functionality required to 1956 Bulk Czochralski crystal growth of III-V materials [15] build a photonic IC. The invention of low-loss glass fibers in 1961 Vapor phase epitaxy (VPE) of III-V alloys [18] the optical frequency spectrum by Kao and Hockham [13] 1962 Bulk crystal growth of InP [16] 1962 Cleaved optical facets [27] established the application space for what has been the “killer 1970 Viability of III-V quaternary alloys [29] application” for photonic ICs: optical communications. The (III-V quaternary alloy injection laser) culmination of these seminal advances was the proposal of the 1974 DFB injection laser demonstration [28] (integrated mirrors) photonic IC by Miller [6] in The Bell System Technical Journal: 1976 InGaAsP / InP laser demonstration (RT, cw) [30] 1977 Viability of Metal Organic Vapor Phase Epitaxy [19] “This paper outlines a proposal for a miniature form of (MOVPE) laser beam circuitry…Photolithographic
Recommended publications
  • Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time- Stretched ADC
    UCLA UCLA Previously Published Works Title Two-dimensional spatio-temporal signal processing for dispersion compensation in time- stretched ADC Permalink https://escholarship.org/uc/item/1p65n9cp Journal Journal of Lightwave Technology, 25 ISSN 0733-8724 Authors Tarighat, Alireza Gupta, Shalabh Sayed, Ali H. et al. Publication Date 2007-06-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1580 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007 Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time-Stretched ADC Alireza Tarighat, Member, IEEE, Shalabh Gupta, Student Member, IEEE, Ali H. Sayed, Fellow, IEEE, and Bahram Jalali, Fellow, IEEE Abstract—Time-stretched analog-to-digital converters (ADCs) have offered revolutionary enhancements in the performance of electronic converters by reducing the signal bandwidth prior to digitization. An inherent limitation of the time-stretched ADC is the frequency-selective response of the optical system that reduces the effective number of bits for ultrawideband signals. This paper proposes a solution based on spatio-temporal digital processing. The digital algorithm exploits the optical phase diversity to create a flat RF frequency response, even when the system’s transfer function included deep nulls within the signal spectrum. For a 10× time-stretch factor with a 10-GHz input signal, simulations show that the proposed solution increases the overall achievable signal-to-noise-and-distortion ratio to 52 dB in the presence of linear distortions. The proposed filter can be used to mitigate the Fig. 1. TS-ADC concept. dispersion penalty in other fiber optic applications as well. Index Terms—Analog-to-digital conversion (ADC), optical sig- a parallel array of slow digitizers, each clocked at a fraction nal processing, spatio-temporal digital processing, time-stretched of the Nyquist rate.
    [Show full text]
  • Optoelectronics – the Science and Technology at the Heart Cure St of 21 Century Telecommunications
    Higher Physics Topical Investigation Skin Cancer—Prevention and Optoelectronics – the science and technology at the heart Cure st of 21 century telecommunications 2 Researching Physics Higher Investigation Brief Suntan creams stop harmful UV radiation reaching the skin. Manufacturers’ products are rated with a Sun Protection Factor (SPF). Suntan creams can have SPF values from 6 to over 50. UV radiation monitors normally measure Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Contents Advice to students Page 3 Overview of the unit and activities Page 4 Organising your work and carrying out the activities Page 5 Assessment issues Web-based research briefs Page 6 Initial research activity - Optoelectronics devices – what are they? Page 7 Research activity 1 - Light Emitting Diodes Page 8 Research activity 2 - Optical Fibres Page 9 Research activity 3 - Liquid Crystal Displays Practical investigation briefs Page 10 Research activity 1A - Investigating LEDs and Colour Page 11 Research activity 1B - Investigating LEDs and Brightness Page 12 Research activity 1C - Investigating the Spectra of LEDs Page 13 Research activity 1D - Investigating the Energy Use of Light Sources Page 14 Research activity 2A - Investigating Optical Fibres and Bending Page 15 Research activity 2B - Investigating Optical Fibres and Length Page 16 Research activity 3A - Investigating Polarisation Page 17 Research activity 3B - Investigating Polarisation using a Liquid Crystal Shutter Page 18 Research activity 3C - Investigating Colour Mixing Page 19 Further Information Page 2 Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Overview of the unit and activities.
    [Show full text]
  • Technology and Economic Assessment of Optoelectronics
    NBSIR-86/3369 A111DE M 3 b 2 7 3 PLANNING REPORT Technology and Economic Assessment of Optoelectronics Gregory Tassey Senior Economist National Bureau of Standards October 1985 100 • U56 86-3369 1985 C. 2 ww BttAtCN mPMMAEQS CEHTQ PLANNING REPORT 23 TECHNOLOGY AND ECONOMIC ASSESSMENT OF OPTOELECTRONICS Gregory Tassev Senior Economist National Bureau of Standards October 1985 ABSTRACT Optoelectronics is one of the two major technologies driving the revolution in communications, which will not only have profound effects on the economy but on social and political structures as well. The other technology, optical fibers, is already beginning to mature, but optoelectronics is rapidly catching ud, enabling the acceleration of the "information age". Future productivity advances in optoelectronics will come from integration of the various signal processing functions and from improved manufacturing technologies . Integration may occur in two important stages. The first, referred to "hybrid" integration, is almost at the point of commercialization. Hybrid devices use oxide-based (ceramic) materials and integrate some of the signal processing functions. Total or "monolithic" integration, based on gallium arsenide and related materials may not reach commercialization for another 8-10 years. In both cases, the economic impact will be substantial as information technologies become a critical element of most industries. As a result, the U.S. and its major competitors, especially Japan, are making major R&D investments in optoelectronics. Worldwide R&D expenditures are expected to reach $1 billion by 1987. In terms of market penetration, fiberoptic systems will attain annual sales of more than S3 billion by 1989. The Japanese have made a national commitment to becoming the world leader in this market, borrowing from their substantial expertise in semiconductor technology.
    [Show full text]
  • Recent Advances in Silicon Photonic Integrated Circuits John E
    Invited Paper Recent Advances in Silicon Photonic Integrated Circuits John E. Bowers*, Tin Komljenovic, Michael Davenport, Jared Hulme, Alan Y. Liu, Christos T. Santis, Alexander Spott, Sudharsanan Srinivasan, Eric J. Stanton, Chong Zhang Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA *[email protected] ABSTRACT We review recent breakthroughs in silicon photonics technology and components and describe progress in silicon photonic integrated circuits. Heterogeneous silicon photonics has recently demonstrated performance that significantly outperforms native III-V components. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors and silicon electronics is reviewed. Keywords: Heterogeneous silicon platform, integrated optoelectronics, optoelectronic devices, semiconductor lasers, silicon-on-insulator (SOI) technology, silicon photonics 1. INTRODUCTION Heterogeneous silicon photonics, due to its potential for medium- and large-scale integration, has been intensively researched. Recent developments have shown that heterogeneous integration not only allows for a reduced cost due to economy of scale, but also allows for same or even better performing devices than what has previously been demonstrated utilizing only III-V materials. Furthermore we believe that optical interconnects are the only way to solve the scaling limitation in modern processors, and that heterogeneous silicon photonics with on-chip sources is the best approach in the long term as it promises higher efficiency and lower cost. We address both beliefs in sections that follow. In this paper we plan to briefly address heterogeneous silicon approaches, and point-out that the heterogeneous silicon platform is more than just III-V on silicon but can have advantages for isolators, circulators and nonlinear devices (Section 2).
    [Show full text]
  • Photonics and Optoelectronics
    Photonics and Optoelectronics Effects of Line Edge Roughness on Photonic Device Performance through Virtual Fabrication ...................................... 43 Reprogrammable Electro-Chemo-Optical Devices ............................................................................................................... 44 On-chip Infrared Chemical Sensor Leveraging Supercontinuum Generation in GeSbSe Chalcogenide Glass Waveguide ............................................................................................................................... 45 Sensing Chemicals in the mid-Infrared using Chalcogenide Glass Waveguides and PbTe Detectors Monolithically Integrated On-chip ......................................................................................................... 46 Broadband Low-loss Nonvolatile Photonic Switches Based on Optical Phase Change Materials (O-PCMs) ............... 47 Chalcogenide Glass Waveguide-integrated Black Phosphorus mid-Infrared Photodetectors .......................................... 48 An Ultrasensitive Graphene-polymer Thermo-mechanical Bolometer ................................................................................ 49 Nanocavity Design for Reduced Spectral Diffusion of Solid-state Defects ......................................................................... 50 Two-dimensional Photonic Crystal Cavities in Bulk Single-crystal Diamond ....................................................................... 51 Quasi-Bessel-Beam Generation using Integrated Optical Phased Arrays ..........................................................................
    [Show full text]
  • Avalanche Photodiode a User Guide Understanding Avalanche Photodiode for Improving System Performance
    High performance sensors APPLICATION NOTE Avalanche photodiode A User Guide Understanding Avalanche photodiode for improving system performance Introduction Contents Avalanche photodiode detectors (APD) APD structures have and will continue to be used in APD noise many diverse applications such as laser Photon counting technique range finders, data communications or photon correlation studies. This paper discusses APD structures, critical Applications performance parameter and excess noise Light detection factor. Laser range finder For low-light detection in the 200- to Photon counting 1150-nm range, the designer has three Datacomm basic detector choices - the silicon PIN Optical Tomography detector, the silicon avalanche LIDAR photodiode (APD) and the photomultiplier Fluorescence detection tube (PMT). Particle sizing APDs are widely used in instrumentation and aerospace applications, offering a combination of high speed and high sensitivity unmatched by PIN detectors, and quantum efficiencies at >400 nm unmatched by PMTs. www.optoelectronics.perkinelmer.com APPLICATION NOTE Table of Contents What is an Avalange photodiode 3 Selecting an APD 5 Excess Noise Factor 6 Geiger Mode 7 Applications 8 www.optoelectronics.perkinelmer.com Avalanche photodiode 2 APPLICATION NOTE What is an Avalanche Photodiode? APD Structures In order to understand why more than one APD structure exists, it is important to appreciate the design trade-offs that must be accommodated by the APD designer. The ideal APD would have zero dark noise, no excess noise, broad spectral and frequency response, a gain range from 1 to 106 or more, and low cost. More simply, an ideal APD would be a good PIN photodiode with gain! In reality however, this is difficult to achieve because of the need to trade-off conflicting design requirements.
    [Show full text]
  • Photonic Integrated Circuit (PIC) Device Structures
    https://ntrs.nasa.gov/search.jsp?R=20160011213 2019-08-29T16:37:41+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server _____________________________________________________________________________________ Title: Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects Author: Shannon Alt, Author Jonathan Pellish, Technical Management NASA Electronic Parts and Packaging (NEPP) Program NASA Goddard Space Flight Center Date: April 15th, 2016 _____________________________________________________________________________________ BOK Executive Summary: Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such “building-block” structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems—particularly in data communications— warrants additional investigations when considering reliability for space systems development.
    [Show full text]
  • Introduction to Optoelectronics
    Introduction to Optoelectronic Devices Dr. Jing Bai Associate Professor Department of Electrical Engineering University of Minnesota Duluth October 8th, 2015 1 Outline What is the optoelectronics? Optics and electronics Major optoelectronic devices Current trend on optoelectronic devices Nanoscale optoelectronic devices My research on optoelectronics 2 What Did the Word “Opto- Electronics” Mean? Optoelectronics is the study and application of electronic devices that interact with light Electronics Optics (electrons) (light or photons) Optoelectronics 3 What is optics Behaviors and properties of light Visible , ultraviolet and infrared light Light is an electromagnetic wave Light is also treated as particle-like energy-packet, or “photons” Applications include visual assistance, imaging and optical communication 4 What is electronics Electronic circuits including analog circuits and digital circuits Electronic components, such as transistors, diodes, and integrated circuits (ICs), interconnectors Most electronic devices are made by semiconductor materials for electron control Applications include information processing, signal processing and telecommunication 5 Examples of Optoelectronic Devices 6 Light-Emitting Diodes (LEDs) Light-emitting diode (LED) is a semiconductor diode that emits incoherent light over relatively wide spectral range when electrically biased in the forward direction of the 7 p-n junction. Semiconductor Materials vs. LED Color General Brightness GaP GaN GaAs GaAIAs -- Green, Red Blue Red, Infrared Red, Infrared -- Super Brightness GaAIAs GaAsP GaN InGaN GaP Red Red, Yellow Blue Green Green Ultra Brightness GaAIAs InGaAIP GaN InGaN -- Red Red, Yellow, Orange Blue Green -- 8 Laser Cavity Design Total reflector Current Partial reflector GaAs N+ GaAs P+ Electrodes Laser cavity design: • Laser medium is similar to LEDs, • Extra components a in laser cavity are the mirrors at two facing planes (facets) for lasing mode selection.
    [Show full text]
  • 332:466/591 Optoelectronics I
    332:466/591 Optoelectronics I Instructor: Wei Jiang Sec. 1. Introduction About Instructor •Dr. Wei Jiang • Room: EE 215 • Phone: (732) 445-2164 • Email: [email protected] 2 332:591 Optoelectronics I (W. Jiang) About this Course • Class Time: T,Th 6:40 pm – 8:00 pm (change to Thur 6:40 – 9:20 pm??) • Location: ECE 240 • Office hours: T.Th 4:00-5:00pm or by appointment • Prerequisites: – Undergrad: 332:382 EM Fields and 332:361 Electronic Devices – Graduate: (332:580 EM waves) and (332:581 Introduction to SOLID STATE ELECTRONICS or 583 SEMICONDUCTOR DEVICES I) • Homework: 5 assignments • Two exams and Final exam 3 332:591 Optoelectronics I (W. Jiang) Textbooks • B. E. A. Saleh & M. C. Teich, Fundamentals of Photonics, Wiley-Interscience,2nd edition (2007), ISBN 0471358320 (primary text). •S. O. Kasap, Optoelectronics and photonics: principles and practices, Prentice-Hall, • (2001), ISBN 0201610876 (substitute) • Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Prentice Hall; 2nd edition (1996), ISBN 0134956567 (supplement on Semiconductors). • Amnon Yariv, Quantum Electronics, ISBN 0471609978, (advanced) • All material will be covered in lecture notes. 4 332:591 Optoelectronics I (W. Jiang) Course Outline • Goal: Overview optoelectronic device technology • Emphasis: device physics/operating principles (mainly concepts, less on maths), along with some structural engineering, fabrication • Introduction • Dielectric Waveguides and Optical Fibers • Review Quantum Mechanics & Semiconductor Physics • LEDs, Lasers, and Optical
    [Show full text]
  • Optoelectronics and Photonics: Principles and Practices
    Second Edition Optoelectronics and Photonics: Principles and Practices S.O. Kasap University of Saskatchewan Canada Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo ©2013 Pearson Education, Inc., Upper Saddle River, NJ 07458. All Rights Reserved A01_KASA1498_02_SE_FM.INDD 1 18/09/12 6:45 PM Vice President and Editorial Director, ECS: Marcia J. Horton Executive Editor: Andrew Gilfillan Sponsoring Editor: Alice Dworkin Editorial Assistant: William Opaluch Marketing Manager: Tim Galligan Marketing Assistant: Jon Bryant Permissions Project Manager: Karen Sanatar Senior Managing Editor: Scott Disanno Production Project Manager: Clare Romeo Creative Director: Jayne Conte Cover Design: Suzanne Behnke Cover Illustration/Photo: Courtesy of Teledyne-DALSA Image Permission Coordinator: Karen Sanatar Full-Service Project Management/Composition: Integra Software Services, Pvt. Ltd. Printer/Binder: Courier/Westford Typeface: 10/12 Times LT Std Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text. Copyright © 2013, 2001 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458. All rights reserved. Printed in the United States of America. This publication is protected by Copyright and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department. Library of Congress Cataloging-in-Publication Data Kasap, S. O. (Safa O.) Optoelectronics and photonics: principles and practices/S.O.
    [Show full text]
  • Liquid Crystal Polarization Volume Hologram for Augmented
    LIQUID CRYSTAL POLARIZATION VOLUME HOLOGRAM FOR AUGMENTED REALITY APPLICATIONS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Xiayu Feng May 2021 © Copyright All rights reserved Except for previously published materials Dissertation written by Xiayu Feng B.S., University of Science and Technology of China, Hefei, China 2015 M.S., Kent State University, Kent, USA 2018 Ph.D., Kent State University, Kent, USA 2021 Approved by Dr. Philip J. Bos , Chair, Doctoral Dissertation Committee Dr. Liang-Chy Chien , Members, Doctoral Dissertation Committee Dr. Elizabeth K. Mann , Dr. Qiang Guan , Dr. Samuel Sprunt , Accepted by Dr. Antal Jákli , Chair, Chemical Physics Interdisciplinary program Dr. Mandy Munro-Stasiuk , Interim Dean, College of Arts and Sciences TABLE OF CONTENTS LIST OF FIGURES .................................................................................................................... IX LIST OF TABLES ..................................................................................................................... XX DEDICATION.......................................................................................................................... XXI ACKNOWLEDGEMENTS .................................................................................................. XXII CHAPTER 1 OVERVIEW .......................................................................................................... 1 1.1 Background ..............................................................................................................................
    [Show full text]
  • Optoelectronics and Optical Communication
    Optoelectronics and Optical Communication FFFN25/FYST50 Dan Hessman, Solid State Physics Cord Arnold, Atomic Physics Optoelectronics The application of electronic devices that source, detect and control light. (Electronic devices = semiconductor devices) Optical Communication The use of light to transport information. Practical Info Lectures Mondays 13-15 and Thursdays 8-10 K404 (or Rydberg) H221, H421 Rydberg H442,H443 Calculus exercises Fridays 13-15 (2 Feb: 15-17) H221 (H421) K404 Cord Arnold Dan Hessman Lab exercises - The Diode Laser (Q131) Q131 - Fiber Optics (H443) - CCD & CMOS Cameras (H442) Email with instructions for signing up Practical info Literature • Fundamentals of Photonics, B. E. A. Saleh and M. C. Teich • ~880kr @ KFS • Can be found as e-book via the University library • Lecture notes • Hand out material. On website, password protected Exam • 16/3 MA10, 14.00-19.00 • Book allowed, e-book not allowed! Course Outline Week 1: Optical Processes & Semiconductor Optics Week 2: Semiconductor Photon Sources Week 3: Fiber waveguides Week 4: Semiconductor Photon Detectors Week 5: Fiber communication Week 6: Cameras and Photovoltaics Week 7: Coherent communication + repetition Semiconductors Ch 16 12.345*2/*6/ 6. Halvledare !"#$%"#&'()(%*'$%#(%*%$#+,$-.#/.#%,,#,0(($123(04,#'",'(#%(%3,$/"%$#&'$#%520,%$',+#,0((#(%*"0"4+6'"7 *%,8#)0(3%,#3'"#+3%#,#%5#4%"/.#9::)1$."0"4#%((%$#6%(;+"0"4<#!(%3,$/"%$"'#0#*%,#,1.(04%"#,/..' (%*"0"4+6'"*%,# 3'"# 6%+3$0)'+# +/.# /.# *%# )/$%# 3('++0+3'# :'$,03('$#.%*#%"#%==%3,0)#.'++'<#>% ,-.*'#,0((+,?"*%"#0#*%,#"1+,'"#=9(('#)'(%"+6'"*%,#?#'"*$'#+0*'"#3'"#)0#6%+,$'3,'#+/.#&?(#+/.
    [Show full text]