Optoelectronics in Electrical Engineering Curriculums
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time- Stretched ADC
UCLA UCLA Previously Published Works Title Two-dimensional spatio-temporal signal processing for dispersion compensation in time- stretched ADC Permalink https://escholarship.org/uc/item/1p65n9cp Journal Journal of Lightwave Technology, 25 ISSN 0733-8724 Authors Tarighat, Alireza Gupta, Shalabh Sayed, Ali H. et al. Publication Date 2007-06-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1580 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 6, JUNE 2007 Two-Dimensional Spatio-Temporal Signal Processing for Dispersion Compensation in Time-Stretched ADC Alireza Tarighat, Member, IEEE, Shalabh Gupta, Student Member, IEEE, Ali H. Sayed, Fellow, IEEE, and Bahram Jalali, Fellow, IEEE Abstract—Time-stretched analog-to-digital converters (ADCs) have offered revolutionary enhancements in the performance of electronic converters by reducing the signal bandwidth prior to digitization. An inherent limitation of the time-stretched ADC is the frequency-selective response of the optical system that reduces the effective number of bits for ultrawideband signals. This paper proposes a solution based on spatio-temporal digital processing. The digital algorithm exploits the optical phase diversity to create a flat RF frequency response, even when the system’s transfer function included deep nulls within the signal spectrum. For a 10× time-stretch factor with a 10-GHz input signal, simulations show that the proposed solution increases the overall achievable signal-to-noise-and-distortion ratio to 52 dB in the presence of linear distortions. The proposed filter can be used to mitigate the Fig. 1. TS-ADC concept. dispersion penalty in other fiber optic applications as well. Index Terms—Analog-to-digital conversion (ADC), optical sig- a parallel array of slow digitizers, each clocked at a fraction nal processing, spatio-temporal digital processing, time-stretched of the Nyquist rate. -
Optoelectronics – the Science and Technology at the Heart Cure St of 21 Century Telecommunications
Higher Physics Topical Investigation Skin Cancer—Prevention and Optoelectronics – the science and technology at the heart Cure st of 21 century telecommunications 2 Researching Physics Higher Investigation Brief Suntan creams stop harmful UV radiation reaching the skin. Manufacturers’ products are rated with a Sun Protection Factor (SPF). Suntan creams can have SPF values from 6 to over 50. UV radiation monitors normally measure Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Contents Advice to students Page 3 Overview of the unit and activities Page 4 Organising your work and carrying out the activities Page 5 Assessment issues Web-based research briefs Page 6 Initial research activity - Optoelectronics devices – what are they? Page 7 Research activity 1 - Light Emitting Diodes Page 8 Research activity 2 - Optical Fibres Page 9 Research activity 3 - Liquid Crystal Displays Practical investigation briefs Page 10 Research activity 1A - Investigating LEDs and Colour Page 11 Research activity 1B - Investigating LEDs and Brightness Page 12 Research activity 1C - Investigating the Spectra of LEDs Page 13 Research activity 1D - Investigating the Energy Use of Light Sources Page 14 Research activity 2A - Investigating Optical Fibres and Bending Page 15 Research activity 2B - Investigating Optical Fibres and Length Page 16 Research activity 3A - Investigating Polarisation Page 17 Research activity 3B - Investigating Polarisation using a Liquid Crystal Shutter Page 18 Research activity 3C - Investigating Colour Mixing Page 19 Further Information Page 2 Higher Physics Researching Physics Optoelectronics – the science and technology at the heart of 21st century telecommunications Overview of the unit and activities. -
Technology and Economic Assessment of Optoelectronics
NBSIR-86/3369 A111DE M 3 b 2 7 3 PLANNING REPORT Technology and Economic Assessment of Optoelectronics Gregory Tassey Senior Economist National Bureau of Standards October 1985 100 • U56 86-3369 1985 C. 2 ww BttAtCN mPMMAEQS CEHTQ PLANNING REPORT 23 TECHNOLOGY AND ECONOMIC ASSESSMENT OF OPTOELECTRONICS Gregory Tassev Senior Economist National Bureau of Standards October 1985 ABSTRACT Optoelectronics is one of the two major technologies driving the revolution in communications, which will not only have profound effects on the economy but on social and political structures as well. The other technology, optical fibers, is already beginning to mature, but optoelectronics is rapidly catching ud, enabling the acceleration of the "information age". Future productivity advances in optoelectronics will come from integration of the various signal processing functions and from improved manufacturing technologies . Integration may occur in two important stages. The first, referred to "hybrid" integration, is almost at the point of commercialization. Hybrid devices use oxide-based (ceramic) materials and integrate some of the signal processing functions. Total or "monolithic" integration, based on gallium arsenide and related materials may not reach commercialization for another 8-10 years. In both cases, the economic impact will be substantial as information technologies become a critical element of most industries. As a result, the U.S. and its major competitors, especially Japan, are making major R&D investments in optoelectronics. Worldwide R&D expenditures are expected to reach $1 billion by 1987. In terms of market penetration, fiberoptic systems will attain annual sales of more than S3 billion by 1989. The Japanese have made a national commitment to becoming the world leader in this market, borrowing from their substantial expertise in semiconductor technology. -
Is EE Right for You?
Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You? • “Toto, I have a feeling we’re not in Kansas anymore.” • Now that you are here, diii?id you make the right choice? • Electrical engineering is a challenging and satisfying profession. That does not mean it is easy. In fact, with the possible exceptions of medicine or law, it is the MOST difficult. • There are some things you need to consider if you really, really want to be an engineer. • We will consider a few today. EE 1202 Lecture #1 – Why Electrical Engineering? 1 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science Is EE Right for You (2)? • Why did you decide to be an electrical engineer? – Parents will pay for engineering education (it’s what they want). – You like math and science. – A relative is an engineer and you like him/her. – You want to challenge yourself, and engineering seems challenging. – You think you are creative and love technology. – You want to make a difference in society . EE 1202 Lecture #1 – Why Electrical Engineering? 2 © N. B. Dodge 01/12 Erik Jonsson School of Engggineering and The Un ivers ity o f Texas a t Da llas Computer Science The High School “Science Student” Problem • In high school, you were FAR above the average. – And you probably didn’t study too hard, right? • You liked science and math, and they weren’t terribly hard. -
Electrical Engineering Technology
Electrical Engineering Technology Electrical Engineering Program Accreditation The Electrical Engineering Technology program at Central Piedmont is accredited by the Engineering Technology Accreditation Commission Technology (TAC) of the Accreditation Board of Engineering and Technology (ABET). The Associate in Applied Science degree in Electrical Engineering How to Apply: Technology has been specifically designed to prepare individuals to Complete a Central Piedmont admissions application through Get become advanced technicians in the workforce. Started on the Central Piedmont website. Electrical Engineering Technicians (Associates degree holders) typically build, install, test, troubleshoot, repair, and modify developmental and Contact Information production electronic components, equipment, and systems such as For questions about the program or for assistance as a student in the industrial/computer controls, manufacturing systems, instrumentation program, contact faculty advising. The Electrical Engineering Technology systems, communication systems, and power electronic systems. program is in the Engineering Technology Division. For additional information, visit the Electrical Engineering Technology website or call the A broad-based core of courses ensures that students develop the skills Program Chair at 704.330.6773. necessary to perform entry-level tasks. Emphasis is placed on developing the ability to think critically, analyze, and troubleshoot electronic systems. General Education Requirements Beginning with electrical fundamentals, course work progressively ENG 111 Writing and Inquiry 3.0 introduces electronics, 2D Computer Aided Design (CAD), circuit Select one of the following: 3.0 simulation, solid-state fundamentals, digital concepts, instrumentation, C++ programming, microprocessors, programmable Logic Controllers ENG 112 Writing and Research in the Disciplines (PLCs). Other course work includes the study of various fields associated ENG 113 Literature-Based Research with the electrical/electronic industry. -
Recent Advances in Silicon Photonic Integrated Circuits John E
Invited Paper Recent Advances in Silicon Photonic Integrated Circuits John E. Bowers*, Tin Komljenovic, Michael Davenport, Jared Hulme, Alan Y. Liu, Christos T. Santis, Alexander Spott, Sudharsanan Srinivasan, Eric J. Stanton, Chong Zhang Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA *[email protected] ABSTRACT We review recent breakthroughs in silicon photonics technology and components and describe progress in silicon photonic integrated circuits. Heterogeneous silicon photonics has recently demonstrated performance that significantly outperforms native III-V components. The impact active silicon photonic integrated circuits could have on interconnects, telecommunications, sensors and silicon electronics is reviewed. Keywords: Heterogeneous silicon platform, integrated optoelectronics, optoelectronic devices, semiconductor lasers, silicon-on-insulator (SOI) technology, silicon photonics 1. INTRODUCTION Heterogeneous silicon photonics, due to its potential for medium- and large-scale integration, has been intensively researched. Recent developments have shown that heterogeneous integration not only allows for a reduced cost due to economy of scale, but also allows for same or even better performing devices than what has previously been demonstrated utilizing only III-V materials. Furthermore we believe that optical interconnects are the only way to solve the scaling limitation in modern processors, and that heterogeneous silicon photonics with on-chip sources is the best approach in the long term as it promises higher efficiency and lower cost. We address both beliefs in sections that follow. In this paper we plan to briefly address heterogeneous silicon approaches, and point-out that the heterogeneous silicon platform is more than just III-V on silicon but can have advantages for isolators, circulators and nonlinear devices (Section 2). -
Electrical and Computer Engineering: Past, Present, and Future
Electrical and Computer Engineering: Past, Present, and Future Randy Berry1, chair, Department of Electrical and Computer Engineering The field of electrical and computer engineering (ECE) has had an enormously successful history. This field has pushed the frontiers of fundamental research, led to the emergence of entirely new disciplines, and revolutionized our daily lives. ECE departments2 are found in nearly every engineering school and have historically been one of the larger departments both in terms of faculty and student enrollments. Academically, a strong ECE department is highly correlated with the reputation of an engineering school. Of the top 10 engineering schools in the latest US News and World Report rankings of graduate programs, nine have top 10 ranked ECE programs. Nevertheless, ECE is a field that finds itself facing challenges. In this paper, we will look to the field’s past issues and note how the field repeatedly reinvented itself to push to new heights. Finally, we argue that the time is ripe for another reinvention and show how aspects of such a reinvention are already emerging. Areas such as machine learning and data science, the Internet of things, and quantum information systems provide promising directions for ECE — and embracing them provides a path to a bright future. The Present Situation In many ways, ECE is a victim of its own successes. Advances such as computer-aided design tools reduce the number of designers needed. The increased integration reflected in Moore’s law means that more functionality can be integrated into a single integrated circuit (IC), replacing the need for engineering to integrate multiple components in custom designs. -
Photonics and Optoelectronics
Photonics and Optoelectronics Effects of Line Edge Roughness on Photonic Device Performance through Virtual Fabrication ...................................... 43 Reprogrammable Electro-Chemo-Optical Devices ............................................................................................................... 44 On-chip Infrared Chemical Sensor Leveraging Supercontinuum Generation in GeSbSe Chalcogenide Glass Waveguide ............................................................................................................................... 45 Sensing Chemicals in the mid-Infrared using Chalcogenide Glass Waveguides and PbTe Detectors Monolithically Integrated On-chip ......................................................................................................... 46 Broadband Low-loss Nonvolatile Photonic Switches Based on Optical Phase Change Materials (O-PCMs) ............... 47 Chalcogenide Glass Waveguide-integrated Black Phosphorus mid-Infrared Photodetectors .......................................... 48 An Ultrasensitive Graphene-polymer Thermo-mechanical Bolometer ................................................................................ 49 Nanocavity Design for Reduced Spectral Diffusion of Solid-state Defects ......................................................................... 50 Two-dimensional Photonic Crystal Cavities in Bulk Single-crystal Diamond ....................................................................... 51 Quasi-Bessel-Beam Generation using Integrated Optical Phased Arrays .......................................................................... -
Avalanche Photodiode a User Guide Understanding Avalanche Photodiode for Improving System Performance
High performance sensors APPLICATION NOTE Avalanche photodiode A User Guide Understanding Avalanche photodiode for improving system performance Introduction Contents Avalanche photodiode detectors (APD) APD structures have and will continue to be used in APD noise many diverse applications such as laser Photon counting technique range finders, data communications or photon correlation studies. This paper discusses APD structures, critical Applications performance parameter and excess noise Light detection factor. Laser range finder For low-light detection in the 200- to Photon counting 1150-nm range, the designer has three Datacomm basic detector choices - the silicon PIN Optical Tomography detector, the silicon avalanche LIDAR photodiode (APD) and the photomultiplier Fluorescence detection tube (PMT). Particle sizing APDs are widely used in instrumentation and aerospace applications, offering a combination of high speed and high sensitivity unmatched by PIN detectors, and quantum efficiencies at >400 nm unmatched by PMTs. www.optoelectronics.perkinelmer.com APPLICATION NOTE Table of Contents What is an Avalange photodiode 3 Selecting an APD 5 Excess Noise Factor 6 Geiger Mode 7 Applications 8 www.optoelectronics.perkinelmer.com Avalanche photodiode 2 APPLICATION NOTE What is an Avalanche Photodiode? APD Structures In order to understand why more than one APD structure exists, it is important to appreciate the design trade-offs that must be accommodated by the APD designer. The ideal APD would have zero dark noise, no excess noise, broad spectral and frequency response, a gain range from 1 to 106 or more, and low cost. More simply, an ideal APD would be a good PIN photodiode with gain! In reality however, this is difficult to achieve because of the need to trade-off conflicting design requirements. -
System-On-Chip Photonic Integrated Circuits (Invited)
System-On-Chip Photonic Integrated Circuits (Invited) Fred Kish, Fellow IEEE, Vikrant Lal, Peter Evans, Scott Corzine, Mehrdad Ziari, Tim Butrie, Mike Reffle, Huan-Shang Tsai, Andrew Dentai, Fellow IEEE, Jacco Pleumeekers, Mark Missey, Matt Fisher, Sanjeev Murthy, Randal Salvatore, Parmijit Samra, Scott Demars, Naksup Kim, Adam James, Amir Hosseini, Pavel Studenkov, Matthias Lauermann, Ryan Going, Mingzhi Lu, Jiaming Zhang, Jie Tang, Jeff Bostak, Thomas Vallaitis, Matthias Kuntz, Don Pavinski, Andrew Karanicolas, Babak Behnia, Darrell Engel, Omer Khayam, Nikhil Modi, Mohammad R. Chitgarha, Pierre Mertz, Wilson Ko, Robert Maher, John Osenbach, Jeff Rahn, Han Sun, Kuang-Tsan Wu, Matthew Mitchell, David Welch, Fellow IEEE electronic IC concept to photonics. This photonic integrated Abstract—Key advances which enabled the InP photonic circuit, or PIC, was first proposed by Miller [6] in 1969. Over integrated circuit (PIC) and the subsequent progression of InP the past 47 plus years since this publication, there have been PICs to fully integrated multi-channel DWDM system-on-chip numerous research demonstrations of PICs; however, the (SOC) PICs are described. Furthermore, the current state-of-the- ability for the economic value derived from an integrated art commercial multi-channel SOC PICs are reviewed as well as key trends and technologies for the future of InP-based PICs in component to outweigh the cost of the integration itself has optical communications. limited their commercial success as well as the investment in their development. To date, the application that has primarily Index Terms— Photonic Integrated Circuit, optical receivers, driven the introduction and scaling of PICs has been their use optical transmitters. -
Electrical Engineering and Computer Engineering AS
PROGRAM LEARNING OUTCOMES Engineering: Electrical Engineering 1. Apply analysis tools and computer tools in problem solving. 2. Identify interdisciplinary aspects of engineering projects. 3. Apply software engineering principles and procedures. and Computer Engineering AS 4. Do computer algorithm development using C and C++ techniques. 5. Understand the operation and control of electrical measuring equipment. 6. Use computer programming skills to develop software for REQUIRED automation, decision making and control of equipment. 7. Develop test software for evaluation of digital circuits. ENGIN 110 8. Analyze the operation of small scale digital and analog TAKE 1 circuits. Introduction to 9. Design simple operational amplifier circuits. Engineering ENGTC 126 10. Demonstrate knowledge of magnetism and its applications in the design of transformers and actuators. ENGIN 120 Computer Engineering Aided Design 11. Assemble and test digital and analog circuits from circuit Drawing and Drafting – diagrams. AutoCAD COMSC 165 CHEM 120 COMSC 210 ENGIN 230 Advanced Program General pre req Introduction Programming Design College to Circuits and with C and and Data Chemistry I Devices ENGIN 121 C++ Structures ENGIN 135 Engineering Programming Drawing/ DVC II DVC I.B. for Scientists Descriptive pre req and Engineers Geometry Entry Careers in MATH 192 MATH 193 MATH 292 MATH 294 ENGIN 136 • Engineering design in Analytic pre req Analytic pre req Analytic pre req Differential Computer Geometry Geometry and Geometry and multiple disciplines Equations Programming and Calculus I Calculus II Calculus III for Engineers Using MATLAB* DVC I.B. DVC I.B. DVC I.B. DVC I.B. DVC I.C. DVC I.C. DVC I.C. -
Introduction to Electrical Engineering
Revision: 02/16/01 SUMMER INSTITUTE FOR ENGINEERING AND TECHNOLOGY EDUCATION ELECTRICAL ENGINEERING INTRODUCTION TO ELECTRICAL ENGINEERING CONCEPT This module explains some of the details about the work in which various Electrical Engineering specialties engage. OBJECTIVES 1. To expose the readers to the type of work Electrical Engineers do. 2. To give the readers an idea about the courses the students would require to take to pursue a degree in Electrical Engineering. 3. To explain about the career opportunities for Electrical Engineers. SCIENCE PROCESS SKILLS • Informing • Inquiring • Exploring AAAS SCIENCE BENCHMARKS: • 1B Scientific Inquiry • 12D Communication Skills • 3C Issues of Technology SCIENCE EDUCATION CONTENT STANDARDS (NRC) Grades 5-8: Grades 9-12: • Communications • Technology • Identify disciplines in Electrical Engineering STATE SCIENCE CURRICULUM FRAMEWORKS: Grades 5-8: 1.1.9, 1.1.19, 2.1.8, 2.1.11 Grades 9-12: 1.1.19 The Summer Institute for Engineering and Technology Education, University of Arkansas 1995. All rights reserved. ELECTRICAL ENGINEERING INTRODUCTION 2 INTRODUCTION Electrical Engineering implies electricity, which has flowed into every aspect of our lives. Electricity supplies power to run appliances, heavy machinery, and lights. Electricity also encompasses communications such as the telephone, radio, and television and other consumer electronic devices. And, of course, electronics is changing everything around us every day, through such pervasive devices as hand-held calculators, computers, and controllers that help operate automobiles, airplanes, and homes. Electrical Engineering is the largest engineering profession. HISTORY William Gilbert, an english scientist, characterized magnetism and static electricity around the year 1600, and Alexander Volta discovered that an electric current could be made to flow in 1800.