ICES Cooperative Research Report No. 265

Total Page:16

File Type:pdf, Size:1020Kb

ICES Cooperative Research Report No. 265 ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 265 Trends in important diseases affecting the culture of fish and molluscs in the ICES area 1998–2002 Prepared and edited by The Working Group on Pathology and Diseases of Marine Organisms (WGPDMO) International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2–4 DK-1261 Copenhagen K Denmark February 2004 Recommended format for purposes of citation: ICES. 2004. Trends in important diseases affecting fish and molluscs in the ICES area 1998–2002. Prepared and edited by the Working Group on Pathology and Diseases of Marine Organisms. ICES Cooperative Research Report No. 265. 26 pp. https://doi.org/10.17895/ices.pub.5399 For permission to reproduce material from this ICES Cooperative Research Report, apply to the General Secretary. ISBN 87-7482-01 978-87-7482-373-5 ISSN 2707-7144 Table of Contents Section Page 1 Introduction ................................................................................................................................................................1 2 Diseases Of Farmed Fish............................................................................................................................................1 2.1 Atlantic salmon (Salmo salar).........................................................................................................................1 2.1.1 Viral diseases.....................................................................................................................................1 2.1.1.1 Infectious Salmon Anaemia (ISA) ...................................................................................1 2.1.1.1.1 Description of agent.........................................................................................1 2.1.1.1.2 Geographical distribution ................................................................................1 2.1.1.1.3 Short description of clinical signs....................................................................1 2.1.1.1.4 Indications of impact/severity at stock level....................................................1 2.1.1.1.5 Control/preventive measures ...........................................................................1 2.1.1.1.6 Temporal trends...............................................................................................2 2.1.1.1.7 Other host species............................................................................................2 2.1.1.2 Infectious Pancreatic Necrosis (IPN) ...............................................................................2 2.1.1.2.1 Description of agent.........................................................................................2 2.1.1.2.2 Geographical distribution ................................................................................2 2.1.1.2.3 Short description of clinical signs....................................................................2 2.1.1.2.4 Indications of impact/severity at stock level....................................................3 2.1.1.2.5 Control/preventive measures ...........................................................................3 2.1.1.2.6 Temporal trends...............................................................................................3 2.1.1.2.7 Other host species............................................................................................3 2.1.1.3 Salmon Pancreas Disease (SPD) ......................................................................................3 2.1.1.3.1 Description of agent.........................................................................................3 2.1.1.3.2 Geographical distribution ................................................................................3 2.1.1.3.3 Short description of clinical signs....................................................................3 2.1.1.3.4 Indications of impact/severity at stock level....................................................3 2.1.1.3.5 Control/preventive measures ...........................................................................3 2.1.1.3.6 Temporal trends...............................................................................................3 2.1.2 Bacterial diseases ..............................................................................................................................4 2.1.2.1 Vibriosis (Vibrio sp.)........................................................................................................4 2.1.2.1.1 Description of agent.........................................................................................4 2.1.2.1.2 Geographical distribution ................................................................................4 2.1.2.1.3 Short description of clinical signs....................................................................4 2.1.2.1.4 Indications of impact/severity at stock level....................................................4 2.1.2.1.5 Control/preventive measures ...........................................................................4 2.1.2.1.6 Temporal trends...............................................................................................4 2.1.2.1.7 Other host species............................................................................................5 2.1.2.2 Furunculosis (Aeromonas salmonicida) ...........................................................................5 2.1.2.2.1 Description of agent.........................................................................................5 2.1.2.2.2 Geographical distribution ................................................................................5 2.1.2.2.3 Short description of clinical signs....................................................................5 2.1.2.2.4 Indications of impact/severity at stock level....................................................5 2.1.2.2.5 Control/preventive measures ...........................................................................5 2.1.2.2.6 Temporal trends...............................................................................................5 2.1.2.2.7 Other host species............................................................................................6 2.1.2.3 Piscirickettsiosis (Piscirickettsia salmonis)......................................................................6 2.1.2.3.1 Description of agent.........................................................................................6 2.1.2.3.2 Geographical distribution ................................................................................6 2.1.2.3.3 Short description of clinical signs....................................................................6 2.1.2.3.4 Indications of impact/severity at stock level....................................................6 2.1.2.3.5 Control/preventive measures ...........................................................................6 2.1.2.3.6 Temporal trends...............................................................................................6 2.1.2.3.7 Other host species............................................................................................6 i Table of Contents Section Page 2.1.3 Parasitic diseases...............................................................................................................................7 2.1.3.1 Sea lice (Lepeophtheirus salmonis)..................................................................................7 2.1.3.1.1 Description of agent.........................................................................................7 2.1.3.1.2 Geographical distribution ................................................................................7 2.1.3.1.3 Short description of clinical signs....................................................................7 2.1.3.1.4 Indications of impact/severity at stock level....................................................7 2.1.3.1.5 Control/preventive measures ...........................................................................7 2.1.3.1.6 Temporal trends...............................................................................................8 2.1.3.1.7 Other host species............................................................................................8 2.2 Other salmonids...............................................................................................................................................8 2.2.1 Viral diseases.....................................................................................................................................8 2.2.1.1 Viral Haemorrhagic Septicaemia (VHS) ..........................................................................8 2.2.1.1.1 Description of agent.........................................................................................8 2.2.1.1.2 Geographical distribution ................................................................................8 2.2.1.1.3 Short description of clinical signs....................................................................9 2.2.1.1.4 Indications of impact/severity at stock level....................................................9 2.2.1.1.5 Control/preventive measures ...........................................................................9 2.2.1.1.6 Temporal trends...............................................................................................9 2.2.1.1.7
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Oryzias Latipes)
    Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes) Ryo Furusawa, Yasushi Okinaka,* and Toshihiro Nakai Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739- 8528, Japan æfAuthor for correspondence: Yasushi Okinaka. Telephone: +8 1-82-424-7978. Fax: +81- 82-424-79 1 6. E-mail: [email protected] Running title: Betanodavirus infection in medaka Key words: medaka, betanodavirus, model fish, model virus, freshwater fish Total number of words; text (3532 words), summary (230 words) Total number of figures; 6 figures Total number of tables; 0 table SUMMARY Betanodaviruses, the causal agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. Because the genomes are the smallest and simplest among viruses, betanodaviruses are well studied using a genetic engineering system as model viruses, like the cases with the insect viruses, alphanodaviruses, the other members of the family Nodaviridae. However, studies of virus-host interactions have been limited because betanodaviruses basically infect marine fish at early developmental stages (larval and juvenile). These fish are only available for a few months of the year and are not suitable for the construction of a reversed genetics system. To overcome these problems, several freshwater fish species were tested for their susceptibility to betanodaviruses. We have demonstrated that adult medaka (Oryzias latipes), a well-known model fish, is susceptible to both Stripedjack nervous necrosis virus (the type species of the betanodaviruses) and Redspotted grouper nervous necrosis virus which have different host specificity in marine fish species. Infected medaka exhibited erratic swimming and the viruses were specifically localized to the brain, spinal cord, and retina of the infected fish, similar to the pattern of infection in naturally infected marine fish.
    [Show full text]
  • Characterization of Perch Rhabdovirus (PRV) in Farmed Grayling Thymallus Thymallus
    Vol. 106: 117–127, 2013 DISEASES OF AQUATIC ORGANISMS Published October 11 doi: 10.3354/dao02654 Dis Aquat Org FREEREE ACCESSCCESS Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus Tuija Gadd1,*, Satu Viljamaa-Dirks2, Riikka Holopainen1, Perttu Koski3, Miia Jakava-Viljanen1,4 1Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland 2Finnish Food Safety Authority Evira, Neulaniementie, 70210 Kuopio, Finland 3Finnish Food Safety Authority Evira, Elektroniikkatie 3, 90590 Oulu, Finland 4Ministry of Agriculture and Forestry, PO Box 30, 00023 Government, Finland ABSTRACT: Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thy- mallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Viro- logical investigation detected an infection with an unknown rhabdovirus. Based on the entire gly- coprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike.
    [Show full text]
  • Bacterial and Viral Fish Diseases in Turkey
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 14: 275-297 (2014) DOI: 10.4194/1303-2712-v14_1_30 REVIEW Bacterial and Viral Fish Diseases in Turkey Rafet Çagrı Öztürk1, İlhan Altınok1,* 1 Karadeniz Technical University, Faculty of Marine Science, Department of Fisheries Technology Engineering, 61530 Surmene, Trabzon, Turkey. * Corresponding Author: Tel.: +90.462 3778083; Fax: +90.462 7522158; Received 1 January 2014 E-mail: [email protected] Accepted 28 February 2014 Abstract This review summarizes the state of knowledge about the major bacterial and viral pathogens of fish found in Turkey. It also considers diseases prevention and treatment. In this study, peer reviewed scientific articles, theses and dissertations, symposium proceedings, government records as well as recent books, which published between 1976 and 2013 were used as a source to compile dispersed literature. Bacterial and viral disease problems were investigated during this period in Turkey. Total of 48 pathogen bacteria and 5 virus species have been reported in Turkey. It does mean that all the bacteria and virus present in fish have been covered since every year new disease agents have been isolated. The highest outbreaks occurred in larval and juvenile stages of the fish. This article focused on geographical distribution, host range, and occurrence year of pathogenic bacteria and virus species. Vibriosis, Furunculosis, Motile Aeromonas Septicemia, Yersiniosis, Photobacteriosis and Flavobacteriosis are among the most frequently reported fish diseases. Meanwhile, Vagococcus salmoninarum, Renibacterium salmoninarum, Piscirickettsia salmonis and Pseudomonas luteola are rarely encountered pathogens and might be emerging disease problems. Finally, the current status in fish diseases prevention and their treatment strategies are also addressed.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]
  • Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
    Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives.
    [Show full text]
  • Viral Nanoparticles and Virus-Like Particles: Platforms for Contemporary Vaccine Design Emily M
    Advanced Review Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design Emily M. Plummer1,2 and Marianne Manchester2∗ Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus-like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus-based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. 2010 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 INTRODUCTION are normally associated with virus infection. PAMPs can be recognized by Toll-like receptors (TLRs) and he goal of vaccination is to initiate a strong other pattern-recognition receptors (PRRs) which Timmune response that leads to the development are present on the surface of host cells.4 The of lasting and protective immunity. Vaccines against intrinsic properties of multivalent display and highly pathogens are the most common, but approaches to ordered structure present in many pathogens also develop vaccines against cancer cells, host proteins, or 1,2 facilitate recognition by PAMPs, resulting in increased small molecule drugs have been developed as well.
    [Show full text]
  • Viral Hemorrhagic Septicemia Virus
    Viral Hemorrhagic Septicemia Virus Figure 1 microscopic look at viral hemorrhagic septicemia courtesy of http://cpw.state.co.us/learn/Pages/AAHLEmergingDiseasesIssues.aspx Jared Remington Aquatic Invasion Ecology University of Washington Fish 423 A Autumn 2014 December 5, 2014 Classification conducted by examining infected fish. Living specimens will appear either lethargic or over Order: Mononegavirales active, making sporadic movements, such as circles or corkscrews. Deceased specimens can Family: Rhabdoviridae appear dark in color, have pale gills, bloated Genus: Novirhabdovirus abdomen, fluid filled body cavity, bulging eyes, and most notably external and internal Species: Undescribed hemorrhaging or bleeding. External hemorrhaging will typically take place around Known by the common name Viral the base of fins, eyes, gills, and the skin. Internal Hemorrhagic Septicemia Virus, or in Europe hemorrhaging can be found in the intestines, air Egtved disease, you may find it abbreviated as bladder, kidneys, liver, heart, and flesh VHSV, VHSv, or VHS. Viral Hemorrhagic (McAllister, 1990; Marty et al., 1998; Kipp& Septicemia is part of the family Rhabdoviridae Ricciardi, 2006; Bartholomew, et al. 2011). which also includes the famous rabies virus which can affect humans and other mammals. Not to worry VHS does cannot infect humans, handling or consuming and infected fish will not result in contraction of the virus. The virus is exclusive to fishes. VHS is related to another famous fish killer, the infectious hematopoietic necrosis virus, both are part of the genus Novirhabdovirus. Identification Much like other rhabdoviruses, viral hemorrhagic septicemia (VHS) contains RNA within a bullet/cylindrical shaped shell made of Photo contains gizzard shad infected with viral glycoprotein G, the virus ranges from about 170- hemorrhagic septicemia, visual external 180nm long and 60-70nm wide (Elsayad et al.
    [Show full text]
  • Betanodavirus and VER Disease: a 30-Year Research Review
    pathogens Review Betanodavirus and VER Disease: A 30-year Research Review Isabel Bandín * and Sandra Souto Departamento de Microbioloxía e Parasitoloxía-Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] * Correspondence: [email protected] Received: 20 December 2019; Accepted: 4 February 2020; Published: 9 February 2020 Abstract: The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control. Keywords: nervous necrosis virus (NNV); viral encephalopathy and retinopathy (VER); virus–host interaction; epizootiology; diagnostics; control 1. Introduction Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN). The disease was first described at the end of the 1980s in Australia and in the Caribbean [1–3], and has since caused a great deal of mortalities and serious economic losses in a variety of reared marine fish species, but also in freshwater species worldwide.
    [Show full text]
  • Fecal Virome Analysis of Three Carnivores Reveals a Novel
    Conceição-Neto et al. Virology Journal (2015) 12:79 DOI 10.1186/s12985-015-0305-5 RESEARCH Open Access Fecal virome analysis of three carnivores reveals a novel nodavirus and multiple gemycircularviruses Nádia Conceição-Neto1, Mark Zeller1, Elisabeth Heylen1, Hanne Lefrère1, João Rodrigo Mesquita2 and Jelle Matthijnssens1* Abstract Background: More knowledge about viral populations in wild animals is needed in order to better understand and assess the risk of zoonotic diseases. In this study we performed viral metagenomic analysis of fecal samples from three healthy carnivores: a badger (Meles meles), a mongoose (Herpestes ichneumon) and an otter (Lutra lutra)fromPortugal. Results: We detected the presence of novel highly divergent viruses in the fecal material of the carnivores analyzed, such as five gemycircularviruses. Four of these gemycircularviruses were found in the mongoose and one in the badger. In addition we also identified an RNA-dependent RNA polymerase gene from a putative novel member of the Nodaviridae family in the fecal material of the otter. Conclusions: Together these results underline that many novel viruses are yet to be discovered and that fecal associated viruses are not always related to disease. Our study expands the knowledge of viral species present in the gut, although the interpretation of the true host species of such novel viruses needs to be reviewed with great caution. Keywords: Virome, Gemycircularvirus, Metagenomics, viral discovery Background coronavirus pandemic originated from wildlife, where With the advent of next generation sequencing tech- bats where identified as the reservoir and civets as an niques, samples from a wide range of animal species intermediate host [7, 8].
    [Show full text]
  • Immune Response Modulation Upon Sequential Heterogeneous Co
    Fish and Shellfish Immunology 88 (2019) 375–390 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Immune response modulation upon sequential heterogeneous co-infection T with Tetracapsuloides bryosalmonae and VHSV in brown trout (Salmo trutta) ∗ Bartolomeo Gorgoglionea,b, ,1, Nick G.H. Taylorb, Jason W. Hollanda,2, Stephen W. Feistb, ∗∗ Christopher J. Secombesa, a Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Scotland, UK b CEFAS Weymouth Laboratory, The Nothe, Weymouth, Dorset, England, UK ARTICLE INFO ABSTRACT Keywords: Simultaneous and sequential infections often occur in wild and farming environments. Despite growing Co-infections awareness, co-infection studies are still very limited, mainly to a few well-established human models. European Host-pathogen interaction salmonids are susceptible to both Proliferative Kidney Disease (PKD), an endemic emergent disease caused by Response to pathogens the myxozoan parasite Tetracapsuloides bryosalmonae, and Viral Haemorrhagic Septicaemia (VHS), an OIE no- Fish immunology tifiable listed disease caused by the Piscine Novirhabdovirus. No information is available as to how their immune Salmonids system reacts when interacting with heterogeneous infections. A chronic (PKD) + acute (VHS) sequential co- Proliferative kidney disease Myxozoa infection model was established to assess if the responses elicited in co-infected fish are modulated, when Piscine Novirhabdovirus compared to fish with single infections. Macro- and microscopic lesions were assessed after the challenge, and Histopathology infection status confirmed by RT-qPCR analysis, enabling the identification of singly-infected and co-infected Th subsets fish. A typical histophlogosis associated with histozoic extrasporogonic T.
    [Show full text]
  • KHV) by Serum Neutralization Test
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Detection of antibodies specific to koi herpesvirus (KHV) by serum neutralization test Cabon, J.; Louboutin, L.; Castric, J.; Bergmann, S. M.; Bovo, G.; Matras, M.; Haenen, O.; Olesen, Niels Jørgen; Morin, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Cabon, J., Louboutin, L., Castric, J., Bergmann, S. M., Bovo, G., Matras, M., ... Morin, T. (2015). Detection of antibodies specific to koi herpesvirus (KHV) by serum neutralization test. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 115-115). [O-107] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]