Viral Hemorrhagic Septicemia Virus

Total Page:16

File Type:pdf, Size:1020Kb

Viral Hemorrhagic Septicemia Virus Viral Hemorrhagic Septicemia Virus Figure 1 microscopic look at viral hemorrhagic septicemia courtesy of http://cpw.state.co.us/learn/Pages/AAHLEmergingDiseasesIssues.aspx Jared Remington Aquatic Invasion Ecology University of Washington Fish 423 A Autumn 2014 December 5, 2014 Classification conducted by examining infected fish. Living specimens will appear either lethargic or over Order: Mononegavirales active, making sporadic movements, such as circles or corkscrews. Deceased specimens can Family: Rhabdoviridae appear dark in color, have pale gills, bloated Genus: Novirhabdovirus abdomen, fluid filled body cavity, bulging eyes, and most notably external and internal Species: Undescribed hemorrhaging or bleeding. External hemorrhaging will typically take place around Known by the common name Viral the base of fins, eyes, gills, and the skin. Internal Hemorrhagic Septicemia Virus, or in Europe hemorrhaging can be found in the intestines, air Egtved disease, you may find it abbreviated as bladder, kidneys, liver, heart, and flesh VHSV, VHSv, or VHS. Viral Hemorrhagic (McAllister, 1990; Marty et al., 1998; Kipp& Septicemia is part of the family Rhabdoviridae Ricciardi, 2006; Bartholomew, et al. 2011). which also includes the famous rabies virus which can affect humans and other mammals. Not to worry VHS does cannot infect humans, handling or consuming and infected fish will not result in contraction of the virus. The virus is exclusive to fishes. VHS is related to another famous fish killer, the infectious hematopoietic necrosis virus, both are part of the genus Novirhabdovirus. Identification Much like other rhabdoviruses, viral hemorrhagic septicemia (VHS) contains RNA within a bullet/cylindrical shaped shell made of Photo contains gizzard shad infected with viral glycoprotein G, the virus ranges from about 170- hemorrhagic septicemia, visual external 180nm long and 60-70nm wide (Elsayad et al. 2006; McAllister 1990; Kipp & Ricciardi 2006). hemorrhaging. Photo credit to Dr. P. Bowser, Aquatic Animal Health Program, CVM, Cornell University. http://www.cfsph.iastate.edu/DiseaseInfo/disease- images.php?name=viral-hemorrhagic- septicemia&lang=en Figure 2 photo illustration of a Novirhabdovirus showing the RNA chain and glycoprotein shell. Courtesy of the Swiss Institute of Bioinformatics http://viralzone.expasy.org/all_by_species/76.html Visual identification can be challenging given the size of VHS, most identification is Photo: rainbow trout with internal signs of viral no mass mortality events, and how it can persist hemorrhagic septicemia, discoloration in the liver, in a population and so many individuals can become carriers of the disease. hemorrhaging in the flesh and intestines, and pale Life cycle gills. Photo by T. Håstein http://www.dfo- When VHS comes in contact with a potential mpo.gc.ca/science/enviro/aquaculture/rd2013/rdhealt host cell the glycoprotein G matches/binds with h-eng.html an entry molecule on the host cellular membrane receptor. The host cell then brings the virus into “Life” history the cell in a process called endocytosis. Then the Viral hemorrhagic septicemia is passed virus membrane and vesicle membrane (of the on to other fish through water. Fish that come in host cell) fuse together. This is when the RNA contact with infected bodily fluids like excretory strands are released into the cytoplasm. The host waste such as urine or feces, or reproductive cell then creates mRNA which is then replicated fluids such as sperm and ovarian fluid, are likely into RNA. This RNA then binds with other to become infected. The virus may also be proteins forming a bud which eventually passed on through physical contact with an separates thus forming a new virus in search of a infected fish touching non infected fish. new host (SIB, 2011). Predatory fish can also become infected through Environmental optima and tolerance consumption of infected fish or a carrier of the disease. The virus can enter a fish through the The optimum temperatures for gills, digestive tract, or an open wound (CFSPH replication is 14-15 degrees Celsius, and the 2007) optimum pH for replication is 7.4-7.8 (Kipp et al. 2014). It was found that VHS does not It is possible for other species to become carriers replicate effectively at temperatures greater than of the disease. Such as predatory birds, which 18 degrees Celsius (Hendrick et al. 2003). ingest infected fish and can transport the virus to Reproduction is also low at temperatures below different locations (CFSPH 2007). Even fresh 6 degrees Celsius. Reproduction stops and VHS water turtles such as the red-eared slider, becomes inactive at temperatures above 20 common snapping turtles, and the yellow-bellied degrees Celsius (De Kinkelin et al., Bernard et slider 10-20 days after consuming infected fish al., McAllister, cited by Kipp et al. 2014). Fish may carry the virus and excrete it into the water; mortality as a result of VHS is highest in where it has the potential of finding a new host temperatures ranging from 3-12 degrees Celsius (Goodwin & Merry, 2011). (McAllister, cited by Kipp et al. 2014). It was The most prolific and problematic carrier of the discovered that VHS can persist in fresh water disease are other fish that do not show signs of from anywhere between 28 to 35 days, and up to the disease, do not die, and in turn become a year if it is in filtered fresh water. VHS can lifelong carriers of the disease passing on the remain infective even longer if present in virus to their fellow cohorts. ovarian fluid (MDTAA, 2009). The incubation period for VHS at warm water Finding the optimum temperature in which VHS temperatures is 1-2 weeks, and 3-4 with cold can replicate can help us establish which bodies water temperatures. Also mortality has been of water are prone to the establishment of VHS. observed in Pacific Herring 4-6 days after being This would help in prioritizing prevention introduced to the virus (CFSPH, 2007). It was methods to stop the spread of the virus into determined by Gary Marty and his associates in favorable habitat. Upper and lower extremes of 1998 that 10-15% of Pacific herring showed no the VHS replication can also help us rule out signs of VHS yet tested positive, they then potential areas where VHS cannot establish, discovered that the herring only expressed the enabling us to send resources elsewhere. The VHS symptoms when under stress. This is why necessity for cold water is one reason why it is populations can have the disease yet experience found in the Northern hemisphere and not in the Southern tropical ocean systems. Biotic associations There are over 82 different fish species affected by viral hemorrhagic septicemia. 23 species in the Great Lake region of the United States have witnessed large scale die offs due to viral hemorrhagic septicemia (MDTAA, 2009). On the Pacific Coast of the United States and Canada die offs of Sardines and herring have been recorded (Marty et al. 1998). Fish species affected by this virus can be found in marine or fresh water across the entire globe. Many of these species are extremely valuable either commercially, recreationally, or ecologically. is an old lineage of VHS present in some mainland lakes of Germany and Denmark. Genotype 1d is present in rainbow trout reared in fresh or brackish water along Norway and Finland. Genotype 1e is found in parts of the Black Sea (He, 2014). In general VHS 1 is highly virulent in rainbow trout and can have a high mortality rate which can reach up to 100% in trout fry (CFSPH, cited by Kipp et al. 2014). The geographic range for VHS genotype 2 is the Baltic Sea, found mostly in herring, cod, and sprat. This genotype has not been associated with any disease outbreaks and or die-offs (Emmenegger et al. 2013). VHS genotype 3 is found in the marine waters of Figure 5 lists all of the currently known fish species the North Sea and North Atlantic off the coasts that have at one time tested positive for VHS. VHS of Norway and Great Britain. This strain of VHS only infects marine species such as turbot and affect 13 orders of both marine and fresh water rainbow trout raised in marine net pens species. This table is from the Manual of Diagnostic (Emmenegger et al. 2013). Tests for Aquatic Animals. There are several sub classes of type 4 VHS http://web.oie.int/eng/normes/fmanual/2.3.09.VHS.p typically referred to as the North American strain. First, type 4a is found in the Pacific df Ocean from Alaska to California and in parts of Japan and Korea. Type 4b is found in the Great Geographic distribution Lakes and several other mid-west lakes and rivers. Type 4c is found in the North Atlantic There are four types of viral along the Eastern Canadian coast (He et al., hemorrhagic septicemia, based off of geographic 2014). Genotype 4 the North American strain location, types 1 and 4 are further broken down can be highly virulent in herring, sardines, and into subdivision genotype 1 is broken down into other fresh water species with a mortality rate subtype a-e, and type 4 is broken down into a-c. anywhere from 20-80%. However it is less VHS genotype 1a is covers the terrestrial water virulent in salmonids, compared to the European bodies of Europe, this subtype represents the type 1 (Follett et al., 1997; CFSPH, 2003; initial discovery of VHS in the European Emmenegger et al. 2013; Kipp et al. 2014). aquaculture industry. Type 1a likely diverged from a marine source 60 years prior to its discovery (Kim et al. 2014). Genotype 1b is associated with the marine area of the Southwest Baltic Sea and into the North Sea.
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Susquhanna River Fishing Brochure
    Fishing the Susquehanna River The Susquehanna Trophy-sized muskellunge (stocked by Pennsylvania) and hybrid tiger muskellunge The Susquehanna River flows through (stocked by New York until 2007) are Chenango, Broome, and Tioga counties for commonly caught in the river between nearly 86 miles, through both rural and urban Binghamton and Waverly. Local hot spots environments. Anglers can find a variety of fish include the Chenango River mouth, Murphy’s throughout the river. Island, Grippen Park, Hiawatha Island, the The Susquehanna River once supported large Smallmouth bass and walleye are the two Owego Creek mouth, and Baileys Eddy (near numbers of migratory fish, like the American gamefish most often pursued by anglers in Barton) shad. These stocks have been severely impacted Fishing the the Susquehanna River, but the river also Many anglers find that the most enjoyable by human activities, especially dam building. Susquehanna River supports thriving populations of northern pike, and productive way to fish the Susquehanna is The Susquehanna River Anadromous Fish Res- muskellunge, tiger muskellunge, channel catfish, by floating in a canoe or small boat. Using this rock bass, crappie, yellow perch, bullheads, and method, anglers drift cautiously towards their toration Cooperative (SRFARC) is an organiza- sunfish. preferred fishing spot, while casting ahead tion comprised of fishery agencies from three of the boat using the lures or bait mentioned basin states, the Susquehanna River Commission Tips and Hot Spots above. In many of the deep pool areas of the (SRBC), and the federal government working Susquehanna, trolling with deep running lures together to restore self-sustaining anadromous Fishing at the head or tail ends of pools is the is also effective.
    [Show full text]
  • Characterization of Perch Rhabdovirus (PRV) in Farmed Grayling Thymallus Thymallus
    Vol. 106: 117–127, 2013 DISEASES OF AQUATIC ORGANISMS Published October 11 doi: 10.3354/dao02654 Dis Aquat Org FREEREE ACCESSCCESS Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus Tuija Gadd1,*, Satu Viljamaa-Dirks2, Riikka Holopainen1, Perttu Koski3, Miia Jakava-Viljanen1,4 1Finnish Food Safety Authority Evira, Mustialankatu 3, 00790 Helsinki, Finland 2Finnish Food Safety Authority Evira, Neulaniementie, 70210 Kuopio, Finland 3Finnish Food Safety Authority Evira, Elektroniikkatie 3, 90590 Oulu, Finland 4Ministry of Agriculture and Forestry, PO Box 30, 00023 Government, Finland ABSTRACT: Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thy- mallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Viro- logical investigation detected an infection with an unknown rhabdovirus. Based on the entire gly- coprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike.
    [Show full text]
  • Muskellunge: a Michigan Resource
    Muskellunge: A Michigan Resource The muskellunge, or musky, is a tremendous game fish native to the lakes and streams of Michigan. The musky also is a fish of many myths regarding its’ appetite, size and elusiveness. The stories about muskies portray a fish feeding on anything that moves and can fit down their tooth-filled jaws…yet believed to be so difficult to catch that the musky is called “the fish of 10,000 casts.” Here, we briefly explore the mythical, legendary and genuine muskellunge. IDENTIFICATION Muskellunge are members of the esocid family of fish, which also includes the northern pike. This particular family of fish, technically called Esocidae, share similar characteristics such as long thin bodies and soft-rayed fins. These fish have large mouths full of sharp teeth. Muskellunge and pike are identified as piscivores, which means their primary diet is fish. Though similar in appearance, muskellunge tend to achieve larger sizes than northern pike. The musky’s coloration is one of dark stripes, or dark spots, on a light background. Northern pike, in contrast, usually have light, bean-shaped spots on a dark background. The shape of the tail fin is a good method of identification as a musky’s is pointed and the tail fin of a pike is rounded. Another key characteristic for identification is the presence or absence of scales on the cheeks and gill covers. Muskies only have scales on the upper half of the cheek and gill cover. Like the muskellunge, the northern pike gill cover has scales on the upper half, but the cheek is fully scaled.
    [Show full text]
  • Opinion Why Do Fish School?
    Current Zoology 58 (1): 116128, 2012 Opinion Why do fish school? Matz LARSSON1, 2* 1 The Cardiology Clinic, Örebro University Hospital, SE -701 85 Örebro, Sweden 2 The Institute of Environmental Medicine, Karolinska Institute, SE-171 77 Stockholm, Sweden Abstract Synchronized movements (schooling) emit complex and overlapping sound and pressure curves that might confuse the inner ear and lateral line organ (LLO) of a predator. Moreover, prey-fish moving close to each other may blur the elec- tro-sensory perception of predators. The aim of this review is to explore mechanisms associated with synchronous swimming that may have contributed to increased adaptation and as a consequence may have influenced the evolution of schooling. The evolu- tionary development of the inner ear and the LLO increased the capacity to detect potential prey, possibly leading to an increased potential for cannibalism in the shoal, but also helped small fish to avoid joining larger fish, resulting in size homogeneity and, accordingly, an increased capacity for moving in synchrony. Water-movements and incidental sound produced as by-product of locomotion (ISOL) may provide fish with potentially useful information during swimming, such as neighbour body-size, speed, and location. When many fish move close to one another ISOL will be energetic and complex. Quiet intervals will be few. Fish moving in synchrony will have the capacity to discontinue movements simultaneously, providing relatively quiet intervals to al- low the reception of potentially critical environmental signals. Besides, synchronized movements may facilitate auditory grouping of ISOL. Turning preference bias, well-functioning sense organs, good health, and skillful motor performance might be important to achieving an appropriate distance to school neighbors and aid the individual fish in reducing time spent in the comparatively less safe school periphery.
    [Show full text]
  • Cowanesque Lake Tioga County
    Pennsylvania Fish & Boat Commission Biologist Report Cowanesque Lake Tioga County 2017 Crappie Survey Area 4 biologists used trap nets to sample crappies at Cowanesque Lake during the week of May 1, 2017. Our goal was to determine how the Crappie population responded to Alewife invasion. We set 9 trap nets that caught 619 Black Crappie and 30 White Crappie. The Black Crappie ranged from 2.0 to 14.9 inches long (Figure 1). Most were small but 18 individuals (3%) exceeded 10 inches. Most likely, the presence of Alewife influences Black Crappie size distribution at Cowanesque Lake. When small, Crappies have a hard time competing with Alewife for planktonic food and so grow slowly. This process accounts for the high percentage of small fish in the population. However, once an individual gets large enough to feed on Alewife, its growth rate rapidly increases. This process accounts for the low percentage of large fish in the population. White Crappie was a new species record for Cowanesque Lake. Their population originated from a single Pennsylvania Fish and Boat Commission stocking of 45,000 fingerlings in 2012. They only represented 5% of the total Crappie catch but they were reproducing in the lake. White Crappie growth was faster than Black Crappie growth. Measurements showed that 30% of the White Crappie we caught exceeded 10 inches. The complete list of fish we caught in 2017 is in Table 1. It’s important to note that we only targeted Crappie at Cowanesque Lake so catches of other species are not representative of their populations. That said, the nine trap nets did catch 5 tiger muskellunge ranging from 37.0 to 44.9 inches long.
    [Show full text]
  • Viral Hemorrhagic Septicemia (Vhs) in the Great Lakes
    TRA S ON: DAM ON: I Muskellunge is one of at least 18 fish species TRAT in the Great Lakes affected by VHS. US ILL VIRAL HEMORRHAGIC SEPTICEMIA (VHS) www.miseagrant.umich.edu IN THE GREAT LAKES VHS is a viral disease affecting more than 40 species of marine and freshwater fish in North America. Typically a marine fish virus, most recently VHS has emerged in 18 species of fish in the Great Lakes region of the United States and Canada. The VHS isolate found in the Great Lakes USGS Winton, James Dr. Basin is most similar to the VHS isolate previously found in the Canadian Offices Maritime Region in Eastern North America and has been labeled Type IVb. Ann Arbor University of Michigan Samuel T. Dana Building VHS is not a human pathogen. According to 440 Church St., Suite 4044 What fish species in the Great Lakes Ann Arbor, MI 48109-1041 the Michigan Department of Natural Resources are affected by VHS? (734) 763-1437 (MDNR), there are no concerns with respect to VHS and human health, and the virus VHS has been confirmed in at least 18 fish East Lansing species in the Great Lakes, according to Michigan State University cannot infect humans if they eat fish with the 334 Natural Res. Bldg. pathogen. VHS is, however, an international the MDNR. East Lansing, MI 48824 reportable animal disease that requires (517) 353-9568 VHS has caused large fish kills in freshwater notification of and action by the United States Northeast: drum (lakes Ontario and Erie), muskellunge Department of Agriculture — Animal and (989) 984-1056 (Lake St.
    [Show full text]
  • SNI and SNII) Summary Report Cloverleaf Chain of Lakes Shawano County (WBIC 299000
    2017 Spring Netting (SNI and SNII) Summary Report Cloverleaf Chain of Lakes Shawano County (WBIC 299000) Page 1 Introduction and Survey Objectives W ISCONSIN DNR C ONTACT I NFO. In 2017, the Department of Natural Resources conducted a fyke netting survey of the Cloverleaf Chain of Lakes in order to provide insight and direction for the future fisheries management of the water body. Primary Jason Breeggemann—Fisheries Biologist sampling objectives of this survey are to characterize species composition, relative abundance and size struc- ture. The following report is a brief summary of the activities conducted, general status of fish populations and Elliot Hoffman - Fisheries Technician future management options. Wisconsin Department of Natural Resources Acres: 316 Shoreline Miles: 5.15 Maximum Depth (feet): 52 647 Lakeland Rd. Lake Type: Deep Headwater Public Access: Two Public Boat Launches Shawano, WI 54166 Regulations: 25 panfish of any size may be kept, except 5 or fewer can be bluegill and pumpkinseed over 7”. All other species statewide default regulations. Jason Breeggemann: 715-526-4227; [email protected] Survey Information Water Temperature Number of Site location Survey Dates Target Species Gear Net Nights (°F) Nets Elliot Hoffman: 715-526-4231; Northern Pike, Walleye, Cloverleaf Chain 4/3/2017 - 4/14/2017 42 - 50 Fyke Net 9 85 [email protected] Muskellunge, Panfish Survey Method • The Cloverleaf Chain of Lakes was sampled according to spring netting (SNI and SNII) protocols as outlined in the statewide lake assessment protocol. The primary objective for this sampling period is to count and measure adult walleye and muskellunge.
    [Show full text]
  • Bacterial and Viral Fish Diseases in Turkey
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 14: 275-297 (2014) DOI: 10.4194/1303-2712-v14_1_30 REVIEW Bacterial and Viral Fish Diseases in Turkey Rafet Çagrı Öztürk1, İlhan Altınok1,* 1 Karadeniz Technical University, Faculty of Marine Science, Department of Fisheries Technology Engineering, 61530 Surmene, Trabzon, Turkey. * Corresponding Author: Tel.: +90.462 3778083; Fax: +90.462 7522158; Received 1 January 2014 E-mail: [email protected] Accepted 28 February 2014 Abstract This review summarizes the state of knowledge about the major bacterial and viral pathogens of fish found in Turkey. It also considers diseases prevention and treatment. In this study, peer reviewed scientific articles, theses and dissertations, symposium proceedings, government records as well as recent books, which published between 1976 and 2013 were used as a source to compile dispersed literature. Bacterial and viral disease problems were investigated during this period in Turkey. Total of 48 pathogen bacteria and 5 virus species have been reported in Turkey. It does mean that all the bacteria and virus present in fish have been covered since every year new disease agents have been isolated. The highest outbreaks occurred in larval and juvenile stages of the fish. This article focused on geographical distribution, host range, and occurrence year of pathogenic bacteria and virus species. Vibriosis, Furunculosis, Motile Aeromonas Septicemia, Yersiniosis, Photobacteriosis and Flavobacteriosis are among the most frequently reported fish diseases. Meanwhile, Vagococcus salmoninarum, Renibacterium salmoninarum, Piscirickettsia salmonis and Pseudomonas luteola are rarely encountered pathogens and might be emerging disease problems. Finally, the current status in fish diseases prevention and their treatment strategies are also addressed.
    [Show full text]
  • Aquatic Animal Viruses Mediated Immune Evasion in Their Host T ∗ Fei Ke, Qi-Ya Zhang
    Fish and Shellfish Immunology 86 (2019) 1096–1105 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Aquatic animal viruses mediated immune evasion in their host T ∗ Fei Ke, Qi-Ya Zhang State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China ARTICLE INFO ABSTRACT Keywords: Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host Aquatic animal virus and virus would determine the occurrence of diseases. The host will fight against virus infection with various Immune evasion responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also Virus-host interactions develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review Virus targeted molecular and pathway the research advances on virus mediated immune evasions to host responses containing interferon response, NF- Host responses κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications. 1. Introduction Various antiviral responses have been revealed [19–22]. How they are overcome by different viruses? Here, we select twenty three strains Aquatic viruses have been an essential part of the biosphere, and of aquatic animal viruses which represent great harms to aquatic ani- also a part of human and aquatic animal lives.
    [Show full text]
  • An Automatic Clinical Decision Support System Intended for MRI Brain
    15(1):01(2021) Journal of fisheriessciences.com E-ISSN 1307-234X Panagiotis Berillis* @2020 www.fisheriessciences.com University of Thessaly, Department of Ichthyology and Aquatic Environment, Larisa, Greece Editorial Editorial on Overview of an Escox: Patricia Berillis* Department of Fish Nutrition Lab, Aquaculture Division, Marine Biology Branch, Al-Azhar University, Cairo, Egypt Received: 02.01.2021 / Accepted: 17.01.2021 / Published online: 28.01.2021 What does a pike look like? Muskellunge: This muskellunge is often shortened to muskie or musky, it is specie of large fresh water fish its Nothern pike: Northern pike are most oftenly olive green, native is North America. This is the biggest individual concealing from yellow to white along the gut. The flank from the pike family. rosy.is set apart with short, light bar-like spots and a few a few American Pickerel: In this we have two subspecies dull spots on the balances. Now and again, the blades are Redfin pickerel, E. americanus Does pike bite humans? Grass pickerel, Esox americanus vermiculatus While two or three reports have embroiled Northern pike Both subspecies are native to North America. They are not in assaults on swimmers, these fish truly represent no risk to be mistaken for their forceful partner the Northern pike. to people (except if you get your fingers trapped in their mouths). The story is diverse for the minuscule fishes they Amur Pike: this pike is also known as blackspotted pike, go after. These fishes are been known to chase in packs, this amur pike is from Amur river, it is closely related to practically like wolves.
    [Show full text]
  • Muskellunge Esox Masquinongy
    Muskellunge Esox masquinongy Physical Features Habitat and Food Muskies are the largest members of the pike Underwater vegetation along with rock piles family and are very similar in and fallen timber are a favorite of these large appearance to Northern Pike. General features fish. The diet of the muskellunge consists of include an elongated body, flat head and dor- fish, crayfish, frogs, ducklings, snakes, musk- sal, pelvic and anal fins set far back on the rats, mice, other small mammals, and small body. Distinguishing characteristics birds. This exceptional predator depends include vertical dark bars on sides, scales only primarily on its acute vision to capture its prey. on top side of cheek, and six to eight pores on The muskie’s large mouth is lined with many each side of lower jaw. large and hair-like teeth used to penetrate and aid in swallowing its prey head first. Spawning Muskies spawn when the water temperature Angling Tips increases to 50 o and 59o F, normally from These large predators are very elusive and hard mid-April to late May. Female muskies lay to catch. Try large buck-tail spinners as well 22,000 to 180,000 eggs in shallow, soft- as large sucker minnows on or near weed beds. bottomed bays that are covered in dead vegeta- Muskies are valued as a trophy fish because of tion. Spawning lasts for several days but rarely the challenge they present anglers with more than a week. No parental care is taken acrobatic leaping abilities and extreme after fertilization. These fish return to the same strength.
    [Show full text]