Genesis of a Podzol Sequence on the West Coast of Vancouver Island

Total Page:16

File Type:pdf, Size:1020Kb

Genesis of a Podzol Sequence on the West Coast of Vancouver Island GENESIS OF A PODZOL SEQUENCE ON THE WEST COAST OF VANCOUVER ISLAND by SEEWANT BHOOJEDHUR B.S.A., The University of British Columbia, 1968 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of SOIL SCIENCE We accept this thesis as conforming to the required standard. THE UNIVERSITY OF BRITISH COLUMBIA September 1969 ii ABSTRACT A study was undertaken on the pedogenesis of a Podzol sequence of soils on the West Coast of Vancouver Island. The area is one of abundant rainfall and rather luxuriant vegetation. The soils occur on relatively level topography (glacial fluvial deposits) and have varying degrees of development of placic (pan) horizons. The objectives of the study included characterization, classification and genesis of the soils, based on physical, chemical and mineralogical investigations. Four soils were chosen for the study. Three of the soils comprisedfhe Ucluelet soil series, while one soil was a member of the Wreck Bay soil series. The soils were described morphologically, sampled and selected analyses were performed on the major genetic horizons. More detailed analyses, including differential thermal analyses, were conducted on the placic materials. The soils were classified into the Canadian Classification Scheme as as follows: Ucluelet I Placic Ferro-Humic Podzol Ucluelet II Orthic Humo-Ferric Podzol Ucluelet III Placic Humo-Ferric Podzol Wreck Bay Gleyed Placic Ferro-Humic Podzol Analyses of the placic materials indicated, that although the material appeared vitreous in the field, no crystallinity could be deterntined by X-ray diffraction. It appeared that the major component of the placic horizon is composed of iron and organic matter, probably in some intimate association. It was observed that the placic horizon could form in materials of initially low iron contents. iii From the foregoing observations the following chronosequence of soil development appears to be justified: Orthic Humo-Ferric Podzol > Placic Humo-Ferric Podzol (Ucluelet II) (Ucluelet III) > Placic Ferro-Humic Podzol •> Gleyed Placic Ferro- (Ucluelet I) Humic Podzol (Wreck Bay) The differences in pedogenic age of the three Ucluelet sites can be attributed to degrees of "churning" by the trees at these sites. iv In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission may be granted by the Head of the Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ( cP The University of British Columbia, Vancouver 168, B.C, Canada. Date 3vA /9i? V ACKNOWliBGMENTS The study was made possible by a scholarship awarded by the Canadian International Development Agency. Particular acknowledgment is offered to Dr. L.M. Lavkulich, Assistant Professor, Department of Soil Science for suggesting the nature of the research, for assistance, encouragement and supervision during its progress. The author wishes to express his gratitude to the members of the Ctommittee and the members and staff of the Department of Soil Science. Thanks are extended to members of the Soil Survey Division, Canada Department of Agriculture, Vancouver. vi TABLE OF CONTENTS Page INTRODUCTION LITERATURE REVIEW 1 MATERIALS AND METHODS 22 RESULTS AND DISCUSSION 38 CHARACTERIZATION OF PLACIC MATERIAL 77 SUMMARY AND CONCLUSIONS 84 REFERENCES 88 vii TABLES TABLE PAGE I Profile Description of Site I 30 II Profile Description of Site II 31 III Profile Description of Site III 32 IV Profile Description of Site IV 33 V Selected Physical Properties of the Ucluelet and Wreck Bay Series 40 VI Selected Soil Water Parameters 43 VII Selected Chemical Data 51 VIII (a) Selected Extractable Constituents 54 VIII (b) Selected Extractable Constituents 55 IX Cation Exchange Properties 61 X pH-Dependent Cation Exchange and Lime Potential 63 XI Elemental Analysis on the <2 mm soil 65 XII Elemental Analysis on the <2 u Clay Fraction 66 XIII Mineral Distribution in the Ucluelet I Soil 70 XIV Mineral Distribution in the Ucluelet II Soil 71 XV Mineral Distribution in the Ucluelet III Soil 72 XVI Mineral Distribution in the Wreck Bay soil 73 XVII Selected Chemical Comparisons of the Composition of the Pan to the Soil Matrix 80 viii FIGURES FIGURE PAGE 1 Vegetation and Soil at the Ucluelet Site 23 2 Vegetation and Soil at the Wreck Bay Site 24 3 Water Retention Curves for Ucluelet I 45 4 Water Retention Curves for Ucluelet II 46 5 Water Retention Curves for Ucluelet III 47 6 Water Retention Curves for Wreck Bay 48 7 Total Water Storage Capacity for the Ucluelet (Sites I-III) and Wreck Bay (Site IV) 49 8 Photographs of Placic Material at a Ucluelet Site 79 9 Differential Thermal Curves of (1) Ucluelet Pan and (2) Wreck Bay Pan 82 i INTRODUCTION Research in pedology facilitates an understanding of soil properties and therefore is important in developing sound land use practices. Many pedological studies of Podzol soils have been made, particularly in coastal regions of Eastern and Western Canada, and some of these have had iron pans present. On the. west coast of Vancouver Island, there are extensive areas of Podzol soils that have not been studied in any detail. These Soils are heavily forested and some have iron pans present which are known to affect land use and plant growth. This study is concerned with several of these soils. The soils studied occur on the Ucluelet lowland and the objectives of the work were: 1. To determine selected physical, chemical and mineralogical properties of four soils. 2. To classify the soils in the Canadian System of Soil Classification. 3. To correlate the above results with develop• ment of these soils. U. Attempt to relate the soil properties to plant growth. LITERATURE REVIEW The modern concept of soil as a natural body was not recognized until 1879 when Dokuchaev became the first to appreciate the complexity of natural agencies responsible for the processes of soil formation, and when Sibertsev integrated these natural agencies and established their differential role in soil formation. Prior to Dokuchaev, credit must be given to pioneer soil scientists like Berzelius, Liebig, Thaer, Davy and Schubler for their views on soil as a medium for plant growth; to the geologists, Sprengel, Hausman, Gotta, Werner and others who though recognizing some of the soil forming agencies, failed to recognize the harmony of these factors in building up the soil; and finally, to Fallou (1855) who stressed his point of view that soil is a formation by itself and is not simply unconsolidated rock. Podzol as a kind of soil Podzol soils are prevalent under cool and humid conditions with an annual rainfall varying from 50 to 75 cm and a mean annual temperature of about 4°C. Podzols cover the largest habitable area of the earth's surface (Joffe, 1949); extending from the sub-arctic region through the temperate zone, to a few degrees north of the Mediterranean region in Europe, to about the 50° parallel north latitude in Asia and North America. They are generally freely-drained, acid, sandy soils with strongly differentiated profiles. They do not seem to develop in soils that are saturated with water throughout the year. The natural vegetation may be heath, woodland or coniferous forest. Podzols are not confined to cool temperate regions, but, are also found in the tropics at high elevations, where climatic conditions tend to become similar to temperate regions. - 2 - The name 'podzol' originated from the Russian word 'Zola" which means ash. Long before the true nature of podzols was characterized, the bleached layer just below the surface of the soil was observed and reported. Sprengel in 1837 gave a description of what is now known as a podzol. Scandinavian and German foresters of that time also noted and described podzols-, but it was Dokuchaev who revealed the genetic relationships of the soil horizons in the profile and introduced the term 'podzol' based on his experiences and comprehensive field and laboratory investigation of virgin and cultivated soils of Russia. Extracts from the cartography of Russian soils (Dokuchaev, 1879), show that the term 'podzol' was confined to the ashy grey layer without any reference to what was below. These soils were found in areas with abundant rainfall and an abundance of both forests and bogs. In the second soil classification of Dokuchaev in 1900 (Soil Survey Staff 1960) podzols were classified under normal soils. It was Sibertsev (1900) who separated the podzols as a special type, equivalent to the U.S.A., 1949 Great Group and sub-types, the latter being:- "(1) Soddy soils, weakly affected by podzol forming processes, (2) Podzolic soils proper, with a podzolic horizon clearly separated and sharply distinct from the upper horizon (3) Podzols or soils strongly "podzolized" While the Russians related their observations to the effects of climate, vegetation and parent material, the Germans diverted most - 3 - of their attention to a special formation, the ortstein. Consequently knowledge from the two schools was not synchronized and thus the Western world could not characterize the group. With time, knowledge spread and workers in North America, Britain, and France started to intensify their contributions. Marbut (Soil Survey Staff, 1960) classified the podzols under the order of Pedalfers. During the 1930's, the outlook towards soils changed drastically as soil scientists started to look deeper into the chemical, physical, mineralogical and micromorphological properties of soils. These scientists integrated laboratory data with field observations to differentiate among groups of soils; and, thus in 1938 Baldwin et al. (Soil Survey Staff, 1960) suggested the following Great Soil Groups which comprised the podzols: Podzol soils Gray wooded or gray podzolic soils Brown podzolic soils Gray brown podzolic soils Red yellow podzolic soils.
Recommended publications
  • NRCS Keys to Soil Taxonomy
    United States Department of Agriculture Keys to Soil Taxonomy Ninth Edition, 2003 Keys to Soil Taxonomy By Soil Survey Staff United States Department of Agriculture Natural Resources Conservation Service Ninth Edition, 2003 The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410, or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. Cover: A natric horizon with columnar structure in a Natrudoll from Argentina. 5 Table of Contents Foreword .................................................................................................................................... 7 Chapter 1: The Soils That We Classify.................................................................................. 9 Chapter 2: Differentiae for Mineral Soils and Organic Soils ............................................... 11 Chapter 3: Horizons and Characteristics Diagnostic for the Higher Categories .................
    [Show full text]
  • Soil Taxonomy" in Particular ,
    1. CONTROL NUMBER 2. SUBECT CLASSIFICATION (695) BIBLIOGRAPItlC DATA SHEET IN-AAJ-558 AF26-0000-0000 3. TITLE ANt) SUBTITLE (240) Experimental designs for predicting crop productivity with environmental and economic inputs for al rotcchnology transfer 4. PERSON.\I. AUTHORS (10P) Silva, J. A. 5. CORPORATE AUTHORS (101) Hawaii Univ. College of Tropical Agriculture 6. IDOCUMEN2< DATE (110)7. NUMBER OF PAGES (120) 8.ARC NUMBER [7 1981 13n631.5.S586b __ 9. R FRENCE ORGANIZATION (130) Hawaii 10. SUPI'PLEMENTARY NOTES (500) (In Departmental paper 49) 11. ABSTRACT (950) 12. DESCRIPTORS (920) 13. PROJECT NUMBER (150) Agricultural production Agricultural technology 931582C00 Technology transferi!Techoloy tansferYieldY e d14. CONTRACT NO.(I It)) 15. CONTRACT Soil fertility Experimentation TYPE (140) Tropics Productivity AID/ta-C-1108 Forecasting 16. TYPE OF DOCUMENT (160) AM 590-7 (10-79) Departmental Paper 49 Experimental Designs for Predicting Crop Productivity with Environmental and Economic Inputs for Agrotechnology Transfer Edited by James A. Silva ...... ,..,... *** .......... ....* ...... .... .. 00400O 00€€€€*00 .. ...* Y Y*b***S4....... ~~~.eeeeeoeeeeeU ........ o .. *.4.............*e............ :0 ooee............. ........... ....... nae of T c.e Haw i. ns..ut. CollegeofTrpclgr.cut a UnversityoHa B....EMAR.SO University of Hawaiio~ee BENCHMAR SO I Le~eSPoJECTU/ADCotac o.t-C1 14.. C4 '4 t 10 wte IA:A 77 d E/ Adt , I 26Esi ',. ,~ )~'I *3-! * Ire ~ -I ~ 0 1 N Koel4 'I M M Experimental Designs for Predicting Crop Productivity with Environmental and Economic Inputs for Agrotechnology Transfer Edited by James A. Silva Benchmark Soils Project UH/AiD Contract No. to-C-1108 The Author James A. Silva is Soil Scientist and Principal Investigator, Benchmark Soils Project/Hawaii, Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu.
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Characteristics and Formation of So-Called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia)
    Characteristics and Formation of so-called Red-Yellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) J.P, Andriesse Characteristics and Formation of so-called Red-Yellw Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) This thesis will also be published as Communication nr. 66 of the Royal Tropical Institute, Amsterdam Characteristics and Formation of so-called Red^ellow Podzolic Soils in the Humid Tropics (Sarawak-Malaysia) Proefschrift ter verkrijging van de graad van doctor in de Wiskunde en Natuur- wetenschappen aan de Rijksuniversiteit te Utrecht, op gezag van de Rector Magnificus Prof. Dr. Sj. Groenman, volgens besluit van het College van Dekanen in het openbaar te verdedigen op 8 decem- ber 1975 des namiddags te 4.15 uur door Jacobus Pieter Andriesse geboren op 28 maart 1929 te Middelburg Scanned from original by ISRIC - World Soil Information, as ICSU World Data Centre for Soils. The purpose is to make a safe depository for endangered documents and to make the accrued information available for consultation, following Fair Use' Guidelines. Every effort is taken to respect Copyright of the materials within the archives where the identification of the .Copyright holder is clear and, where feasible, to contact the originators. For questions please contact [email protected] indicating the item reference number concerned. Promotores: Prof.Dr.Ir. L.J. Pons, Landbouwhogeschool, Wageningen Prof.Dr. R.D. Schuiling Dit proefschrift kwam in zijn volledigheid tot stand onder leiding van Prof.Dr.Ir. F.A. van Baren f Preface Sarawak - a geography of life 'Extensive, almost inaccessible swamps, stretching along the coast, must be passed to reach the hills which in their monotonous repetition of heights and valleys wear down the traveller, but from where the lofty mountains beyond beckon to carry on' I dedicate this thesis to the memory of my late parents who through their efforts enabled me to receive the basic education which opened the door for my professional career, but who through their premature decease could not witness the results of their labour.
    [Show full text]
  • Restrictive Horizons
    Restrictive Horizons Some soils in North Carolina have a soil horizon which may restrict the vertical movement of water and detrimentally affect the the performance of a septic tank system. Identification of restrictive horizons is therefore an important component of a site evaluation for septic tank systems. This presentation will introduce you to information regarding restrictive horizons. A thorough understanding of restrictive horizons is not possible though without considerable field experience. 1 NDWRCDP Disclaimer This work was supported by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) with funding provided by the U.S. Environmental Protection Agency through a Cooperative Agreement (EPA No. CR827881-01-0) with Washington University in St. Louis. These materials have not been reviewed by the U.S. Environmental Protection Agency. These materials have been reviewed by representatives of the NDWRCDP. The contents of these materials do not necessarily reflect the views and policies of the NDWRCDP, Washington University, or the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute their endorsement or recommendation for use. 2 CIDWT/University Disclaimer These materials are the collective effort of individuals from academic, regulatory, and private sectors of the onsite/decentralized wastewater industry. These materials have been peer-reviewed and represent the current state of knowledge/science in this field. They were developed through a series of writing and review meetings with the goal of formulating a consensus on the materials presented. These materials do not necessarily reflect the views and policies of North Carolina State University, and/or the Consortium of Institutes for Decentralized Wastewater Treatment (CIDWT).
    [Show full text]
  • Field Book for Describing and Sampling Soils Version
    Field Book for Describing and Sampling Soils Version 2.0 National Soil Survey Center Natural Resources Conservation Service U.S. Department of Agriculture September 2002 ACKNOWLEDGMENTS The science and knowledge in this document are distilled from the collective experience of thousands of dedicated Soil Scientists during the more than 100 years of the National Cooperative Soil Survey Program. A special thanks is due to these largely unknown stewards of the natural resources of this nation. This book was written, compiled, and edited by Philip J. Schoeneberger, Douglas A. Wysocki, Ellis C. Benham, NRCS, Lincoln, NE; and William D. Broderson, NRCS, Salt Lake City, UT. Special thanks and recognition are extended to those who contributed extensively to the preparation and production of this book: the 75 soil scientists from the NRCS along with NCSS cooperators who reviewed and improved it; Tammy Nepple for document preparation and graphics; Howard Camp for graphics; Jim Culver for sponsoring it; and the NRCS Soil Survey Division for funding it. Proper citation for this document is: Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. (editors), 2002. Field book for describing and sampling soils, Version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE. Cover Photo: Soil profile of a Segno fine sandy loam (Plinthic Paleudalf) showing reticulate masses or blocks of plinthite at 30 inches (profile tape is in feet). Courtesy of Frankie F. Wheeler (retired), NRCS, Temple TX; and Larry Ratliff (retired), National Soil Survey Center, Lincoln, NE. Use of trade or firm names is for reader information only, and does not constitute endorsement or recommended use by the U.S.
    [Show full text]
  • Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China
    water Article Soil Hydraulic Properties of Plinthosol in the Middle Yangtze River Basin, Southern China Yongwu Wang 1, Tieniu Wu 1,2,* , Jianwu Huang 1, Pei Tian 1,* , Hailin Zhang 1 and Tiantian Yang 3 1 Key Laboratory for Geographical Process Analysis & Simulation, Central China Normal University, Wuhan 430079, China; [email protected] (Y.W.); [email protected] (J.H.); [email protected] (H.Z.) 2 Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA 16802, USA 3 School of Civil Engineering and Environmental Science, The University of Oklahoma, Norman, OK 73019, USA; [email protected] * Correspondence: [email protected] (T.W.); [email protected] (P.T.) Received: 16 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Soil hydraulic properties are ecologically important in arranging vegetation types at various spatial and temporal scales. However, there is still a lack of detailed understanding of the basic parameters of plinthosol in the Middle Yangtze River basin. This paper focuses on the soil hydraulic properties of three plinthosol profiles at Yueyang (YE), Wuhan (WH), and Jiujiang (JU) and tries to reveal the origin of plinthosol and the relationship among the soil hydraulic parameters. Discriminant analysis indicated that the plinthosol in the JU profile was of aeolian origin, while that in the WH and YE profiles was of alluvial origin; soil hydraulic properties varied greatly among these profiles. The proportion of macro-aggregates (>0.25 mm, weight%) in the JU profile (88.28%) was significantly higher than that in the WH (73.63%) and YE (57.77%) profiles; the water holding capacity and saturated hydraulic conductivity of JU plinthosol was also higher than that of WH and YE plinthosol; the fact that Dr and Di of the JU profile are lower than those of the YE and WH profiles illustrates the stability of JU plinthosol is better than that of YE and WH plinthosol, which is consistent with the fractal dimension of aggregates.
    [Show full text]
  • Rationale for a Plinthic Horizon in Soil Taxonomy
    Rationale for a Plinthic Horizon in Soil Taxonomy John A. Kelley 1, Charles M. Ogg 2 and Michael A. Wilson 3 1USDA Natural Resources Conservation Service, Raleigh, NC, USA 2USDA Natural Resources Conservation Service, Bishopville, SC, USA 3USDA Natural Resources Conservation Service, Lincoln, NE, USA INTRODUCTION Plinthite is one of only a few soil features that are defined by change of physical characteristics through exposure to the atmosphere. Consistent identification and quantification is the central issue for classifying and correlating plinthic soils. A definition for plinthite was proposed by Dr. Ray Daniels and colleagues (Daniel et al., 1978). The following proposed definition incorporates concepts from the current definition from Soil Taxonomy (Soil Survey Staff, 1999), additional concepts proposed by Daniels, and terminology expressed in the “World Reference Base for Soil Resources” (IUSS Working Group RB, 2006). It also takes into consideration observations made during the Dense Soil Properties Study of Selected Soils in the Southern Coastal Plain, Sumter and Lee Counties, SC, 2006, as well as other field observations made of soils containing plinthite in the Southeast U.S. The major difference in the proposed description is the addition of a cementation requirement to the definition of plinthite. The cementation criteria will allow for consistent measurement and quantification of plinthic materials. The intent is not to radically change previous concepts but to refine and build on established principles and recorded field observations . Plinthite Plinthite (Gr. plinthos , brick) is an iron-rich, humus-poor mixture of clay with quartz and other highly weathered minerals. It commonly occurs as reddish redox concentrations in a layer that has a polygonal (irregular), platy (lenticular), or reticulate (blocky) pattern.
    [Show full text]
  • FAO-UNESCO Soil Map of the World, 1:5000000 Vol. 1. Legend
    FAO-Unesco Soilmap of the world Volume I Legend FAO-Unesco Soil map of the world 1: 5 000 000 Volume I Legend FAO-Unesco Soil map of the world Volume I Legend Volume II North America Volume III Mexico and Central America Volume IV South America Volume V Europe Volume VI Africa Volume VII South Asia Volutne VIII North and Central Asia Volume IX Southeast Asia Volume X Australasia FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS NHCO UNILLD NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION FAO-Unesco Soilmap of the world 1: 5 000 000 Volume I Legend Prepared by the Food and Agriculture Organization of the United Nations Unesco-Paris 1974 Printed by Tipolitografia F. Failli, Rome for the Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization Published in 1974 by the United Nations Educational, Scientific and Cultural Organization Place de Fontenoy, 75700 Paris (I) FAO/Unesco 1974 Printed in Italy ISBN 92 - 3- 101125 - 1 PREFACE The project for a joint FAo/Unesco Soil Map of the The present volume is the first of a set of ten which, World was undertaken following a recommendation with maps, make up the complete publication of of the International Society of Soil Science.It is the Soil Map of the World.This first volume re- the first attempt to prepare, on the basis of interna- cords introductory information and presents the defi- tional cooperation, a soil map covering all the conti- nitions of th.e elements of the legend which is used nents of the world in a uniform legend, thus enabling uniformly throughout the publication.Each of the the correlation of soii units and the comparison of nine following volumescontainsanexplanatory soils on a global scale.The project, which started text and soil maps covering one of the main regions in 1961, fills a gap in present knowledge of soils and of the world.
    [Show full text]
  • Man, Fire and Wild Cattle in North Cambodia, by Charles H. Wharton, Pp. 23
    Proceedings: 5th Tall Timbers Fire Ecology Conference 1966 Man, Fire and Wild Cattle in North Cambodia CHARLES H. WHARTON Georgia State College, Atlanta, Georgia ABOUT 500 YEARS ago a civilization whose art and architecture has been said to dwarf the wonders of Egypt, Greece and Rome laid down its arms and entered a non-martial and non-material period of its history. In so doing much of the environ­ ment that once supported its immense cities and armies was aban­ doned to a few scattered villagers who, with the aid of the agency of fire, have since maintained this depopulated island of northern Cambodia as one of the last great refuges for herbivorous mammals in all of southeast Asia. In the far reaches of this small Asian kingdom can be found a remarkable array of wild hoofed ungulates. Here, one can observe herds of banteng (Bibos sondaicus) , gaur (Bibos gaurus) , w::lter buffalo (Bubalis bubalis) and two rare species approaching a critical minimum in southeast Asia, the kouprey (Novibos sauveli) , and the Eld's deer (Cervus eldi). Through the patient work of Harold Jefferson Coolidge, there is now worldwide interest in the kouprey, Cambodia's unique wild ox, considered by Coolidge (1940) to be one of the most primitive of living taurines and a surviving remnant of a mid-Miocene form, ancestral to both the wild and domestic cattle of modern times. It has been my privilege to participate in two studies of the wild cat­ tle, both inspired by the urgent need to evaluate the status of the kouprey both ecologically and biologically.
    [Show full text]
  • Rationale for a Plinthic Horizon in Soil Taxonomy
    RationaleRationale forfor aa PlinthicPlinthic HorizonHorizon inin SoilSoil TaxonomyTaxonomy 20082008 SouthSouth RegionalRegional CooperativeCooperative SoilSoil SurveySurvey ConferenceConference Gainesville, Florida July 13-17, 2008 Typical Plinthic Soil Profile -0m- Percent Plinthite? 11 Bt (upper) (5 to 15 percent cemented materials) -1m- Bt (middle) (15 to 50 percent 22 cemented materials) “plinthic horizon” Bt (lower) (2 to 15 percent 33 cemented materials) -2m- “the brick” 11 (Btv)(Btv) 22 (Btvx)(Btvx) ““plinthicplinthic”” horizonhorizon 33 (2BCtvx)(2BCtvx) 1 (Btv) 22 (Btvx)(Btvx) BtvxBtvx Btvx 2BCtvx Plinthite zone Petroferric contact Ap E Bt Btvx1 Btvx2 2BCtvx 37 percent (volume) “weakly cemented” materials (plinthite) FUQUAYFUQUAY A Arenic Plinthic Kandiudult (fresh exposure) E Less than strongly cemented materials (Vol.) (Wt.) Bt ------ ------ Btv 13% 15% Btvx1 21% 24% Btvx2 24% 26% Btvx3 32% 37% 2BCtvx 7% 8% 2BCtvx 5% 5% DenseDense SoilSoil PropertiesProperties StudyStudy GroupGroup BobBob DobosDobos (NSSC(NSSC--Interps)Interps) CharlieCharlie OggOgg (MLRA(MLRA--SSL)SSL) EllisEllis BenhamBenham (SSL)(SSL) GregGreg BrannonBrannon (MO15)(MO15) JoeyJoey ShawShaw (AU)(AU) JohnJohn KelleyKelley (MO14)(MO14) LarryLarry WestWest (UGA/NL(UGA/NL--Investigations)Investigations) MikeMike WilsonWilson (SSL)(SSL) SteveSteve LawrenceLawrence (GA(GA SO)SO) TomTom ReedyReedy (NSSC(NSSC--Standards)Standards) DenseDense SoilSoil PropertiesProperties StudyStudy ObjectivesObjectives…… What are the restrictive layers that limit soil performance?
    [Show full text]
  • Plinthosols (Pt)
    PLINTHOSOLS (PT) The Reference Soil Group of the Plinthosols accommodates soils that contain ‘plinthite’, i.e. an iron- rich, humus-poor mixture of kaolinitic clay with quartz and other constituents that changes irreversibly to a hardpan or to irregular aggregates on exposure to repeated wetting and drying. In Plinthosols, plin- thite is present either as an indurate layer at shallow depth (‘petroplinthite’) or as soft plinthite. Inter- nationally, these soils are known as ‘Groundwater Laterite Soils’, ‘’Lateritas Hydromorficas’ (Brazil), ‘Sols gris latéritiques’ (France), ‘Plinthaquox’ (USA, Soil Taxonomy) or as Plinthosols (FAO). Definition of Plinthosols Soils having: 1 a petroplinthic horizon starting within 50 cm from the soil surface; or 2 a plinthic horizon starting within 50 cm from the soil surface; or 3 a plinthic horizon starting within 100 cm from the soil surface underlying either an albic horizon or a horizon with stagnic properties Common soil units: Petric, Endoduric, Alic, Acric, Umbric, Geric, Stagnic, Abruptic, Pachic, Glossic, Humic, Albic, Ferric, Skeletic, Vetic, Alumic, Endoeutric, Haplic. Summary description of Plinthosols Connotation: soils with ‘plinthite’; from Gr, plinthos, brick. Parent material: plinthite is more common in weathering material from basic rock than in acidic rock weathering. In any case it is crucial that sufficient iron is present, originating either from the parent ma- terial itself or brought in by seepage water from elsewhere. Environment: formation of plinthite is associated with level to gently sloping areas with fluctuating groundwater. ‘Petroplinthic’ soils with continuous, hard ‘ironstone’ form where plinthite becomes ex- posed to the surface, e.g. on erosion surfaces that are above the present drainage base.
    [Show full text]