Is Chir Pine Displacing Banj Oak in the Central Himalaya?

Total Page:16

File Type:pdf, Size:1020Kb

Is Chir Pine Displacing Banj Oak in the Central Himalaya? University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 7-2015 Is Chir Pine Displacing Banj Oak in the Central Himalaya? Socioeconomic Implications for Local People and the Conservation of Oak Forest Biodiversity Ankush Nautiyal University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biodiversity Commons, Forest Biology Commons, and the Natural Resources and Conservation Commons Recommended Citation Nautiyal, Ankush, "Is Chir Pine Displacing Banj Oak in the Central Himalaya? Socioeconomic Implications for Local People and the Conservation of Oak Forest Biodiversity" (2015). Theses and Dissertations. 1330. http://scholarworks.uark.edu/etd/1330 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. Is Chir Pine Displacing Banj Oak in the Central Himalaya? Socioeconomic Implications for Local People and the Conservation of Oak Forest Biodiversity A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology by Ankush Nautiyal Gobind Ballabh Pant University of Agriculture and Technology Bachelor of Science in Agriculture, 2008 July 2015 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ________________________ Dr. Steven L. Stephenson Dissertation Director ________________________ ________________________ Dr. David W. Stahle Dr. Douglas A. James Committee Member Committee Member ________________________ Dr. Kimberly G. Smith Committee Member ABSTRACT Various studies have suggested that chir pine (Pinus roxburghii) is replacing banj oak (Quercus leucotrichophora) in the Central Himalaya. Five sites with three different types of forests (banj oak, chir pine and mixed oak-pine) were sampled to compare the diversity of their vegetation and to assess the impact of this ongoing conversion on biodiversity. Soil samples collected from oak and pine forests were analyzed and compared. In addition, dendrochronology was used to obtain age estimates of chir pine and to understand the growth response of this species to precipitation. Also, samples of ectomycorrhizal fungi were collected in the form of fruiting bodies and root tips of banj oak and chir pine for DNA analysis, to identify the species associated with these forest types. Since these forests are heavily exploited by local people, social surveys were carried out to understand the dependency of the local people on these forests and their awareness and opinions relating to the current situation of the banj oak degradation, its consequences for them and the reasons behind it. Analysis of tree rings of chir pine indicated a positive cool season precipitation response in earlywood and a negative response to warm season precipitation in latewood, which indicate that an increase in summer rainfall associated with anthropogenic climate change could adversely affect the chir pine. Banj oak does not form reliable annual rings, so we do not have any information regarding the potential impact of climate variability or change on banj oak growth. Overall, banj oak forests were found to be richer in terms of soil fertility, tree and shrub diversity as compared to the chir pine forests. Tree ring data suggested that the mixed forest at Jakholi site was actually an oak forest that got encroached upon by the chir pine. Based on the observations, data and results obtained during this study, it can be concluded that the banj oak forests are declining and chir pine is displacing banj oak in the Central Himalaya. ACKNOWLEDGMENTS First of all, I would like to thank Dr. Stephenson for being such a great mentor and providing me with his guidance, help and support throughout my Ph.D. program. I feel blessed to have him as my mentor since he showed more faith in my capabilities than I did myself, which was the biggest motivating factor. I will strive to reach the level of dedication he has for his work. I would like to thank Dr. Stahle for the enormous amount of help and guidance that he provided. I also appreciate that he let me use his lab and resources for my research work. I feel blessed that I received training under such a great teacher. I would like to thank Dr. James, Dr. Smith and Dr. Huxel for their valuable suggestions and help. I am grateful to my committee members for being so kind to me and providing me their help whenever I asked for it. I appreciate Dr. Jeffrey Silberman for letting me use his lab and resources for my genetics project. I am thankful to the Wildlife Institute of India (WII) for accepting me as an external Ph.D. scholar. I would like to thank Dr. G.S. Rawat (WII) and Dr. Ramesh Krishnamurthy (WII) for being my co-advisors in India, helping me to obtain permission for my field work in Indian forests and providing me with their guidance and facilities for my field work. Also, I am grateful to the Forest Department of Uttarakhand for granting me permission to carry out my field work. And I want to thank Amit Kumar and Dr. Gajendra Singh Rawat for helping me with my field work and species identification. I would like to express my gratitude to my mother, Mrs. Usha Nautiyal for always being there for me in every step of my life, including my Ph.D. She was the biggest support system for my field work. I thank her for facilitating my field work by arranging all the amenities I needed. I did most of my field work during the monsoon season, which is the most difficult and dangerous season to work in my study region. Without her help and good management, things would have been much more difficult. I would like to thank my brothers Hemant and Himanshu Nautiyal for motivating and encouraging me to come to a completely foreign country to pursue my higher education in the field in which I could enjoy working and also facilitating my admission process. In addition, I wish to thank them for helping me with whatever help I needed, sometimes without even asking for it. I would like to thank my husband Chase Ross for the help he provided by volunteering in various components of my research, especially the enormous amount of much needed help he provided in editing my dissertation. It would have been very difficult to do this gigantic task without his help, for which I am grateful to him. I also want to thank my cousins Shashank and Mayank Bhatt for their help and participation in my field work. Also, I appreciate the help provided by Akshay Uniyal and Vinish Naithani, who volunteered during my field work. And last but not the least; I want to thank all those volunteers, friends and relatives who contributed in some way or the other in the successful completion of this Ph.D. DEDICATION This dissertation is dedicated to my mother Mrs. Usha Nautiyal, who has been there for me like a support system upon which I could always rely. She always kept my happiness and needs above her own, and whatever I am today is because of her sacrifices. She is the best manager I have ever known. I hope I can reach to her level someday. TABLE OF CONTENTS CHAPTER 1. INTRODUCTION ....................................................................................... 1 Works Cited .................................................................................................................... 8 CHAPTER 2. BACKGROUND INFORMATION REGARDING THE STUDY REGION AND THE CURRENT STUDY ..................................................................................... 9 History behind the banj oak decline.............................................................................. 15 Other factors contributing in banj oak decline .............................................................. 22 Banj oak vs chir pine competitive abilities ................................................................... 24 Works Cited .................................................................................................................. 30 CHAPTER 3. COMPARISON BETWEEN VEGETATIONAL COMPOSITION OF CHIR PINE AND BANJ OAK FORESTS AND ANAYLYSIS OF SIZE CLASS DISTRIUTIONS TO PREDICT THE FUTURE OF THE BANJ OAK POPULATIONS AT THE STUDY SITES.............................................................................................................................. 32 Introduction ................................................................................................................... 32 Research Problems ........................................................................................................ 33 Methods......................................................................................................................... 33 General Study Area ................................................................................................... 33 Vegetational sampling .............................................................................................. 45 Results and Data Analysis ............................................................................................ 52 Discussion and Conclusions ......................................................................................... 54 Works Cited: ................................................................................................................. 98 CHAPTER 4. SOIL ANALYSIS. ....................................................................................
Recommended publications
  • Phytochemistry and Bioactivities of Cornus Macrophylla and Grewia Optiva
    PHYTOCHEMISTRY AND BIOACTIVITIES OF CORNUS MACROPHYLLA AND GREWIA OPTIVA Ph. D Thesis By WALIULLAH INSTITUTE OF CHEMICAL SCIENCES UNIVERSITY OF PESHAWAR, PAKISTAN SEPTEMBER, 2011 PHYTOCHEMISTRY AND BIOACTIVITIES OF CORNUS MACROPHYLLA AND GREWIA OPTIVA By WALIULLAH DISSERTATION SUBMITTED TO THE UNIVERSITY OF PESHAWAR IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CHEMISTRY INSTITUTE OF CHEMICAL SCIENCES UNIVERSITY OF PESHAWAR, PAKISTAN SEPTEMBER, 2011 DECLARATIONS Certified that Mr Waliullah s/o Hidayatullah has carried out his research and experimental work on the topic entitled as “Phytochemistry and Bioactivities of Cornus macrophylla and Grewia optiva” under my guidance and supervision. His research work is original and his dissertation is worthy of presentation to the University of Peshawar for the award of degree of Doctor of Philosophy in Chemistry. _______________________ _______________________ SUPERVISOR CO-SUPERVISOR Dr. Ghias Uddin Prof Dr. Bina S. Siddiqui Foreign Professor HEJ Research Institute of Chemistry Institute of Chemical Sciences University of Karachi, University of Peshawar, Pakistan Pakistan ________________________ ________________________ EXTERNAL EXAMINER Dr. Imdadullah Mohammadzai Professor & Director Institute of Chemical Sciences University of Peshawar, Pakistan. Contents Acknowledgement i Summary iii List of tables ix List of figures x List of schemes xi 1.0 General introduction 1 2.0 Biosynthesis 7 2.1 Introduction 8 2.1.1 Biosynthesis of triterpenoids (pentacyclic) 9 2.1.2 Biosynthesis of steroids 21 2.1.3 Coumarins 24 2.1.4 Biosynthesis of coumarins 24 2.1.5 Simple coumarins 27 2.1.6 Biosynthesis of furanocoumarins 29 Part A 3.0 Phytochemistry and bioactivities of Cornus macrophylla Wall.
    [Show full text]
  • Ethnoveterinary Plants of Uttaranchal — a Review
    Indian Journal of Traditional Knowledge Vol. 6(3), July 2007, pp. 444-458 Ethnoveterinary plants of Uttaranchal — A review PC Pande1*, Lalit Tiwari1 & HC Pande2 1Department of Botany, Kumaon University, SSJ Campus, Almora 263 601, Uttaranchal 2Botanical Survey of India (NC), Dehradun, Uttaranchal E-mail: [email protected] Received 21 December 2004; revised 7 February 2007 The study reveals that the people of the Uttaranchal state use 364 plants species in ethnoveterinary practices. Bhotiyas, Boxas, Tharus, Jaunsaris and Rhajis are the tribal groups inhabiting in Uttaranchal. Analysis of data indicates that information on 163 plants is significant as it provides some new information of the ethnoveterinary uses. The study is expected to provide basic data for further studies aimed at conservation of traditional medicine and economic welfare of rural people at the study area. Keywords: Ethnoveterinary practices, Medicinal plants, Uttaranchal, Review IPC Int. Cl.8: A61K36/00, A61P1/00, A61P1/02, A61P1/04, A61P1/10, A61P1/16, A61P17/00, A61P19/00, A61P25/00, A61P27/00, A61P39/02 Uttaranchal state lies between 28°42′ to 31°28′N; medicinal knowledge of the state. Keeping this in 77°35′ to 81°05′E and comprise of 13 districts of the view, an attempt has been made to explore and Central Himalayas. The major part of this region is compile the exhaustive knowledge of plants used in mountainous. The region covers about 38,000 sq km veterinary practices. In all, 364 plant species were and comprises of 3 border districts, namely recorded from the Uttaranchal, which are used by the Pithoragarh, Chamoli and Uttarkashi; 7 inner districts: people for various veterinary diseases and disorders.
    [Show full text]
  • Radial Variations of Wood Properties of an Endangered Species, Pinus Armandii Var. Amamiana
    J Wood Sci (2008) 54:443–450 © The Japan Wood Research Society 2008 DOI 10.1007/s10086-008-0986-0 ORIGINAL ARTICLE Yoshitaka Kubojima · Seiichi Kanetani · Takeshi Fujiwara Youki Suzuki · Mario Tonosaki · Hiroshi Yoshimaru Hiroharu Ikegame Radial variations of wood properties of an endangered species, Pinus armandii var. amamiana Received: March 26, 2008 / Accepted: August 4, 2008 / Published online: October 10, 2008 Abstract A dead tree of Pinus armandii Franch. var. ama- Introduction miana (Koidz.) Hatusima (abbreviated to PAAm) was obtained from a natural habitat on Tanega-shima Island and various properties of its wood were investigated. Grain Pinus armandii Franch. var. amamiana (Koidz.) Hatusima angle was measured and soft X-ray analysis was undertaken (abbreviated to PAAm hereafter) is an evergreen fi ve- to obtain the density in each annual ring. Unit shrinkage needle pine species endemic to Tanega-shima and Yaku- and dynamic properties were measured by shrinkage, shima Islands, southwestern Japan.1,2 The species grows to bending, and compression tests. Variations of wood proper- 300 cm in diameter at breast height and 30 m in height. This ties in the radial direction, relationships of wood properties pine species is closely related to P. armandii var. armandii to density, and annual ring width were examined. Roughly and P. armandii var. mastersiana, which are distributed in speaking, variations in the radial direction of the grain the western part of continental China and in the highlands angle, twist angle by drying, Young’s modulus and strength of Taiwan, respectively.2 in static bending, absorbed energy in impact bending, com- The wood of PAAm has been traditionally used for pressive Young’s modulus, compressive strength, and com- making fi shing canoes and also in house construction.3,4 pressive proportional limit corresponded to the variation of However, in recent years, PAAm wood has not been used, annual ring width.
    [Show full text]
  • ”Al. Beldie” Herbarium
    Research Journal of Agricultural Science, 51 (3), 2019 CHARACTERIZATION OF CORNUS PLANT PRESENT IN ”AL. BELDIE” HERBARIUM Emilia VECHIU¹, Lucian DINCĂ1 1 “Marin Drăcea” National Institute for Research and Development in Forestry, Braşov, Romania email: [email protected] Abstract: ”Al. Beldie” Herbarium from ”Marin Drăcea” National Institute for Research and Development in Forestry contains a rich collection of plants. Approximately 40.000 vouchers belong to this herbarium and are stored in 600 drawers. Herbariuns are important because they provide information about plants and their area of propagation during long periods that help to carry out studies in taxonomy, biodiversity, ecology, anatomy, morphology etc. As such, various investigations were carried out with the help of data from this herbarium concerning different families and types of plants. The purpose of this article is to morphologically and ecologicallycharacterize certain Cornus species that can be found in this herbarium. Cornus Genus contains approximately 55-58 species cares that are widespread in the northern hemisphere, with few in Africa and southern America. The species found in the herbarium are the following: Cornus alba L., Cornus amomum Mill., Cornus alternifolia L., Cornus asperifolia Michx., Cornus baileyi J.M. Coult. & W.H. Evans, Cornus canadensis L., Cornus candidissima Marshall., Cornus florida L., Cornus mas L., Cornus macrophylla Wall., Cornus obliqua Raf., Cornus paniculata L'Hér., Cornus pumila Koehne, Cornus sanguinea L., Cornus stolonifera Michx. Cornus stricta Lam. and Cornus suecica L . Each plants contains data referring to the name of the species, the harvesting place, the harvesting year, the person who has collected them as well as their conservation degree.
    [Show full text]
  • Biodiversity Conservation in Botanical Gardens
    AgroSMART 2019 International scientific and practical conference ``AgroSMART - Smart solutions for agriculture'' Volume 2019 Conference Paper Biodiversity Conservation in Botanical Gardens: The Collection of Pinaceae Representatives in the Greenhouses of Peter the Great Botanical Garden (BIN RAN) E M Arnautova and M A Yaroslavceva Department of Botanical garden, BIN RAN, Saint-Petersburg, Russia Abstract The work researches the role of botanical gardens in biodiversity conservation. It cites the total number of rare and endangered plants in the greenhouse collection of Peter the Great Botanical garden (BIN RAN). The greenhouse collection of Pinaceae representatives has been analysed, provided with a short description of family, genus and certain species, presented in the collection. The article highlights the importance of Pinaceae for various industries, decorative value of plants of this group, the worth of the pinaceous as having environment-improving properties. In Corresponding Author: the greenhouses there are 37 species of Pinaceae, of 7 geni, all species have a E M Arnautova conservation status: CR -- 2 species, EN -- 3 species, VU- 3 species, NT -- 4 species, LC [email protected] -- 25 species. For most species it is indicated what causes depletion. Most often it is Received: 25 October 2019 the destruction of natural habitats, uncontrolled clearance, insect invasion and diseases. Accepted: 15 November 2019 Published: 25 November 2019 Keywords: biodiversity, botanical gardens, collections of tropical and subtropical plants, Pinaceae plants, conservation status Publishing services provided by Knowledge E E M Arnautova and M A Yaroslavceva. This article is distributed under the terms of the Creative Commons 1. Introduction Attribution License, which permits unrestricted use and Nowadays research of biodiversity is believed to be one of the overarching goals for redistribution provided that the original author and source are the modern world.
    [Show full text]
  • Hybridization and Evolution in the Genus Pinus
    Hybridization and Evolution in the Genus Pinus Baosheng Wang Department of Ecology and Environmental Science Umeå 2013 Hybridization and Evolution in the Genus Pinus Baosheng Wang Department of Ecology and Environmental Science Umeå University, Umeå, Sweden 2013 This work is protected by the Swedish Copyright Legislation (Act 1960:729) Copyright©Baosheng Wang ISBN: 978-91-7459-702-8 Cover photo: Jian-Feng Mao Printed by: Print&Media Umeå, Sweden 2013 List of Papers This thesis is a summary and discussion of the following papers, which are referred to by their Roman numerals. I. Wang, B. and Wang, X.R. Mitochondrial DNA capture and divergence in Pinus provide new insights into the evolution of the genus. Submitted Manuscript II. Wang, B., Mao, J.F., Gao, J., Zhao, W. and Wang, X.R. 2011. Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata. Molecular Ecology 20: 3796-3811. III. Gao, J., Wang, B., Mao, J.F., Ingvarsson, P., Zeng, Q.Y. and Wang, X.R. 2012. Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau. Molecular Ecology 21: 4811–4827. IV. Wang, B., Mao, J.F., Zhao, W. and Wang, X.R. 2013. Impact of geography and climate on the genetic differentiation of the subtropical pine Pinus yunnannensis. PLoS One. 8: e67345. doi:10.1371/journal.pone.0067345 V. Wang, B., Mahani, M.K., Ng, W.L., Kusumi, J., Phi, H.H., Inomata, N., Wang, X.R. and Szmidt, A.E. Extremely low nucleotide polymorphism in Pinus krempfii Lecomte, a unique flat needle pine endemic to Vietnam.
    [Show full text]
  • Disturbances Influence Trait Evolution in Pinus
    Master's Thesis Diversify or specialize: Disturbances influence trait evolution in Pinus Supervision by: Prof. Dr. Elena Conti & Dr. Niklaus E. Zimmermann University of Zurich, Institute of Systematic Botany & Swiss Federal Research Institute WSL Birmensdorf Landscape Dynamics Bianca Saladin October 2013 Front page: Forest of Pinus taeda, northern Florida, 1/2013 Table of content 1 STRONG PHYLOGENETIC SIGNAL IN PINE TRAITS 5 1.1 ABSTRACT 5 1.2 INTRODUCTION 5 1.3 MATERIAL AND METHODS 8 1.3.1 PHYLOGENETIC INFERENCE 8 1.3.2 TRAIT DATA 9 1.3.3 PHYLOGENETIC SIGNAL 9 1.4 RESULTS 11 1.4.1 PHYLOGENETIC INFERENCE 11 1.4.2 PHYLOGENETIC SIGNAL 12 1.5 DISCUSSION 14 1.5.1 PHYLOGENETIC INFERENCE 14 1.5.2 PHYLOGENETIC SIGNAL 16 1.6 CONCLUSION 17 1.7 ACKNOWLEDGEMENTS 17 1.8 REFERENCES 19 2 THE ROLE OF FIRE IN TRIGGERING DIVERSIFICATION RATES IN PINE SPECIES 21 2.1 ABSTRACT 21 2.2 INTRODUCTION 21 2.3 MATERIAL AND METHODS 24 2.3.1 PHYLOGENETIC INFERENCE 24 2.3.2 DIVERSIFICATION RATE 24 2.4 RESULTS 25 2.4.1 PHYLOGENETIC INFERENCE 25 2.4.2 DIVERSIFICATION RATE 25 2.5 DISCUSSION 29 2.5.1 DIVERSIFICATION RATE IN RESPONSE TO FIRE ADAPTATIONS 29 2.5.2 DIVERSIFICATION RATE IN RESPONSE TO DISTURBANCE, STRESS AND PLEIOTROPIC COSTS 30 2.5.3 CRITICAL EVALUATION OF THE ANALYSIS PATHWAY 33 2.5.4 PHYLOGENETIC INFERENCE 34 2.6 CONCLUSIONS AND OUTLOOK 34 2.7 ACKNOWLEDGEMENTS 35 2.8 REFERENCES 36 3 SUPPLEMENTARY MATERIAL 39 3.1 S1 - ACCESSION NUMBERS OF GENE SEQUENCES 40 3.2 S2 - TRAIT DATABASE 44 3.3 S3 - SPECIES DISTRIBUTION MAPS 58 3.4 S4 - DISTRIBUTION OF TRAITS OVER PHYLOGENY 81 3.5 S5 - PHYLOGENETIC SIGNAL OF 19 BIOCLIM VARIABLES 84 3.6 S6 – COMPLETE LIST OF REFERENCES 85 2 Introduction to the Master's thesis The aim of my master's thesis was to assess trait and niche evolution in pines within a phylogenetic comparative framework.
    [Show full text]
  • Number 3, Spring 1998 Director’S Letter
    Planning and planting for a better world Friends of the JC Raulston Arboretum Newsletter Number 3, Spring 1998 Director’s Letter Spring greetings from the JC Raulston Arboretum! This garden- ing season is in full swing, and the Arboretum is the place to be. Emergence is the word! Flowers and foliage are emerging every- where. We had a magnificent late winter and early spring. The Cornus mas ‘Spring Glow’ located in the paradise garden was exquisite this year. The bright yellow flowers are bright and persistent, and the Students from a Wake Tech Community College Photography Class find exfoliating bark and attractive habit plenty to photograph on a February day in the Arboretum. make it a winner. It’s no wonder that JC was so excited about this done soon. Make sure you check of themselves than is expected to seedling selection from the field out many of the special gardens in keep things moving forward. I, for nursery. We are looking to propa- the Arboretum. Our volunteer one, am thankful for each and every gate numerous plants this spring in curators are busy planting and one of them. hopes of getting it into the trade. preparing those gardens for The magnolias were looking another season. Many thanks to all Lastly, when you visit the garden I fantastic until we had three days in our volunteers who work so very would challenge you to find the a row of temperatures in the low hard in the garden. It shows! Euscaphis japonicus. We had a twenties. There was plenty of Another reminder — from April to beautiful seven-foot specimen tree damage to open flowers, but the October, on Sunday’s at 2:00 p.m.
    [Show full text]
  • Genetic Analysis of Needle Morphological and Anatomical Traits Among Nature Populations of Pinus Tabuliformis
    Journal of Plant Studies; Vol. 6, No. 1; 2017 ISSN 1927-0461 E-ISSN 1927-047X Published by Canadian Center of Science and Education Genetic Analysis of Needle Morphological and Anatomical Traits among Nature Populations of Pinus Tabuliformis Mei Zhang1, Jing-Xiang Meng1, Zi-Jie Zhang1, Song-Lin Zhu2 & Yue Li1 1National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China 2The Forestry Bureau of Xixian, China Correspondence: Mei Zhang, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. E-mail: [email protected] Received: December 6, 2016 Accepted: January 10, 2017 Online Published: January 21, 2017 doi:10.5539/jps.v6n1p62 URL: http://dx.doi.org/10.5539/jps.v6n1p62 Abstract The morphological and anatomical traits of needles are important to evaluate geographic variation and population dynamics of conifer species. Variations of morphological and anatomical needle traits in coniferous species are considered to be the consequence of genetic evolution, and be used in geographic variation and ecological studies, etc. Pinus tabuliformis is a particular native coniferous species in northern and central China. For understanding its adaptive evolution in needle traits, the needle samplings of 10 geographic populations were collected from a 30yr provenience common garden trail that might eliminate site environment effect and show genetic variation among populations and 20 needle morphological and anatomical traits were involved. The results showed that variations among and within populations were significantly different over all the measured traits and the variance components within population were generally higher than that among populations in the most measured needle traits.
    [Show full text]
  • Verbenone Protects Chinese White Pine (Pinus Armandii)
    Zhao et al.: Verbenone protects Chinese white pine (Pinus armandii) (Pinales: Pinaceae: Pinoideae) against Chinese white pine beetle (Dendroctonus armandii) (Coleoptera: Curculionidae: Scolytinae) attacks - 379 - VERBENONE PROTECTS CHINESE WHITE PINE (PINUS ARMANDII) (PINALES: PINACEAE: PINOIDEAE) AGAINST CHINESE WHITE PINE BEETLE (DENDROCTONUS ARMANDII) (COLEOPTERA: CURCULIONIDAE: SCOLYTINAE) ATTACKS ZHAO, M.1 – LIU, B.2 – ZHENG, J.2 – KANG, X.2 – CHEN, H.1* 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China 2College of Forestry, Northwest A & F University, Yangling, Shaanxi 712100, China *Corresponding author e-mail: [email protected]; phone/fax: +86-020-8528-0256 (Received 29th Aug 2020; accepted 19th Nov 2020) Abstract. Bark beetle anti-aggregation is important for tree protection due to its high efficiency and fewer potential negative environmental impacts. Densitometric variables of Pinus armandii were investigated in the case of healthy and attacked trees. The range of the ecological niche and attack density of Dendroctonus armandii in infested P. armandii trunk section were surveyed to provide a reference for positioning the anti-aggregation pheromone verbenone on healthy P. armandii trees. 2, 4, 6, and 8 weeks after the application of verbenone, the mean attack density was significantly lower in the treatment group than in the control group (P < 0.01). At twelve months after anti-aggregation pheromone application, the mortality rate was evaluated. There was a significant difference between the control and treatment groups (chi-square test, P < 0.05).
    [Show full text]
  • Wa Shan – Emei Shan, a Further Comparison
    photograph © Zhang Lin A rare view of Wa Shan almost minus its shroud of mist, viewed from the Abies fabri forested slopes of Emei Shan. At its far left the mist-filled Dadu River gorge drops to 500-600m. To its right the 3048m high peak of Mao Kou Shan climbed by Ernest Wilson on 3 July 1903. “As seen from the top of Mount Omei, it resembles a huge Noah’s Ark, broadside on, perched high up amongst the clouds” (Wilson 1913, describing Wa Shan floating in the proverbial ‘sea of clouds’). Wa Shan – Emei Shan, a further comparison CHRIS CALLAGHAN of the Australian Bicentennial Arboretum 72 updates his woody plants comparison of Wa Shan and its sister mountain, World Heritage-listed Emei Shan, finding Wa Shan to be deserving of recognition as one of the planet’s top hotspots for biological diversity. The founding fathers of modern day botany in China all trained at western institutions in Europe and America during the early decades of last century. In particular, a number of these eminent Chinese botanists, Qian Songshu (Prof. S. S. Chien), Hu Xiansu (Dr H. H. Hu of Metasequoia fame), Chen Huanyong (Prof. W. Y. Chun, lead author of Cathaya argyrophylla), Zhong Xinxuan (Prof. H. H. Chung) and Prof. Yung Chen, undertook their training at various institutions at Harvard University between 1916 and 1926 before returning home to estab- lish the initial Chinese botanical research institutions, initiate botanical exploration and create the earliest botanical gardens of China (Li 1944). It is not too much to expect that at least some of them would have had personal encounters with Ernest ‘Chinese’ Wilson who was stationed at the Arnold Arboretum of Harvard between 1910 and 1930 for the final 20 years of his life.
    [Show full text]
  • Breeding and Genetic Resources of Five-Needle Pines: 60 Km South of Kyushu Island in Southern Japan (Fig.1)
    Diversity and Conservation of Genetic Resources of an Endangered Five-Needle Pine Species, Pinus armandii Franch. var. amamiana (Koidz.) Hatusima Sei-ichi Kanetani Takayuki Kawahara Ayako Kanazashi Hiroshi Yoshimaru Abstract—Pinus armandii var. amamiana is endemic to two small amamiana was traditionally used for making fishing canoes islands in the southern region of Japan and listed as a vulnerable and also used in house construction (Kanetani and others species. The large size and high wood quality of the species have 2001). Consequently, large numbers of P. armandii var. caused extensive harvesting, resulting in small population size and amamiana trees have been harvested and populations have isolated solitary trees. Genetic diversity of the P. armandii complex dwindled on both islands. Currently, the estimated number was studied using allozyme analyses. Genetic distances between of surviving P. armandii var. amamiana trees in natural (1) P. armandii var. amamiana and P. armandii var. armandii and populations are 100 and 1,000 to 1,500 on Tane-ga-shima (2) P. armandii var. amamiana and P. armandii var. mastersiana and Yaku-shima Islands, respectively (Yamamoto and Akasi were 0.488 and 0.238, respectively. These genetic differences were 1994). comparable with congeneric species level (0.4) and much greater In recent years, the number of P. armandii var. amamiana than conspecific population level (less than 0.1) that occur in Pinus trees has rapidly declined, with dead trees frequently ob- species in general. No differences in diversity were recognized served (Hayashi 1988; Yamamoto and Akashi 1994; Kanetani between populations of P. armandii var. amamiana from each and others 2002).
    [Show full text]