Associated Biological Opinion

Total Page:16

File Type:pdf, Size:1020Kb

Associated Biological Opinion [Cover Page of BiOp] Biological Opinion Addressing Fish and Wildlife Service Approval of the Kaua‘i Island Seabird Habitat Conservation Plan and Qualifying Incidental Take Permit Applications Subject to Site-specific Participant-Inclusion-Plans May 17, 2020 (01EPIF00-2020-F-0180) TABLE OF CONTENTS CONSULTATION HISTORY ....................................................................................................2 BIOLOGICAL OPINION ...........................................................................................................5 DESCRIPTION OF THE PROPOSED ACTION ........................................................................5 Artificial Lighting at Facilities ....................................................................................................7 Conservation Measures at Applicant Facilities ...........................................................................8 Recovery and Release of Downed Seabirds .................................................................................9 Implementation of Outreach and Training ................................................................................. 10 Predator Control at Applicant Facilities ..................................................................................... 11 Conservation Activities in Kalalau Valley ................................................................................. 11 Conservation Activities at the Kahuama‘a Seabird Preserve ..................................................... 16 Adaptive Management ............................................................................................................... 22 Best Management Practices and Avoidance and Minimization Measures at Mitigation Sites ..... 23 Action Area............................................................................................................................... 23 Analytical Framework for the Jeopardy and Adverse Modification Analyses ............................ 25 Jeopardy Analysis ..................................................................................................................... 25 STATUS OF THE SPECIES ..................................................................................................... 26 ENVIRONMENTAL BASELINE ............................................................................................. 50 EFFECTS OF THE ACTION .................................................................................................... 56 CUMULATIVE EFFECTS ....................................................................................................... 82 CONCLUSION ......................................................................................................................... 83 INCIDENTAL TAKE STATEMENT ....................................................................................... 87 Amount or Extent of Take Anticipated ...................................................................................... 87 Effect of Take ........................................................................................................................... 88 Reasonable and Prudent Measures and Terms and Conditions ................................................... 88 CONSERVATION RECOMMENDATIONS ........................................................................... 88 REINITIATION-CLOSING STATEMENT .............................................................................. 88 LITERATURE CITED ............................................................................................................. 90 APPENDIX A: Informal Consultation Findings for the Proposed KSHCP and Associated PIPs. ............................................................................................................................................... 104 United States Department of the Interior FISH AND WILDLIFE SERVICE Pacific Islands Fish and Wildlife Office 300 Ala Moana Boulevard, Room 3-122 Honolulu, Hawai‘i 96850 In Reply Refer To: May 17, 2020 01EPIF00-2020-F-0180 Memorandum To: Assistant Regional Director-Ecological Services Portland, Oregon From: Field Supervisor, Pacific Islands Fish and Wildlife Office Honolulu, Hawaiʻi Subject: Biological Opinion Addressing U.S. Fish and Wildlife Service (Service) Approval of the Kaua‘i Island Seabird Habitat Conservation Plan (KSHCP) and Qualifying Applications for Endangered Species Act (ESA) Incidental Take Permits (ITPs) for Site-specific Participant-Inclusion-Plans (PIPs) This document transmits the Service’s biological opinion (BiOp) regarding the subject actions. At issue are the effects of the KSHCP and the PIPs on the threatened Newell’s shearwater (Puffinus auricularis newelli), the endangered Hawaiian petrel (Pterodroma sandwichensis), and the endangered Hawai‘i population distinct population segment (DPS) of the band-rumped storm-petrel (Oceanodroma castro) (hereafter band-rumped storm-petrel), collectively referred to as the Covered Species. This BiOp was prepared in accordance with section 7 of the ESA of 1973, as amended (16 U.S.C. 1531 et seq.). The Service has determined that the issuance of ITPs and implementation of the KSHCP at Applicant facilities is not likely to adversely affect (NLAA) the federally threatened Central North Pacific distinct population segment (DPS) of the green sea turtle (Chelonia mydas) (hereafter green sea turtle). INTERIOR REGION 9 INTERIOR REGION 12 COLUMBIA–PACIFIC NORTHWEST Pacific Islands Idaho, Montana*, Oregon*, Washington American Samoa, Guam, Hawaii, Northern *PARTIAL Mariana Islands 2 We have also determined that the proposed KSHCP at the Kahuama‘a Seabird Preserve may affect but is not likely to adversely affect the following listed species: endangered ‘akeke‘e (Loxops caeruleirostris), threatened ‘i‘iwi (Drepanis coccinea) (collectively referred to as Hawaiian forest birds); endangered Hawaiian hoary bat (Lasiurus cinereus semotus); and the following endangered plants: Chamaesyce eleanoriae, Chamaesyce remyi var. remyi, Dubautia kalalauensis, Euphorbia haeleeleana, Exocarpos luteolus, Euphorbia remyi var. remyi, Gouania meyenii, Hibiscadelphus woodii, Labordia helleri, Lysimachia scopulensis, Melicope pallida, Melicope puberula, Myrsine knudsenii, Myrsine linearifolia, Nothocestrum peltatum, Plantago princeps, Platydesma rostrata, Poa mannii, Poa siphonoglossa, Polyscias flynnii, Psychotria grandiflora, Pteralyxia kauaiensis, Remya kauaiensis, Remya montgomeryi, Schiedea attenuata, Schiedea kauaiensis, Schiedea membranacea, Solanum sandwicense, Stenogyne campanulata, Stenogyne kealiae, and Tetraplasandra flynii (collectively referred to as Hawaiian plants). Lastly, we have determined that the proposed KSHCP at the Kahuama‘a Seabird Preserve may affect, but is not likely to adversely affect the above listed species and the following designated critical habitat units that occur within or adjacent to the action area: Kauaʻi 11—Euphorbia haeleeleana—b, Kauaʻi 11—Exocarpos luteolus—c, Kauaʻi 11—Exocarpos luteolus—e, Kauaʻi 11—Flueggea neowawraea—a, Kauaʻi 11—Gouania meyenii—b, Kauaʻi 11—Melicope pallida—b, Kauaʻi 11—Myrsine linearifolia—e, Kauaʻi 11—Nothocestrum peltatum—c, Kauaʻi 11—Plantago princeps—b, Kauaʻi 11—Poa mannii—d, Kauaʻi 11—Poa siphonoglossa—a, Kauaʻi 11—Pteralyxia Kauaiensis—e, Kauaʻi 11—Remya Kauaiensis—b, Kauaʻi 11—Remya montgomeryi—c, Kauaʻi 11—Schiedea Kauaiensis—b, Kauaʻi 11—Schiedea membranacea—b, Kauaʻi 11—Solanum sandwicense—a, Kauaʻi 11—Stenogyne campanulata—a, Kaua‘i Ecosystem—Dry Cliff—Unit 1, and Kaua‘i Ecosystem—Montane Wet—Unit 2, Loxops caeruleirostris Unit 5—Montane Wet, Oreomystis bairdi Unit 5—Montane Wet, and Drosophila sharpi Unit 5—Montane Wet (collectively referred to as designated critical habitats). The above NLAA determinations are presented in Appendix A. This BiOp is based on information provided in: (1) the KSHCP and associated Appendices; (2) the PIPs submitted by applicants in support of ITP applications; (3) the Environmental Assessment (EA) addressing the subject actions; and (4) other sources of information cited herein. A complete decision for this consultation is on file in our office. Our log number for this consultation is 01EPIF00-2020-F-0180. CONSULTATION HISTORY The Service has been working with prospective ITP applicants regarding the subject HCP for over a decade to facilitate the conservation and management, in part, of Kaua‘i seabirds. A chronology of these efforts is presented below. June 4, 2019 – The Service and the State of Hawai‘i Department of Land and Natural Resources (DLNR) received a PIP and ITP application from the County of Kaua‘i. 3 June 7, 2019 – The Service emailed prospective ITP applicants a reference document to rely on when completing the Federal permit application. June 19, 2019 – The Service sent an email to the group of prospective Applicants requesting submittal of outstanding PIPs, Federal ITP application forms, and a revised Appendix G of the KSHCP expressing their commitments to participate in the KSHCP. July 2, 2019 – The Service received an email from the attorney representing Alexander & Baldwin indicating it would be at least 30 days before their submittal of an ITP application and PIP. July 11, 2019 – The State of Hawai‘i Department of Transportation (HDOT) submitted their Federal ITP application and PIP. July 12, 2019 – The Service sent an email to prospective applicants updating the Service’s anticipated timeline for the Federal public review process. In that email, the Service requested
Recommended publications
  • Convergent Evolution of 'Creepers' in the Hawaiian Honeycreeper
    ARTICLE IN PRESS Biol. Lett. 1. INTRODUCTION doi:10.1098/rsbl.2008.0589 Adaptive radiation is a fascinating evolutionary pro- 1 cess that has generated much biodiversity. Although 65 2 Evolutionary biology several mechanisms may be responsible for such 66 3 diversification, the ‘ecological theory’ holds that it is 67 4 the outcome of divergent natural selection between 68 5 Convergent evolution of environments (Schluter 2000). Whether adaptive 69 6 radiations result chiefly from such ecological speciation, 70 7 ‘creepers’ in the Hawaiian however, remains unclear (Schluter 2001). Convergent 71 8 evolution is often considered powerful evidence for the 72 9 honeycreeper radiation role of adaptive forces in the speciation process 73 (Futuyma 1998), and thus documenting cases where it 10 Dawn M. Reding1,2,*, Jeffrey T. Foster1,3, 74 has occurred is important in understanding the link 11 Helen F. James4, H. Douglas Pratt5 75 12 between natural selection and adaptive radiation. 76 and Robert C. Fleischer1 13 The more than 50 species of Hawaiian honeycree- 77 1 14 Center for Conservation and Evolutionary Genetics, National pers (subfamily Drepanidinae) are a spectacular 78 Zoological Park and National Museum of Natural History, 15 Smithsonian Institution, Washington, DC 20008, USA example of adaptive radiation and an interesting 79 16 2Department of Zoology, University of Hawaii, Honolulu, system to test for convergence, which has been 80 17 HI 96822, USA suspected among the nuthatch-like ‘creeper’ eco- 81 3Center for Microbial Genetics & Genomics,
    [Show full text]
  • The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
    山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships.
    [Show full text]
  • Important Bird Areas in Hawaii Elepaio Article
    Globally Important Bird Areas in the Hawaiian Islands: Final Report Dr. Eric A. VanderWerf Pacific Rim Conservation 3038 Oahu Avenue Honolulu, HI 96822 9 June 2008 Prepared for the National Audubon Society, Important Bird Areas Program, Audubon Science, 545 Almshouse Road, Ivyland, PA 18974 3 of the 17 globally Important Bird Areas in Hawai`i, from top to bottom: Lehua Islet Hanawī Natural Area Reserve, Maui Hanalei National Wildlife Refuge, Kauai All photos © Eric VanderWerf Hawaii IBAs VanderWerf - 2 INTRODUCTION TO THE IMPORTANT BIRD AREAS PROGRAM The Important Bird Areas (IBA) Program is a global effort developed by BirdLife International, a global coalition of partner organizations in more than 100 countries, to assist with identification and conservation of areas that are vital to birds and other biodiversity. The IBA Program was initiated by BirdLife International in Europe in the 1980's. Since then, over 8,000 sites in 178 countries have been identified as Important Bird Areas, with many national and regional IBA inventories published in 19 languages. Hundreds of these sites and millions of acres have received better protection as a result of the IBA Program. As the United States Partner of BirdLife International, the National Audubon Society administers the IBA Program in the U.S., which was launched in 1995 (see http://www.audubon.org/bird/iba/index.html). Forty-eight states have initiated IBA programs, and more than 2,100 state-level IBAs encompassing over 220 million acres have been identified across the country. Information about these sites will be reviewed by the U.S. IBA Committee to confirm whether they qualify for classification as sites of continental or global significance.
    [Show full text]
  • Nihoa Manawai Holoikauaua Pearl & Hermes Atoll Kapou Papa'āpoho Lisianski Island Kamole Kauō Laysan Island Kamokuokamohoali'i Ko'anako'a Maro Reef
    175°E 180° 175°W 170°W 165°W 160°W 155°W 150°W 35°N 35°N North America Japan Map Area Photo by Dan Clark/USFWS Hawaiian Islands Photo by Na‘alehu Anthony P a c i f i c Seabird Refuge A Living Hawaiian Culture O c e a n The monument is home to over 14 million seabirds 30°N Hiryū USS Yorktown Equator representing 23 species. This includes the world's Traditional Hawaiian accounts describe largest colonies of Laysan and black-footed Papahānaumokuākea as a sacred area from which Rapa Sōryū albatross. Pictured above is the world's oldest life first emerged and to which spirits return after Nui Australia known bird in the wild – a Laysan albatross named 30°N death. Akagi Wisdom! Banded in 1956 when she was at least five Kaga years old, Wisdom may have hatched more than 36 New Zealand chicks in her lifetime. Hōlanikū Manawai Unnamed Holoikauaua Mokupāpapa Seamount Kure Atoll Pearl & Hermes Atoll 582,578 square miles, only six square miles of land Helsley Seamount Ladd Seamount Kamole Kauō ‘Ōnūnui, ‘Ōnūiki Photo by Mark Sullivan/NOAA Laysan Island Photo by NOAA/OER Endemic Sanctuary Pūhāhonu New Discoveries The monument is home to many species found Kuaihelani Gardner Pinnacles The majority of the seafloor in the Northwestern nowhere else on Earth and is a critically important Pihemanu Salmon Hawaiian Islands lies at depths below 10,000 feet nesting ground for green sea turtles and breeding Bank (3,000 meters). Using advanced technologies like ground for Hawaiian monk seals.
    [Show full text]
  • Synonymies for Indigenous Hawaiian Bird Taxa
    Part 2 - Drepaninines Click here for Part 1 - Non-Drepaninines The Birds of the Hawaiian Islands: Occurrence, History, Distribution, and Status Version 2 - 1 January 2017 Robert L. Pyle and Peter Pyle Synonymies for Indigenous Hawaiian Bird Taxa Intensive ornithological surveying by active collectors during the latter 1890s led to several classic publications at the turn of the century, each covering nearly all species and island forms of native Hawaiian birds (Wilson and Evans 1899, Rothschild (1900),schild 1900, Bryan 1901a, Henshaw (1902a), 1902a, Perkins (1903),1903). The related but diverse scientific names appearing in these publications comprised the basis for scientific nomenclature for the next half century, but in many cases were modified by later authors using modern techniques to reach a current nomenclature provided in the American Ornithologists’ Union (AOU) Check-List, and followed (for the most part) at this site. A few current AOU names are still controversial, and more changes will come in the future. Synonymies reflecting the history of taxonomic nomenclature are listed below for all endemic birds in the Hawaiian Islands. The heading for each taxon represents that used in this book, reflecting the name used by the AOU (1998), as changed in subsequent AOU Supplements, or, in a few cases, as modified here based on more recent work or on differing opinions on taxonomic ranking. Previously recognized names are listed and citations included for classic publications on taxonomy of Hawaiian birds, as well as significant papers that influenced the species nomenclature. We thank Storrs Olson for sharing with us his summarization on the taxonomy and naming of indigenous Hawaiian birds.
    [Show full text]
  • Notes on the Osteology and Phylogenetic Affinities of the Oligocene Diomedeoididae (Aves, Procellariiformes)
    Fossil Record 12 (2) 2009, 133–140 / DOI 10.1002/mmng.200900003 Notes on the osteology and phylogenetic affinities of the Oligocene Diomedeoididae (Aves, Procellariiformes) Gerald Mayr Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. E-mail: [email protected] Abstract Received 16 September 2008 New specimens of the procellariiform taxon Diomedeoididae are reported from the Accepted 10 October 2008 early Oligocene (Rupelian) deposits of Wiesloch-Frauenweiler in southern Germany. Published 3 August 2009 Two skeletons belong to Diomedeoides brodkorbi, whereas isolated legs of larger indi- viduals are tentatively assigned to D. lipsiensis, a species which has not yet been re- ported from the locality. The fossils allow the recognition of some previously unknown osteological features of the Diomedeoididae, including the presence of a vestige of the hallux. Diomedeoidids are characterized by extremely wide phalanges of the third and fourth toes, which also occur in some species of the extant procellariiform Oceanitinae Key Words (southern storm-petrels). The poorly developed processus supracondylaris dorsalis of the humerus supports a position of these Oligocene tubenoses outside a clade including Fossil birds the Diomedeidae (albatrosses), Procellariidae (shearwaters and allies), and Pelecanoidi- evolution dae (diving-petrels). It is hypothesized that like modern Oceanitinae, which have an Diomedeoides brodkorbi equally short supracondylar process, diomedeoidids probably employed flap-gliding Diomedeoides lipsiensis and used their immersed feet to remain stationary. Introduction Diomedeoidids are well characterized by their pecu- liar feet, whose phalanges, in particular those of the The Diomedeoididae are an extinct group of the Pro- fourth toe, are greatly widened and flattened.
    [Show full text]
  • 25 Using Community Group Monitoring Data to Measure The
    25 Using Community Group Monitoring Data To Measure The Effectiveness Of Restoration Actions For Australia's Woodland Birds Michelle Gibson1, Jessica Walsh1,2, Nicki Taws5, Martine Maron1 1Centre for Biodiversity and Conservation Science, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Brisbane, 4072, Queensland, Australia, 2School of Biological Sciences, Monash University, Clayton, Melbourne, 3800, Victoria, Australia, 3Greening Australia, Aranda, Canberra, 2614 Australian Capital Territory, Australia, 4BirdLife Australia, Carlton, Melbourne, 3053, Victoria, Australia, 5Greening Australia, PO Box 538 Jamison Centre, Macquarie, Australian Capital Territory 2614, Australia Before conservation actions are implemented, they should be evaluated for their effectiveness to ensure the best possible outcomes. However, many conservation actions are not implemented under an experimental framework, making it difficult to measure their effectiveness. Ecological monitoring datasets provide useful opportunities for measuring the effect of conservation actions and a baseline upon which adaptive management can be built. We measure the effect of conservation actions on Australian woodland ecosystems using two community group-led bird monitoring datasets. Australia’s temperate woodlands have been largely cleared for agricultural production and their bird communities are in decline. To reverse these declines, a suite of conservation actions has been implemented by government and non- government agencies, and private landholders. We analysed the response of total woodland bird abundance, species richness, and community condition, to two widely-used actions — grazing exclusion and replanting. We recorded 139 species from 134 sites and 1,389 surveys over a 20-year period. Grazing exclusion and replanting combined had strong positive effects on all three bird community metrics over time relative to control sites, where no actions had occurred.
    [Show full text]
  • Apapane (Himatione Sanguinea)
    The Birds of North America, No. 296, 1997 STEVEN G. FANCY AND C. JOHN RALPH 'Apapane Himatione sanguinea he 'Apapane is the most abundant species of Hawaiian honeycreeper and is perhaps best known for its wide- ranging flights in search of localized blooms of ō'hi'a (Metrosideros polymorpha) flowers, its primary food source. 'Apapane are common in mesic and wet forests above 1,000 m elevation on the islands of Hawai'i, Maui, and Kaua'i; locally common at higher elevations on O'ahu; and rare or absent on Lāna'i and Moloka'i. density may exceed 3,000 birds/km2 The 'Apapane and the 'I'iwi (Vestiaria at times of 'ōhi'a flowering, among coccinea) are the only two species of Hawaiian the highest for a noncolonial honeycreeper in which the same subspecies species. Birds in breeding condition occurs on more than one island, although may be found in any month of the historically this is also true of the now very rare year, but peak breeding occurs 'Ō'ū (Psittirostra psittacea). The highest densities February through June. Pairs of 'Apapane are found in forests dominated by remain together during the breeding 'ōhi'a and above the distribution of mosquitoes, season and defend a small area which transmit avian malaria and avian pox to around the nest, but most 'Apapane native birds. The widespread movements of the 'Apapane in response to the seasonal and patchy distribution of ' ōhi'a The flowering have important implications for disease Birds of transmission, since the North 'Apapane is a primary carrier of avian malaria and America avian pox in Hawai'i.
    [Show full text]
  • Metadata for Hawaii Environmental Sensitivity Index (ESI)
    HYDRO Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Metadata: Identification_Information Data_Quality_Information Spatial_Data_Organization_Information Spatial_Reference_Information Entity_and_Attribute_Information Distribution_Information Metadata_Reference_Information Identification_Information: Citation: Citation_Information: Originator: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Publication_Date: 200111 Title: Hawaii ESI: HYDRO (Hydrology Polygons and Lines) Edition: Second Geospatial_Data_Presentation_Form: Vector digital data Series_Information: Series_Name: None Issue_Identification: Hawaii Publication_Information: Publication_Place: Seattle, Washington Publisher: National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Other_Citation_Details: Prepared by Research Planning, Inc., Columbia, South Carolina for the National Oceanic and Atmospheric Administration (NOAA), National Ocean Service, Office of Response and Restoration, Hazardous Materials Response Division, Seattle, Washington Description: Abstract: This data set contains vector arcs and polygons representing coastal hydrography used in the creation of the Environmental Sensitivity Index (ESI) for Hawaii. The HYDRO data layer contains all annotation used in producing the atlas. The annotation features are categorized into
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • The Following Reviews Express the Opinions of the Individual Reviewers Regarding the Strengths, Weaknesses, and Value of The
    REVIEWS EDITED BY M. ROSS LEIN Thefollowing reviews express the opinions of theindividual reviewers regarding the strengths, weaknesses, and value of thebooks they review. As such,they are subjective evaluations and do not necessarily reflect the opinions of theeditors or any officialpolicy of theA.O.U.--Eds. The Florida Scrub Jay: demographyof a cooper- geneticparents in the care of young that are not off- ative-breeding bird.--Glen E. Woolfenden and John spring of the helpers.To establishthat an individual W. Fitzpatrick. 1984. Princeton, New Jersey,Prince- is a helper, one must observeit caring for young that ton University Press. xiv + 406 pp., 1 color plate, are known not to be its own. There is no evidence many figures.ISBN 0-691-08366-5(cloth), 0-691-08367-3 in the chapter on procedures that Woolfenden and (paper).Cloth, $45.00;paper, $14.50.--For nearly two Fitzpatrick employed this criterion, although they decades three long-term studies of communally were aware of it (p. 4). Instead, throughout the book breeding birds, well known to readersof this review, jays are divided into breedersand helpers, implying have been in progress.The behavioral ecology of that if a bird is not a breeder it must be a helper these speciesis so complex that conclusionsreached ("Helpers are nonbreeders," p. 80). It is well known after only a few years of study can be quite mislead- for other speciesthat not all nonbreeders help, and ing. Eachnew year of studynot only enlargessample that individual nonbreedersvary significantlyin the sizesbut also provides insights that require impor- amount or intensity of their helping efforts.
    [Show full text]
  • Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma
    The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2020 Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative Isotopic Analysis to Explore the Uniqueness of Foraging Habits in Kauai and Hawaii Populations Drew Casey [email protected] Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Population Biology Commons Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Recommended Citation Casey, Drew, "Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative Isotopic Analysis to Explore the Uniqueness of Foraging Habits in Kauai and Hawaii Populations" (2020). Williams Honors College, Honors Research Projects. 1046. https://ideaexchange.uakron.edu/honors_research_projects/1046 This Dissertation/Thesis is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The University of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. Ecologically Distinct Populations of Hawaiian Petrel (Pterodroma sandwichensis): Quantitative
    [Show full text]