Prospects for Biological Control of Merremia Peltata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Research Article THERAPEUTIC REVIEW on MEDICINAL PLANT MERREMIA DISSECTA
Available Online at http://www.recentscientific.com International Journal of CODEN: IJRSFP (USA) Recent Scientific International Journal of Recent Scientific Research Research Vol. 11, Issue, 02 (D), pp. 37466-37470, February, 2020 ISSN: 0976-3031 DOI: 10.24327/IJRSR Research Article THERAPEUTIC REVIEW ON MEDICINAL PLANT MERREMIA DISSECTA 1*Wadgama, A A., 1Mandade R J and 2 Jangid, P R Department of Pharmacology, S.N.Institute of Pharmacy, Nagpur Road, Pusad, Yavatmal, Maharashtra, India DOI: http://dx.doi.org/10.24327/ijrsr.2020.1102.5115 ARTICLE INFO ABSTRACT Article History: Merremia dissecta (Jacq.) Hallier f. (Convolvulaceae) is a perennial herb, weed and climber native to the United States and distributed across the globe. The plant is cultivated and having importance as Received 4th November, 2019 th ''folk medicine''. Beside its remedial properties, it is often used as a condiment and ornamental. The Received in revised form 25 plant is fortuned with various bioactive constituents, specially leaves consist of glycosides, alkaloids, December, 2019 tannins, saponins, phenols and flavonoids. The presence of cyanogenic glycoside is characteristic Accepted 23rd January, 2020 th feature of Merremia dissecta. Thus, the phytoconstituents are reflecting pharmacological properties Published online 28 February, 2020 and reported as antimicrobial, antifungal and antipathogenic. Leaf extract is effective against snakebite venom. The goal of this review is to highlight the ethnobotany, phytochemical and Key Words: pharmacological information of this plant. Antimicrobial, Convolvulaceae, Glycoside, Merremia dissecta Copyright © Wadgama, A A., Mandade R J and Jangid, P R, 2020, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited. -
Appendix Color Plates of Solanales Species
Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Pollen Evolution and Its Taxonomic Significance in Cuscuta (Dodders, Convolvulaceae)
Plant Syst Evol (2010) 285:83–101 DOI 10.1007/s00606-009-0259-4 ORIGINAL ARTICLE Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae) Mark Welsh • Sasˇa Stefanovic´ • Mihai Costea Received: 12 June 2009 / Accepted: 28 December 2009 / Published online: 27 February 2010 Ó Springer-Verlag 2010 Abstract The pollen morphology of 148 taxa (135 spe- unknown in other Convolvulaceae, has evolved in Cuscuta cies and 13 varieties) of the parasitic plant genus Cuscuta only in two lineages (subg. Monogynella, and clade O of (dodders, Convolvulaceae) was examined using scanning subg. Grammica). Overall, the morphology of pollen electron microscopy. Six quantitative characters were supports Cuscuta as a sister to either the ‘‘bifid-style’’ coded using the gap-weighting method and optimized Convolvulaceae clade (Dicranostyloideae) or to one of the onto a consensus tree constructed from three large-scale members of this clade. Pollen characters alone are insuf- molecular phylogenies of the genus based on nuclear ficient to reconstruct phylogenetic relationships; however, internal transcribed spacer (ITS) and plastid trn-LF palynological information is useful for the species-level sequences. The results indicate that 3-zonocolpate pollen is taxonomy of Cuscuta. ancestral, while grains with more colpi (up to eight) have evolved only in two major lineages of Cuscuta (subg. Keywords Convolvulaceae Á Cuscuta Á Dodders Á Monogynella and clade O of subg. Grammica). Complex Evolution Á Phylogeny Á Pollen morphology Á morphological intergradations occur between species when Scanning electron microscopy Á Taxonomy their tectum is described using the traditional qualitative types—imperforate, perforate, and microreticulate. This continuous variation is better expressed quantitatively as Introduction ‘‘percent perforation,’’ namely the proportion of perforated area (puncta or lumina) from the total tectum surface. -
Classification of Convolvulaceae: a Phylogenetic Approach
Systematic Botany (2003), 28(4): pp. 791±806 q Copyright 2003 by the American Society of Plant Taxonomists Classi®cation of Convolvulaceae: A Phylogenetic Approach SASÏA STEFANOVICÂ ,1,3 DANIEL F. A USTIN,2 and RICHARD G. OLMSTEAD1 1Department of Botany, University of Washington, Box 355325, Seattle, Washington 98195-5325; 2Conservation and Science Department, Sonora Desert Museum, 2021 N Kinney Road, Tucson, Arizona 85743; 3Author for correspondence, present address: Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, Indiana, 47405 ([email protected]) Communicating Editor: Paul S. Manos ABSTRACT. Because recent molecular studies, based on multiple data sets from all three plant genomes, have indicated mutually congruent, well-resolved, and well-supported relationships within Convolvulaceae (the morning-glory family), a formal reclassi®cation of this family is presented here. Convolvulaceae, a large family of worldwide distribution, exhibiting a rich diversity of morphological characteristics and ecological habitats, are now circumscribed within twelve tribes. A key to these tribes of Convolvulaceae is offered. The group of spiny-pollen bearing Convolvulaceae (forming ``Echinoconiae'') and tribe Cuscuteae are retained essentially in their traditional sense, Cresseae are circumscribed with only minor modi®- cations, Convolvuleae and Erycibeae are recognized in a restricted sense, while Dichondreae and Maripeae are expanded. Also, to produce a tribal taxonomy that better re¯ects phylogenetic relationships, the concept of Poraneae is abandoned as arti®cial, three new tribes are recognized (Aniseieae, Cardiochlamyeae, and Jacquemontieae), and a new tribal status is proposed for the Malagasy endemic Humbertia (Humbertieae). ``Merremieae'' are tentatively retained even though the mono- phyly of this tribe is not certain. -
Comparative Biology of Seed Dormancy-Break and Germination in Convolvulaceae (Asterids, Solanales)
University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) Kariyawasam Marthinna Gamage Gehan Jayasuriya University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Jayasuriya, Kariyawasam Marthinna Gamage Gehan, "COMPARATIVE BIOLOGY OF SEED DORMANCY- BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES)" (2008). University of Kentucky Doctoral Dissertations. 639. https://uknowledge.uky.edu/gradschool_diss/639 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Kariyawasam Marthinna Gamage Gehan Jayasuriya Graduate School University of Kentucky 2008 COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) ABSRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Art and Sciences at the University of Kentucky By Kariyawasam Marthinna Gamage Gehan Jayasuriya Lexington, Kentucky Co-Directors: Dr. Jerry M. Baskin, Professor of Biology Dr. Carol C. Baskin, Professor of Biology and of Plant and Soil Sciences Lexington, Kentucky 2008 Copyright © Gehan Jayasuriya 2008 ABSTRACT OF DISSERTATION COMPARATIVE BIOLOGY OF SEED DORMANCY-BREAK AND GERMINATION IN CONVOLVULACEAE (ASTERIDS, SOLANALES) The biology of seed dormancy and germination of 46 species representing 11 of the 12 tribes in Convolvulaceae were compared in laboratory (mostly), field and greenhouse experiments. -
Convolvulaceae) – Cordisepalum, Dinetus, Duperreya, Porana, Poranopsis, and Tridynamia
BLUMEA 51: 403–491 Published on 8 December 2006 http://dx.doi.org/10.3767/000651906X622067 REVISION OF ASIATIC PORANEAE (CONVOLVULACEAE) – CORDISEPALUM, DINETUS, DUPERREYA, PORANA, PORANOPSIS, AND TRIDYNAMIA G.W. STAPLES Bishop Museum, 1525 Bernice St., Honolulu, Hawai’i, 96817-2704, USA SUMMARY The genera Porana Burm.f. and Cordisepalum Verdc. are taxonomically revised. Five distinct groups of species segregated from Porana are here recognized at generic rank and the names Dinetus Sweet, Duperreya Gaudich., Poranopsis Roberty, and Tridynamia Gagnep., are taken up for four of them. Porana Burm.f., s.str., is herein restricted to two species. Cordisepalum is maintained as a genus distinct from, and closely related to, Poranopsis. All names are typified, selected taxa and characters are illustrated, and distribution maps are provided for all taxa. In total 20 species, one comprising two subspecies, are recognized. Two new species, Cordisepalum phalanthopetalum and Dinetus rhombicarpus, are described and illustrated. Names for Porana described from Africa, Madagascar, and the Americas are dealt with in the Species Exclusae. An index of numbered collections examined is provided. Key words: Convolvulaceae, Cordisepalum, Duperreya, Dinetus, Porana, Poranopsis, Tridynamia, new species. INTRODUCTION Fifty epithets have been published or combined in Porana Burm.f. at species rank and an additional eight infraspecific taxa have been named. The majority of these taxa were described from tropical continental Asia, a few from Malesia and Australia, with widely disjunct species reported from Africa, Socotra, Madagascar, and Mexico. As histori- cally conceived, Porana species share in common the characteristics of an enlarged, persistent, wing-like calyx that invests an indehiscent, usually one-seeded fruit with a papery pericarp. -
Operculina Turpethum (Linn.) Silva Manso As a Medicinal Plant Species: a Review on Bioactive Components and Pharmacological Properties Shweta Gupta, Akash Ved
Pharmacogn. Rev. REVIEW ARTICLE A multifaceted peer reviewed journal in the field of Pharmacognosy and Natural Products www.phcogrev.com | www.phcog.net Operculina turpethum (Linn.) Silva Manso as a Medicinal Plant Species: A Review on Bioactive Components and Pharmacological Properties Shweta Gupta, Akash Ved Department of Pharmacy, Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh, India ABSTRACT Operculina turpethum (Linn.) (OT) Silva Manso belongs to the family Convolvulaceae. This review incorporates literature for the phytochemical and pharmacological profile of OT herb. Exhaustive literature survey was done using all the details on phytochemistry and pharmacology of OT available. This herb was found to be a potent source of bioactive compounds such as α‑ and β‑turpethein, turpethinic acids (A, B, C, D, and E), coumarins, cycloartenol, lanosta‑5‑ene, 24‑methylene‑δ‑5‑lanosterol, α‑ and β‑rhamnose, β‑sitosterol, lupeol, scopoletin, betulin, acrylamide, stigma‑5,22dien‑3‑O‑β‑D‑glucopyr anoside, β‑sitosterol‑β‑D‑glucoside (H‑1), 22,23‑dihydro‑α‑spinosterol‑β‑D‑glucoside (H‑2), and salicylic acid (CH‑2), which are useful in fevers, edema, ascites, anorexia, constipation, hepatosplenomegaly, hemorrhoids, cervical lymphadenitis, fistulas, constipation, chronic gout, fever, bronchitis, ulcers, hemorrhoids, tumors, obesity, jaundice, herpes, induce lacrimation, and other skin disorders. From the aerial parts of OT, four new dammarane‑type saponins that are operculinosides A–D (1–4) were isolated that showed particular hepatoprotective -
Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat Pdf Edition
Handbook of the Bruchidae of the United States and Canada Introduction to the Acrobat pdf edition The Acrobat pdf version of this publication, though identical in content to the print version, differs slightly in format from the print version. Also, in volume 2 the items on the errata list for the print version have been corrected. [THIS PAGE INTENTIONALLY BLANK] United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) Volume I I II United States Department of Agriculture Handbook of the Agricultural Research Bruchidae of the United Service Technical States and Canada Bulletin Number 1912 November 2004 (Insecta, Coleoptera) John M. Kingsolver Volume I Kingsolver was research entomologist, Systematic Entomology Laboratory, PSI, Agricultural Research Service, U.S. Department of Agriculture. He is presently research associate with the Florida State Collection of Arthropods. III Abstract Hemisphere. It provides the means to identify these insects for taxonomists, students, museum curators, biodiver- Kingsolver, John M. 2004. Handbook of sity workers, port identifiers, and ecolo- the Bruchidae of the United States and gists conducting studies in rangeland, Canada (Insecta, Coleoptera). U.S. Depart- pasture, and forest management in the ment of Agriculture, Technical Bulletin United States and Canada. 1912, 2 vol., 636 pp. Mention of commercial products in this Distinguishing characteristics and diag- publication is solely for the purpose of nostic keys are given for the 5 subfami- providing specific information and does lies, 24 genera, and 156 species of the not imply recommendation or endorse- seed beetle family Bruchidae of the Unit- ment by the U.S. -
Host Choice in Rotylenchulus Species
Available online at www.ijpab.com Rathore Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) ISSN: 2320 – 7051 DOI: http://dx.doi.org/10.18782/2320-7051.6878 ISSN: 2320 – 7051 Int. J. Pure App. Biosci. 6 (5): 346-354 (2018) Research Article Host Choice in Rotylenchulus Species Y. S. Rathore* Principal Scientist (Retd.), Indian Institute of Pulses Research, Kanpur-208 024 (U.P.) India *Corresponding Author E-mail: [email protected] Received: 12.09.2018 | Revised: 9.10.2018 | Accepted: 16.10.2018 ABSTRACT The reniformis nematodes of the genus Rotylenchulus (Haplolaimidae: Nematoda) are sedentary semi-endoparasites of numerous crops. There are ten species out of which R. reniformis and R. parvus are important, and three species (R. amanictus, R. clavicadatus, R. leptus) are monophagous: two on monocots and one on Rosids. In general, Rotylenchulus species are capable of feeding from very primitive Magnoliids to plants of advanced category. Preference was distinctly observed towards the plants in Rosids (42.779%) followed by monocots (23.949%) and Asterids (21.755%). The SAI values were also higher for these groups of plants. The study on lineages further revealed intimate affinity to febids (25.594%), followed by commelinids (18.647%), malvids (16.088%), lamiids (11.883%), and campanulids (9.141%). Poales contribution within commelinids was 65.353%. Maximum affinity of Rotylenchulus species was observed by their association with plants from families Poaceae (7), followed by Fabaceae (6), Malvaceae (6), Asteraceae (4), Oleaceae (4), Soanaceae (4) and so on. Key words: Agiosperms, Gymnosperms, APG IV system, Reniform nemtodes, Monocots, Rosids, Asterids INTRODUCTION number of crops, whereas the other eight Plant parasitic nematodes pose a great species are of limited importance. -
Journal-Of-Plant-Resources -2020.Pdf
Volume 18 Number 1 Government of Nepal Ministry of Forests and Environment Department of Plant Resources Thapathali, Kathmandu, Nepal 2020 ISSN 1995 - 8579 Journal of Plant Resources, Vol. 18, No. 1 JOURNAL OF PLANT RESOURCES Government of Nepal Ministry of Forests and Environment Department of Plant Resources Thapathali, Kathmandu, Nepal 2020 Advisory Board Mr. Dhananjaya Paudyal Mr. Keshav Kumar Neupane Mr. Mohan Dev Joshi Managing Editor Mr. Tara Datt Bhat Editorial Board Prof. Dr. Dharma Raj Dangol Ms. Usha Tandukar Mr. Rakesh Kumar Tripathi Mr. Pramesh Bahadur Lakhey Ms. Nishanta Shrestha Ms. Pratiksha Shrestha Date of Online Publication: 2020 July Cover Photo: From top to clock wise direction. Inflorescence bearing multiple flowers in a cluster - Rhododendron cowanianum Davidian (PC: Pratikshya Chalise) Vanda cristata Wall. ex Lindl. (PC: Sangram Karki) Seedlings developed in half strength MS medium of Dendrobium crepidatum Lindl. & Paxton (PC: Prithivi Raj Gurung) Pycnoporus cinnabarinus (Jacq.: Fr.) Karst. (PC: Rajendra Acharya) Preparative HPLC (PC: Devi Prasad Bhandari) Flower head of Mimosa diplotricha C. Wright (PC: Lila Nath Sharma) © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246, E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, J. Pl. Res. vol. 18, Issue 1 pages, Department of Plant Resources, Thapathali, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Publicity and Documentation Section Department of Plant Resources (DPR), Thapathali, Kathmandu, Nepal. Reviewers: The issue can be retrieved from http://www.dpr.gov.np Prof. Dr.Anjana Singh Dr. Krishna Bhakta Maharjan Prof. Dr. Ram Kailash Prasad Yadav Dr. -
Merremia Peltata Global Invasive Species Database (GISD)
FULL ACCOUNT FOR: Merremia peltata Merremia peltata System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Solanales Convolvulaceae Common name Niaouli-Oelbaum (German), teb el yas (Palauan, Palau), merremia (English), iohl (English, Pohnpei), fitau (English, Chuuk), pohue (English, French Polynesia), iol (English, Pohnpei), fitaw (English, Chuuk), puhlah (English, Kosrae), big lif rop (English, Papua New Guinea), wa mbula (English, Fiji), wa bula (English, Fiji), wa damu (English, Fiji), wa ndamu (English, Fiji), viliyawa (English, Fiji), wiliviwa (English, Fiji), veliyana (English, Fiji), wiliao (English, Fiji), abui (English, Solomon Islands), grobihi (English, Solomon Islands), arosumou (English, Solomon Islands), fue mea (Tongan), fue vao (Samoan), fue lautetele (Samoan), fue (Niuean), fue kula (Niuean), fue vao (Niuean), agon (English, Guam), lagun (English, Guam), kebeas (Palauan), wachathal (Yapese), big leaf (English, Vanuatu) Synonym Convolvulus peltatus , L. Ipomoea nymphaeifolia , Blume Merremia nymphaeifolia , (Dietr.) Hall. fil. Ipomoea peltata , (L.) Choisy Operculina peltata , (L.) Hall. fil. Similar species Summary Merremia peltata is a vine that strangles vegetation and invades forest strands. It may provide rapid ground cover following land disturbance reducing erosion and nutrient loss. There is debate over the extent to which external factors such as cyclones and land clearing drive the invasiveness of the species. It may be a successional component of regenerating forest in its native range. view this species on IUCN Red List Global Invasive Species Database (GISD) 2021. Species profile Merremia peltata. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=163 [Accessed 07 October 2021] FULL ACCOUNT FOR: Merremia peltata Species Description Merremia peltata is a coarse climbing vine with underground tubers (FAO Technical Bulletin).