Annelida) Inhabiting Hard-Bottom Substrates in Trinidad and Tobago, West Indies
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Annelida, Phyllodocida)
A peer-reviewed open-access journal ZooKeys 488: 1–29Guide (2015) and keys for the identification of Syllidae( Annelida, Phyllodocida)... 1 doi: 10.3897/zookeys.488.9061 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Guide and keys for the identification of Syllidae (Annelida, Phyllodocida) from the British Isles (reported and expected species) Guillermo San Martín1, Tim M. Worsfold2 1 Departamento de Biología (Zoología), Laboratorio de Biología Marina e Invertebrados, Facultad de Ciencias, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain 2 APEM Limited, Diamond Centre, Unit 7, Works Road, Letchworth Garden City, Hertfordshire SG6 1LW, UK Corresponding author: Guillermo San Martín ([email protected]) Academic editor: Chris Glasby | Received 3 December 2014 | Accepted 1 February 2015 | Published 19 March 2015 http://zoobank.org/E9FCFEEA-7C9C-44BF-AB4A-CEBECCBC2C17 Citation: San Martín G, Worsfold TM (2015) Guide and keys for the identification of Syllidae (Annelida, Phyllodocida) from the British Isles (reported and expected species). ZooKeys 488: 1–29. doi: 10.3897/zookeys.488.9061 Abstract In November 2012, a workshop was carried out on the taxonomy and systematics of the family Syllidae (Annelida: Phyllodocida) at the Dove Marine Laboratory, Cullercoats, Tynemouth, UK for the National Marine Biological Analytical Quality Control (NMBAQC) Scheme. Illustrated keys for subfamilies, genera and species found in British and Irish waters were provided for participants from the major national agencies and consultancies involved in benthic sample processing. After the workshop, we prepared updates to these keys, to include some additional species provided by participants, and some species reported from nearby areas. -
Sistema Arrecifal
PROGRAMA DE MANEJO México l Parque Nacional Sistema Arrecifal Veracruzano es uno de los parques nacionales con características marinas más reconocidas en México por su ubicación, estructura, resiliencia y biodiversidad, está integrado por las islas de Enmedio, Santiaguillo, Verde, Sacricios y Salmedina; al menos 45 arrecifes coralinos, de los que algunos presentan lagunas arrecifales con pastos marinos, así como playas y bajos. Se ubican en la porción interna de la plataforma continental en el Golfo de México y se elevan desde profundidades cercanas a los 40 metros. El Programa de Manejo es el instrumento rector de planeación y regulación que establece las actividades, acciones y lineamientos básicos para el manejo y administración del área en el corto, mediano y largo plazo. En este sentido, establece las acciones que permiten asegurar el equilibrio y la continuidad de los procesos ecológicos, salvaguardar la diversidad genética de las especies, el aprovechamiento racional de los recursos y proporcionar un campo propicio para la investigación cientíca y el estudio del ecosistema, permitiendo integrar la conservación de la riqueza natural con el bienestar social y el Parque Nacional desarrollo económico. Parque Nacional Sistema Arrecifal Veracruzano El Programa de Manejo del Parque Nacional Sistema Arrecifal Veracruzano tiene la importante misión de proteger la diversidad del Área Natural Protegida, mantener el acervo Sistema Arrecifal genético natural y fomentar el desarrollo sustentable de los recursos renovables presentes, permitiendo el disfrute de los servicios ambientales y de esparcimiento que presta a los usuarios. Es por ello que en su proceso de elaboración se realizaron reuniones de discusión y consenso con los involucrados en el manejo y uso del área considerando las Veracruzano necesidades de todos los sectores implicados, con base en los lineamientos legales establecidos y la argumentación técnica de soporte. -
Title the SYLLIDAE (POLYCHAETOUS ANNELIDS
THE SYLLIDAE (POLYCHAETOUS ANNELIDS) FROM Title JAPAN (VI) -DISTRIBUTION AND LITERATURE- Author(s) Imajima, Minoru PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1967), 14(5): 351-368 Issue Date 1967-01-25 URL http://hdl.handle.net/2433/175453 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University THE SYLLIDAE (POLYCHAETOUS ANNELIDS) FROM JAPAN (VI)* DISTRIBUTION AND LITERATURE MINORU IMAJIMA National Science Museum, Japan With 4 MaPs and 4 Tables Distribution of Syllidae in the Uraga Strait at the entrance to Tokyo Bay Tokyo Bay is situated on the Pacific coast of the central part of the Japanese main island, Honshu. The bay is embraced by two peninsulas, the Miura Peninsula on the west, and the Boso Peninsula on the east. It is connected with the open ocean at the mouth of Sagami Bay by a narrow strip of water, the Uraga Strait. A submerged gorge, known as the Tokyo Submarine Canyon, cuts the shelf deeply in the strait. However the canyon does not reach the main basin of Tokyo Bay and terminates rather abruptly midway in the strait, where it becomes narrower and shallower (330-100 m). The water in the Uraga Strait is much influenced by the coastal water of Tokyo Bay (HoRIKOSHI, 1962). Surveys were made by Dr. M. HORIKOSHI, of the Ocean Research Institute, University of Tokyo to provide information on the benthonic communities of Tokyo Bay. 127 stations were taken in this area. The bottom samples obtained by dredg ing were washed in a sieve of 1 rom standard mesh and then classified into several animal groups. -
Eusyllinae and Syllinae (Annelida: Polychaeta) from Northern Cyprus (Eastern Mediterranean Sea) with a Checklist of Species Reported from the Levant Sea
BULLETIN OF MARINE SCIENCE, 72(3): 769–793, 2003 EUSYLLINAE AND SYLLINAE (ANNELIDA: POLYCHAETA) FROM NORTHERN CYPRUS (EASTERN MEDITERRANEAN SEA) WITH A CHECKLIST OF SPECIES REPORTED FROM THE LEVANT SEA Melih Ertan Çinar and Zeki Ergen ABSTRACT Shallow and deep-water benthic samples collected during two cruises to northern Cyprus held in 1997 and 1998 showed relatively high species richness of Eusyllinae and Syllinae, with a total of 49 species. The materials contained one species (Eusyllis kupfferi Langer- hans, 1879) new to the Mediterranean Sea, seven species new to the Eastern Mediterra- nean Sea, 23 species new to the Levantine Sea and 42 species new to Cyprus. The mor- phological, biometrical and distributional characteristics of the species as well as a checklist of the Eusyllinae and Syllinae species reported from the Levant coast are provided. A review of papers treating zoobenthos of the Levantine Sea revealed a total of 33 species of Eusyllinae and Syllinae, eight of which were reported from Cyprus: Eusyllis assimilis, Syllides edentulus (as S. edentula), Ehlersia ferrugina, Haplosyllis spongicola, Syllis armillaris, S. prolifera, S. variegata, and Trypanosyllis zebra (Ben-Eliahu, 1972, 1995; Ben-Eliahu and Fiege, 1995; Russo, 1997). The present study deals with species richness of Eusyllinae and Syllinae inhabiting shallow and deep-water benthic assemblages of the Cypriot coast, and their morphometrical and distributional patterns. METHODS Sampling procedures, depths and nature of the substrata are given in Çinar et al. (this volume). RESULTS Faunistic analysis of a total of 77 benthic samples taken by the R/V K. PIRI REIS during two cruises in May 1997 and July 1998, yielded 1679 specimens belonging to 49 species; the Eusyllinae had 16 species and 347 individuals, and the Syllinae possessed 33 species and 1332 individuals. -
Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶǡͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al. -
Polychaeta) with Reference to What Was Published in the Red Sea and Suez Canal, Egypt
Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(5): 235 - 251 (2019) www.ejabf.journals.ekb.eg Catalog of Syllidae (Polychaeta) with reference to what was published in the Red Sea and Suez Canal, Egypt Faiza Ali Abd- Elnaby National Institute of Oceanography and Fisheries (NIOF) Alexandria, Egypt. [email protected] ARTICLE INFO ABSTRACT Article History: Thirty-six Syllid species were identified in the Petro Gulf Misr Received: Nov. 19, 2019 Project (2017, 2018, 2019). 58 sediment samples were collected from Accepted: Dec. 20, 2019 the Suez Gulf (Gable El Zeit Area). The data revealed that 36 syllidae Online: Dec. 23, 2019 species were recorded; 19 of them are considered new recorded _______________ species reported for the first time during the present study (Species Keywords: with*). Of these species, 13 of them were previously reported in the Polychaetes Suez Canal. This research is considered a new addition to the family Syllidae monitoring work of polychaetes in the Gulf of Suez, supplied by data Suez Gulf and distribution of Syllidae species in the Suez Canal, Red Sea and Suez Canal Suez Gulf region. Adding notes of description for some. Red Sea INTRODUCTION Syllidae are small-sized polychaetes occurring on all substrates, the Syllidae are the most widespread family, including about 900 distinct species belonging to more than 80 genera with complicated morphological and ecological characteristics (Faulwetter et al. 2011). Many polychaetes studies have been conducted in the Suez Canal, Suez Gulf and Aqaba Gulf (Fauvel, 1927; Ben-Eliahu, 1972; Amoureux et al.; Wehe and Fiege, 2002; Hove et al., 2006). -
Polychaeta: Syllidae) from South Africa, One of Them Viviparous, with Remarks on Larval Development and Vivipary
Simon C, San Martín G, Robinson G. Two new species of Syllis (Polychaeta: Syllidae) from South Africa, one of them viviparous, with remarks on larval development and vivipary. Journal of the Marine Biological Association of the United Kingdom 2014, 94(4), 729-746. Copyright: This is the authors’ accepted manuscript of an article that was published in its final definitive form by Cambridge University Press, 2014. Link to published article: http://dx.doi.org/10.1017/S0025315413001926 Date deposited: 16/12/2015 This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License Newcastle University ePrints - eprint.ncl.ac.uk Journal of the Marine Biological Association of the United Kingdom Page 2 of 36 1 Running head: New Syllis from South Africa 2 3 Two new species of Syllis (Polychaeta: Syllidae) from South Africa, one of them 4 viviparous, with remarks on larval development and vivipary 5 6 Carol Simon * 1, Guillermo San Martín 2, Georgina Robinson 3 7 1 Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South 8 Africa. 9 2 Departmento de Biología (Zoología), Facultad de Ciencias, Universidad Autónoma de 10 Madrid, Canto Blanco, 28049 Madrid, Spain 11 3 School of Marine Science and Technology, Newcastle University, Newcastle NE3 12 7RU, UK & Department of Ichthyology and Fisheries Science, Rhodes University, 13 Grahamstown 6140,For South Africa.Review Only 14 15 *Corresponding author: Tel +27 21 808 3068; Fax: +27 21 808 2405. Email address: 16 [email protected] 17 1 Cambridge University Press Page 3 of 36 Journal of the Marine Biological Association of the United Kingdom 18 Abstract 19 20 Two new species of South African Syllidae of the genus Syllis Lamarck, 1818 21 are described. -
Cellular Proliferation Dynamics During Regeneration in Syllis Malaquini
Ribeiro et al. Frontiers in Zoology (2021) 18:27 https://doi.org/10.1186/s12983-021-00396-y RESEARCH Open Access Cellular proliferation dynamics during regeneration in Syllis malaquini (Syllidae, Annelida) Rannyele Passos Ribeiro1* , Bernhard Egger2 , Guillermo Ponz-Segrelles1 and M. Teresa Aguado3* Abstract Background: In syllids (Annelida, Syllidae), the regenerative blastema was subject of many studies in the mid and late XXth century. This work on syllid regeneration showed that the blastema is developed by a process of dedifferentiation of cells near the wound, followed by their proliferation and redifferentiation (cells differentiate to the original cell type) or, in some specific cases, transdifferentiation (cells differentiate to a cell type different from the original). Up to date, participation of stem cells or pre-existing proliferative cells in the blastema development has never been observed in syllids. This study provides the first comprehensive description of Syllis malaquini’s regenerative capacity, including data on the cellular proliferation dynamics by using an EdU/BrdU labelling approach, in order to trace proliferative cells (S-phase cells) present before and after operation. Results: Syllis malaquini can restore the anterior and posterior body from different cutting levels under experimental conditions, even from midbody fragments. Our results on cellular proliferation showed that S-phase cells present in the body before bisection do not significantly contribute to blastema development. However, in some specimens cut at the level of the proventricle, cells in S-phase located in the digestive tube before bisection participated in regeneration. Also, our results showed that nucleus shape allows to distinguish different types of blastemal cells as forming specific tissues. -
Sarda Et Al 2002
Micronesica 34(2):165-175, 2002 An association between a syllid polychaete, Haplosyllis basticola n. sp., and the sponge Ianthella basta RAFAEL SARDÁ, CONXITA AVILA Centre d’Estudis Avançats de Blanes (CSIC). Camí de Santa Bàrbara, s/n. 17300-Blanes, Girona (Spain) AND VALERIE J. PAUL Marine Laboratory UOG. University of Guam. Mangilao, Guam 96923. USA Abstract—The association between a syllid polychaete and the marine sponge Ianthella basta (Pallas, 1776) is described from the island of Guam (Micronesia). The polychaete is a new species of Haplosyllis Langerhans, 1879, named H. basticola. The new species was observed infesting in extraordinary high numbers the inside of the sponge canals and mesenchyme without any specially built tube-like structure. The closest species to H. basticola is H. anthogorgicola Utinomi, 1956 but they clearly differ in size, morphology of the simple setae and the annu- lations of the dorsal cirri. Haplosyllis basticola, n. sp. is characterized by a maximum of 25 setigers, dorsal cirri of the anterior 1st to 4th setigers clearly annulated averaging 10, 3, 3, and 4 annulations respectively, and the presence of only one simple seta by parapodia with a large subter- minal tooth and two smaller terminal teeth. A size frequency histogram of the population showed a unimodal distribution, which could be an indication of a continuous reproductive effort. The presence of female and male reproductive stolons gave us the opportunity to describe them. The chemical analysis of worm and sponge extracts and a Nuclear Magnetic Resonance Spectroscopy analysis done on H. basticola failed to confirm the presence of bastadins in the worm. -
Title the SYLLIDAE (POLYCHAETOUS ANNELIDS) from JAPAN
THE SYLLIDAE (POLYCHAETOUS ANNELIDS) FROM Title JAPAN (VI) -DISTRIBUTION AND LITERATURE- Author(s) Imajima, Minoru PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1967), 14(5): 351-368 Issue Date 1967-01-25 URL http://hdl.handle.net/2433/175453 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University THE SYLLIDAE (POLYCHAETOUS ANNELIDS) FROM JAPAN (VI)* DISTRIBUTION AND LITERATURE MINORU IMAJIMA National Science Museum, Japan With 4 MaPs and 4 Tables Distribution of Syllidae in the Uraga Strait at the entrance to Tokyo Bay Tokyo Bay is situated on the Pacific coast of the central part of the Japanese main island, Honshu. The bay is embraced by two peninsulas, the Miura Peninsula on the west, and the Boso Peninsula on the east. It is connected with the open ocean at the mouth of Sagami Bay by a narrow strip of water, the Uraga Strait. A submerged gorge, known as the Tokyo Submarine Canyon, cuts the shelf deeply in the strait. However the canyon does not reach the main basin of Tokyo Bay and terminates rather abruptly midway in the strait, where it becomes narrower and shallower (330-100 m). The water in the Uraga Strait is much influenced by the coastal water of Tokyo Bay (HoRIKOSHI, 1962). Surveys were made by Dr. M. HORIKOSHI, of the Ocean Research Institute, University of Tokyo to provide information on the benthonic communities of Tokyo Bay. 127 stations were taken in this area. The bottom samples obtained by dredg ing were washed in a sieve of 1 rom standard mesh and then classified into several animal groups. -
Benthic Invertebrate Species Richness & Diversity At
BBEENNTTHHIICC INVVEERTTEEBBRRAATTEE SPPEECCIIEESSRRIICCHHNNEESSSS && DDIIVVEERRSSIITTYYAATT DIIFFFFEERRENNTTHHAABBIITTAATTSS IINN TTHHEEGGRREEAATEERR CCHHAARRLLOOTTTTEE HAARRBBOORRSSYYSSTTEEMM Charlotte Harbor National Estuary Program 1926 Victoria Avenue Fort Myers, Florida 33901 March 2007 Mote Marine Laboratory Technical Report No. 1169 The Charlotte Harbor National Estuary Program is a partnership of citizens, elected officials, resource managers and commercial and recreational resource users working to improve the water quality and ecological integrity of the greater Charlotte Harbor watershed. A cooperative decision-making process is used within the program to address diverse resource management concerns in the 4,400 square mile study area. Many of these partners also financially support the Program, which, in turn, affords the Program opportunities to fund projects such as this. The entities that have financially supported the program include the following: U.S. Environmental Protection Agency Southwest Florida Water Management District South Florida Water Management District Florida Department of Environmental Protection Florida Coastal Zone Management Program Peace River/Manasota Regional Water Supply Authority Polk, Sarasota, Manatee, Lee, Charlotte, DeSoto and Hardee Counties Cities of Sanibel, Cape Coral, Fort Myers, Punta Gorda, North Port, Venice and Fort Myers Beach and the Southwest Florida Regional Planning Council. ACKNOWLEDGMENTS This document was prepared with support from the Charlotte Harbor National Estuary Program with supplemental support from Mote Marine Laboratory. The project was conducted through the Benthic Ecology Program of Mote's Center for Coastal Ecology. Mote staff project participants included: Principal Investigator James K. Culter; Field Biologists and Invertebrate Taxonomists, Jay R. Leverone, Debi Ingrao, Anamari Boyes, Bernadette Hohmann and Lucas Jennings; Data Management, Jay Sprinkel and Janet Gannon; Sediment Analysis, Jon Perry and Ari Nissanka. -
Limits on the Bathymetric Distribution of Keratose Sponges: a Field Test in Deep Water
MARINE ECOLOGY PROGRESS SERIES Vol. 174: 123-139.1998 Published November 26 Mar Ecol Prog Ser Limits on the bathymetric distribution of keratose sponges: a field test in deep water Manuel ~aldonado'**,Craig M. young2 'Department of Aquatic Biology, Centre de Estudios Avanzados de Blanes (CSIC), Camino de Santa Barbara sin, E-17300 Blanes, Girona, Spain Department of Larval Ecology, Harbor Branch Oceanographic Institution, 5600 U.S. 1 Hwy North, Fort Pierce, Florida 34946, USA ABSTRACT The keratose sponges (1.e. those in which the mineral skeleton is replaced by a collage- nous skeleton) are generally restricted to shallow-water habitats, but the causes of this distinct bathy- metric pattern remain unclear. Sharp pycnoclines at the depth of the upper slope may hinder coloniza- tion of deep waters because of thermal stress or reduced light and particulate food below the pycnoclines. It is also possible that oligotrophy and loss of symbiotic cyanobacteria below the pycno- cline may lead to a nutritional stress. Using manned submersibles in Exuma Sound, Bahamas, we deter- mined that the pycnocline lies between 70 and 100 m. We transplanted individuals of 2 keratose sponges (Aplysina fistulans and Ircinia felix) from their natural habitat on a shallow reef (4 m deep) to 3 depths (100, 200, 300 rn) within or below the pycnocline to investigate mortality and changes in body size, shape and histology as a function of depth. We also recorded changes in populations of photosyn- thetic and heterotrophic symbiotic bacteria, as well as the parasitic polychaete Haplosyllis spongicola. By transplanting individuals of A. fistularis bearing buds for asexual propagation (fistules)and individ- uals of I.