Synthesis of Poly(Ether Ether Ketone) with High Content of Sodium Sulfonate Groups and Its Membrane Characteristics
Total Page:16
File Type:pdf, Size:1020Kb
ELSEVIER Polymer 40 (1999)795-799 Polymer Communication Synthesis of poly(ether ether ketone) with high content of sodium sulfonate groups and its membrane characteristics Feng Wang*, Jianke Li, Tianlu Chen, Jiping Xu Changchun Institute of Applied Chemistry, Changchun 130022, People’s Republic ofChina Received 16 December 1998; revised 12 March 1998; accepted 24 March 1998 Abstract Poly(ether ether ketone) with high content of sodium sulfonate groups prepared directly from 5,5’-carbonylbis(2-fluorobenzene sulfonate), 4,4’-difluorobenzophenone and phenolphthalein via aromatic nucleophilic substitution reaction. The polymer showed excellent thermal stability, high permeability of water vapour, high permselectivity of water vapour over nitrogen, and high permselectivity of anions. 0 1998 Elsevier Science Ltd. All rights reserved. Keywords: Poly(ether ether ketone); Sodium sulfonate; Permselectivity 1. Introduction In this communication, we describe the synthesis of poly (ether ether ketone) bearing 1.2 sodium sulfonate groups per Among the attractive properties of the engineering repeat unit. This is the first time that a poly(ether ether thermoplastic poly(ether ether ketone)s, good solvent resis- ketone) with degree of sulfonation above 1.0 was synthe- tance, high thermo-oxdative stability and good mechanical sized. The permeation behaviour of water vapour and nitro- properties are significant [l]. In the last decade, consider- gen through the membranes was studied, and the ion able effort was made to modify their chemical nature while permselectivity was determined as well. maintaining their excellent physical properties to find membrane applications in electrodialysis and gas dehumi- dification. It has been proven that sulfonation is an effective 2. Experimental method to increase both the permeation rate of water vapour and the separation factor of water vapour over gases [2]. In a 100 ml three-necked round bottom flask, fitted with a A number of groups have reported the sulfonation of Dean-Stark trap with reflux condenser, a nitrogen inlet, and a poly(ether ether ketone)s, using different sulfonating agents, thermometer, 2.530 g (6 mmol) of 5,5’-carbonylbis(2-fluoro- such as concentrated sulfuric acid [3], chlorosulfonic acid benzene sulfonate), 0.873 g (4 mmol) of 4,4’-difluorobenzo- [4], pure or complexed sulfur trioxide [4-61, and methane phenone, 3.183 g (10 mmol) of phenolphthalein and 1.520 g sulfuric acid/concentrated sulfuric acid [7]. Poly(ether ether potassium carbonate were dissolved in a mixture of dimethyl ketone)s can be sulfonated with a sulfonation degree of 1.0 sulfoxide (16 ml) and toluene (8 ml). The entire operation per repeat unit [8,9]. However, a greater degree of sulfona- was conducted under a constant stream of nitrogen. The mix- tion is difficult to achieve due to the insolubility and side ture was refluxed for 3 h. After the water was essentially reactions such as interpolymer crosslinking and degrada- removed from the reaction mixture by azeotropic distillation, tion. In a p?evious work, we reported the synthesis of sulfo- the temperature was raised to 175°C to distill out the toluene and nated poly(ether ether ketone) with a sulfonation degree of kept at this temperature for 6 h. Then the reaction mixture was 1.0 per repeat unit, using sodium 2,5_dihydroxybenzene poured into 500 ml acetone to precipitate the polymer. sulfonate as one of the monomers for polycondensation [lo]. Another monomer, sodium 5,5’-carbonylbis(2-fluoro- benzene sulfonate) [ll], might be employed to prepare 3. Results and discussion poly(ether ether ketone) with a high degree of sulfonation. As shown in Scheme 1, polymer I (P-I) was synthesized * Corresponding author. by the aromatic nucleophilic substitution reaction of 0032-3861/98/$ - see front matter 0 1998 Elsevier Science Ltd. All rights reserved. PI2 SOO32-3861(98)00292-4 11-d 30 SSOI Jq$aM IE!JIII~ au ‘su!~q3 JawClod 30 uOg nq~uns J,OSE ut?ql lay&q a.uw~adural E 1~ acw[d awl -FsoduroDap aql30 lInsa1 ayl sl qxq~ ‘1-d “03 ahIn v8*1 aql pInoqs uoylye.11 SW@ aql pue luaw%as laurLIod 33gs E 01 pai ui paAlasq0 SBM ‘3,oss put! ozp uaamlaq ‘a%els SSOI1qWaM suo~l~walu~ nInDaIoulIalur %uo.w aql lsql %upe3~puy ‘~,OSE au0 Aluo ‘2 +?!+Juy u~oqs sv .acwun3 v%y aql u! 3,os1 -001 30 a&n?, aInlwaduIa1 E? uy pahlasqo SBM (“1) aIn le U~I.I.I0~ .103 papp 1s.1y alaM saIdww au .alaqdsourle -Eladural uoyly1~11 SW@ ou ‘JaAoarom .racuLIod snoqdrotue ua%orl!u e uy I_ UIW. a,01 30 awl %gvaq E lr! snlweddv IeD!drll e pamoqs ‘,_ yu &,OI 30 alw Zupsaq e le a.taqds S~S&XIV IvuuaqJ sapas L ~auq~-yyad e uo pauuopad -0uw ua%oafu u! L-ass .rauqa-uglad e uo palDnpuo3 ‘1-d alaM 11-d pue 1-d 30 (~~~1) sas+w cy.uaury&ouua~ 30 ure.~%e~p(~5.p) hrlawuop23 %~~uue~s piyuaJa33~p aqL %~gugsso~~ pup uopepw8ap alqrssod ‘q 8p ~03 uaA0 urnncen 13ul 3,ozI it! papp uaql airaM %u!p!o~e ‘laurlilod aql 30 uoyeuo3Ins ueql snoa%luwpe AaqL C?HUIUI&-()E a%uw aql UTlday SBM.Iolt?X~sap aql30 avow s! poqlaur s!ql ‘poqlaw uoyleuo3lns aql ql~~ pa.wdruoD alnssaJd aprsur aqL ‘q pz 103 aInw.tadwal tuoo.11~ .Iolcwlsap sv -ssaDold uogesuapuocAlod aql uy pannDDo Bugugsso.~~ I! uy pay alaw saueIqurauI aqJ .aleId sse12 e uo uoylrqos auo3Ins aIqr2lDalap ou leql lsa%!ns slInsa1 asaqL ‘1 %A u! apyweuuo3Idqlaunp-N‘N O~JM8 1! E!U~SEDAq pa.wdald alaM uwoqs st? ‘pahlasqo aIaM puoq auo3Ins aql 01 aIqt2lnqgle 11-d put2 1-d 30 saue.Iquraur aq_L .auopqoudd-z-ILqlau svad ON %.I~ Iduayd aql 30 uoylnlgsqnsg 30 aglw!pu! -N Pm ‘apyuIela3qdylauup-N‘N ‘ap~wwuo3~dqlauup s! uo!lvlq!h IelaIays s!q~ 30 Zhllqds. aqL Y&I!.I Iduaqd aql -N‘N se qDns ‘sluayos cy8.10 .nqod 3goIdc Itvanas IIF sdno.GI alvuo3Ins uu-upos 30 uoylcrtpoay aql uodn lgds 01 II! aIqtqos arr! 11-d pw 1-d q1oa ‘(11-d) 11 laurdIod ‘uJIo3 paalasqo SBM 1_ UICI10s 1 le 3-3 ~yxuon 30 Tad cysualse p!3e sly 01 uoyqos snoanbe 1yjH N 1 ssaDxa qly paypye -.1t?q3 aqL *(VI %g) Z-Bad palnlysqnsun aql 30 uuuvads SEM 1-d ~03 uuupos aqL yjooz 30 arqaA 330 in3 lq%!aM ‘.I’! aql u! luasqc a.IaM syvad asaqL IIoy?Jq!a %~q~la_IlS .nqn3aIow qvhi s&l sfsdp2yp alalaDe asoInlIa3 mflaL3gds o=s=o +lawurAs pue uogvlq!n Buyq~la.us o=s=o 3plaw %u!sn pas&iXp SBM latudIod aptIn aqi ‘sqes ~!U&IOU~ put2 -wAse aql 01 pau%lsst! alaM ,_~3 EOZI PUN 8~01 1~ wad sluayos Ivnp!sal aql aaouraJ 0~ .lawdIod lq8;ram .ynDaIotu cys~alx.n?q~ %UO_QSalaqm ‘(91 %d) 1-d 30 mnrl~ads (‘r’i) q%q I? SBM 1-d lE?ql %UyMOqS ‘3,I.O + SZ It? UO!ltlIOS aprU.I pa.w?gur aql 6q pauuyuoD SEM sdn0.B aleuo3pIs urnrpos -a~o3~dqlauup-N‘N I_ up 8 5.0 UT pa.uweaur sa ‘,_8 up p~‘o JO uogDnpowq aql ‘[ET] auouaqdozuaqoroIqDyp-,p‘v pue y 1-d 30 Li!socw~~ pa3npaI aqL ‘1-d 30 p[ayd oh66 ya~eqlqd~ouaqd u10.13pasrsaqluh SFqxq~ ‘z-x&j (auolay I! papIo33E pua rCIqloows papaaDold uogazpaurdIod aqL laqla laqla)dIod leplaunuos auo qit~ pandwo:, sv .aplxo3lns pCqlaw!p I.I! aleuoq.tw wn!sselod 30 aDuasaId QI‘L] s(auoiay laqia rayia) aql II! uraIeqlqdIouaqd qly ‘(alwo3pIs auazuaqo.Iong -ICIod palwo3Ins ~03 patiasqo uaaq osle aaeq euaurouaqd -z)s!qlduoq.w-,s‘s uuupos ‘auouaqdozuaqolongrp-,p’p ('03‘ O’H ‘AX>- 1 66L-56L (6661) OP ~~~‘+‘d/T la 8UvM 2 96L 797 I I I I I 1 1600 1400 1200 1000 600 600 Uavenunbers Fig. 1. Ix. spectra of P-I (a) and PEK-C (b). between 250-420°C is only lo%, which corresponds to the K315-N-03(Rikaseiki, Japan) manometric permeation loss of 1.2 sulfonic acid groups per repeat unit. The second apparatus and the permeability of water vapour was thermal degradation above 450°C is attributed to the poly- measured by the cup method [14]. As shown in Fig. 3, mer degradation. both P-I and P-II exhibit high water vapour permeation, The permeability of nitrogen was measured on a model 3.33 X 104. 3.11 X lo4 barrer at 30°C respectively. The 100 l- ._%l g 6C)- 4c )- 0 200 400 Temp. (C) Fig. 2. T.g.a. curves of P-I and P-II. 798 F. Wang etal./Polymer40(1999) 795-799 2oooo I---____ 3.05 3.10 3.15 3.20 3.25 3.30 3.35 l/T X 1000(1/K) Fig. 3. The relationship between P, and l/T for P-I and P-II. water vapour permeation (P,) shows an approximate presented in Fig. 4. It is obvious that a linear relationship Arrhenius-type temperature dependence with E, = exists between lgPN and l/T in each case. The apparent 18.6 kJ mol-’ for P-I and E, = 16.5 k.I mol-’ for P-II. activation energies of nitrogen for P-I and P-II are Arrhenius plots of the permeability of nitrogen (PN) are 16.7 and 16.8 k.I mol-’ respectively. P-I exhibits a high 0.05 I I I I I 3.10 3.15 3.20 3.25 3.30 1/T X 1000(1/K) Fig. 4. The relationship between PN and l/T for P-I and P-II.