applied sciences Review Fabrication and Use of Organic Electrochemical Transistors for Sensing of Metabolites in Aqueous Media Benoît Piro 1,*, Giorgio Mattana 1, Samia Zrig 1, Guillaume Anquetin 1, Nicolas Battaglini 1, Dany Capitao 2, Antoine Maurin 2 and Steeve Reisberg 1 1 Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris CEDEX 13, France;
[email protected] (G.M.);
[email protected] (S.Z.);
[email protected] (G.A.);
[email protected] (N.B.);
[email protected] (S.R.) 2 ValoTec, 1 Mail du Professeur Georges Mathé, 94800 Villejuif, France;
[email protected] (D.C.);
[email protected] (A.M.) * Correspondence:
[email protected]; Tel.: +33-(0)1-5727-7224 Received: 9 May 2018; Accepted: 1 June 2018; Published: 4 June 2018 Featured Application: Sensing organic molecules in water. Abstract: This review first recalls the basic functioning principles of organic electrochemical transistors (OECTs) then focuses on the transduction mechanisms applicable to OECTs. Materials constituting the active semiconducting part are reviewed, from the historical conducting polymers (polyaniline, polypyrrole) to the actual gold standard, poly-3,4-ethylenedioxythiophene: polystyrene sulfonic acid (PEDOT:PSS), as well as the methods used to fabricate these transistors. The review then focuses on applications of OECTs for the detection of small molecules and more particularly of metabolites, with a distinction between enzymatic and non-enzymatic transduction pathways. Finally, the few patents registered on the topic of OECT-based biosensors are reviewed, and new tracks of improvement are proposed.