A Method for the Production of Sulfate Or Sulfonate Esters

Total Page:16

File Type:pdf, Size:1020Kb

A Method for the Production of Sulfate Or Sulfonate Esters (19) *EP002851362B1* (11) EP 2 851 362 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 303/24 (2006.01) C07C 303/28 (2006.01) (2006.01) (2006.01) 27.11.2019 Bulletin 2019/48 C07C 305/06 C07C 305/08 C07C 305/20 (2006.01) C07C 305/24 (2006.01) (2006.01) (21) Application number: 13185032.3 C07C 309/73 (22) Date of filing: 18.09.2013 (54) A method for the production of sulfate or sulfonate esters Verfahren zur Herstellung von Sulfat oder Sulfonatestern Procédé pour la production d’esters de sulfate ou de sulfonate (84) Designated Contracting States: (56) References cited: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • DENIZ GUNES ET AL: "ALIPHATIC THIOETHERS GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO BY S-ALKYLATION OF THIOLS VIA TRIALKYL PL PT RO RS SE SI SK SM TR BORATES", PHOSPHORUS, SULFUR AND SILICON AND THE RELATED ELEMENTS, (43) Date of publication of application: TAYLOR & FRANCIS INC, US, vol. 185, no. 8, 1 25.03.2015 Bulletin 2015/13 January 2010 (2010-01-01), pages 1685-1690, XP008165903, ISSN: 1042-6507, DOI: (73) Proprietor: Ulusal Bor Arastirma Enstitusu 10.1080/10426500903213563 [retrieved on 06520 Ankara (TR) 2010-08-02] • OKI ET AL: "Solvothermal synthesis of carbon (72) Inventors: nanotube-B2O3 nanocomposite using tributyl • Bicak, Niyazi borate as boron oxide source", INORGANIC 34469 Istanbul (TR) CHEMISTRY COMMUNICATIONS, ELSEVIER, • Gunes, Deniz AMSTERDAM, NL, vol. 11, no. 3, 31 December 34744 Bostanci 2007 (2007-12-31), pages 275-278, XP022499511, Istanbul (TR) ISSN: 1387-7003, DOI: • Akbas, Cem Emre 10.1016/J.INOCHE.2007.12.015 Bahcelievler • ITAMAR M MALKOWSKY ET AL: "Facile and Istanbul (TR) Reliable Synthesis of Tetraphenoxybor ates and • Sirkecioglu, Okan Their Properties", EUROPEAN JOURNAL OF 34469 Sariyer INORGANIC CHEMISTRY, WILEY-VCH VERLAG, Istanbul (TR) WEINHEIM, DE, vol. 2006, no. 8, 1 March 2006 (2006-03-01), pages 1690-1697, XP008160248, (74) Representative: Dericioglu Kurt, Ekin ISSN: 1434-1948, DOI: 10.1002/EJIC.200600074 Ankara Patent Bureau Limited • ANDREI Y. BOCHKOV ET AL: "Synthesis of Kavaklidere Mahallesi 3-(5-Methylthiophen-2-yl)coumarins and Their Bestekar Caddesi No: 10 Photochromic Dihetarylethene Derivatives", 06680 Cankaya, Ankara (TR) JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 50, no. 4, 2 July 2013 (2013-07-02), pages 891-898, XP055089480, ISSN: 0022-152X, DOI: 10.1002/jhet.931 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 851 362 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 851 362 B1 • Alex C. Bissember ET AL: "A Mild, • Ko Yasumoto: "Isolation of new aliphatic sulfates Palladium-Catalyzed Method for the and sulfamates as the Daphnia Kairomones Dehydrohalogenation of Alkyl Bromides: inducing morphological change of a Synthetic and Mechanistic Studies", Journal of phytoplankton Scenedesmus gutwinskii", Chem. the American Chemical Society, vol. 134, no. 34, Pharm. Bull., 1 January 2008 (2008-01-01), pages 20 August 2012 (2012-08-20), pages 14232-14237, 133-136, XP055494545, Retrieved from the XP055493627, US ISSN: 0002-7863, DOI: Internet: 10.1021/ja306323x URL:https://www.jstage.jst.go.jp/article/c • Alex C. Bissember ET AL: "A Mild, pb/56/1/56_1_133/_pdf/-char/en [retrieved on Palladium-Catalyzed Method for the 2018-07-23] Dehydrohalogenation of Alkyl Bromides: Synthetic and Mechanistic Studies - Supporting information", Journal of the American Chemical Society, vol. 134, no. 34, 29 August 2012 (2012-08-29), pages 14232-14237, XP055493629, US ISSN: 0002-7863, DOI: 10.1021/ja306323x • DREGER E E ET AL: "SODIUM ALCOHOL SULFATES PROPERTIES INVOLVING SURFACE ACTIVITY", INDUSTRIAL AND ENGINEERING CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 36, no. 7, 1 January 1944 (1944-01-01), pages 610-617, XP001041414, DOI: 10.1021/IE50415A004 2 EP 2 851 362 B1 Description Field of the Invention 5 [0001] The present invention relates to a method for the production of sulfate or sulfonate esters based on the acidolysis of the boron esters acquired from alcohol and boric acid with sulfuric acid or sulfonic acid. Background of the Invention 10 [0002] Sulfate and sulfuric acid esters known as well alkylating agents are used in alkylation of various compounds such as amines, carboxylic acids, alcohol and thiol. Today, alkylating reactions with these compounds are the subject of many researches. [0003] Sodium and potassium salts of sulfuric acid monoesters of long chain alcohols have extensive use in detergent formulations as surface active compounds. Recent searches have shown that sulfate monoesters are part of a number 15 of biological processes such as hormone regulation and molecular recognition. [0004] In order to prepare dialkyl sulfates, methods wherein the alcohols are reacted with tertiary amine-sulfur trioxide complexes are used. Dimethyl sulfate is obtained with the reaction based on direction interaction of sulfuric acid with methanol in high yields. However the said method causes low yields when the other alcohols are used. Yielding a number of by products such as alkene, isoalkene, ether and sulfate ester isomers after the reaction causes this situation. 20 [0005] Besides, industrial or laboratory scale production of alkyl sulfates seems to be confined to the use of tertiary amine- SO3 complexes. International Patent document no WO03020735, an application known in the state of the art, discloses alkylation of saccharides with pyridine-SO3 complex in dimethyl formamide (DMF) or dimethyl sulfoxide (DM- SO). [0006] International Patent document no WO9100852, another application known in the state of the art, discloses a 25 preparative method for large-scale production of trialkylamine-SO3 complex by reaction of chlorosulfonic acid with tertiary amines and their use in preparing alkyl sulfates. [0007] As it can be understood from the said documents, early studies realized for sulfation and sulfonation are limited to SO3 and its complexes. Furthermore, using sulfur dioxide (SO3) and its complexes which is highly corrosive and humectant by its nature requires special precautions. 30 [0008] European Patent document no EP1997869, another application known in the state of the art, discloses acquiring borated earth alkaline metal sulfonates with reaction of compounds including boric acid and boric acid anhydride or similar boron compounds with alcohols. In the said process, it is disclosed that materials involving boron such as boric acid, boron anhydride, boron ester and the like can be used as boron source. Borated sulfonic acid is used as starting material. 35 [0009] United States Patent document no US8269038 discloses esterification of sulfonic acids by reaction with low molecular weight dialkyl sulfates in the presence of pyridine in aprotic solvents such as dichloromethane. In another variant of this process, alkyl sulfonates are produced by reaction of alkyl iodides with sulfonic acids using pyridine as acid scavenger. [0010] United States Patent document no US7977525 discloses a process for separating olefins from n-alkanes or 40 their mixtures with iso-alkanes by forming sulfate esters. In this process n-alkanes in upper organic phase can be separated easily from aqueous sulfuric acid phase, but isolation and purification of the sulfate ester has not been described. Obviously the procedure given in this patent has been targeted mainly to remove alkenes from alkane-alkene mixtures. [0011] United States Patent document no US7863479, another application known in the state of the art, discloses 45 sulfation of alcoxylated alcohols by direct action of chlorosulfonic acid or sulfur trioxide complex The resulting monosulfate ester of this process is then neutralized with alkaline hydroxides or amines to give are laundry detergents. [0012] In a related patent, EP 1354872 A1, a process is described for synthesis of tertiary amine salts of sulfate monoesters. The amine components having amide, ester or carbonate units have been claimed to provide softening action in washing formulations. The patent, WO 00/58428 discloses heat-activatable cleaning formulation comprising 50 ethoxylated alkyl ether sulfates. None of those procedures involves the use of sulfuric acid for direct sulfation of alcohols. [0013] However, in a recent patent application (US 2011/0213081 A1), direct action of sulfuric acid has been claimed useful for partial sulfating of ethoxylated polyamines. In this process the water eliminated is removed by continuous vacuuming at 60-85 °C. Conversion yields of this interesting sulfation process can reach 25-30 % within 6-8 h, in terms of the available hydroxyl end groups. 55 [0014] US patent issued in 2002 (US 6,452,035) discloses a trans-sulfation process to produce sulfate esters from alcohols and alcoxylated amines and ethoxylated alcohols. In this process tertiary amine salts of low molecular weight dialkyl sulfates (with C1-C4) are interacted with higher alcohols and residual amines are removed by addition of equivalent sulfuric acid. 3 EP 2 851 362 B1 [0015] In a recent paper and given with reference number [1] titled "Aliphatic Thioethers by S-Alkylation of Thiols via Trialkyl Borates", it has been reported that trialkyl borates can be used for alkylation of thiols to synthesize aliphatic thioethers in the presence of sulfuric acid and pyridine. In the said paper, dialkyl sulfate has been demonstrated as an intermediate product that is consumed in the following reaction as soon as it is formed. Presence of dialkyl sulfate in the 5 mixture has been confirmed by extracting from the aliquot taken from the mixture using ether, but it is not stated that dialkyl sulfates are isolated and purified.
Recommended publications
  • United States Patent Office
    Patented Mar. 30, 1948 2,438,754 UNITED STATES PATENT OFFICE 2,438,754 COPPER, CONTAINING DSAZO, DYESTUFFS Adolf Krebser, Riehen, near Basel, and Werner Bossard, Basel, Switzerland, assignors to the firm J. R. Geigy A. G., Basel, Switzerland No Drawing. Application March 1, 1943, Serial : No. 477,630. In Switzerland April 28, 1942 1. Claims. (C. 260-148) 2 - It has been found that valuable new Copper For the dyestuffs of the type (a): 2-amino containing disazo dyestuffs are obtained by 1-hydroxy-, -methoxy- or -benzyloxybenzene coupling a diazotised amino Sulfonic acid of the 4-Sulfonic acid, 4- or 6-methyl-2-amino-1-hy benzene or naphthalene series, which contains, in droxy- or ethoxybenzene sulfonic acid, 4- or o-position to the amino group, a hydroxy group 5 6-chloro-2-amino-1-hydroxy- or -methoxyben or a Substituent convertible into a hydroxy group Zene Sulfonic acid, 4- or 6-nitro-2-amino-1-hy. by coppering, with a 1:3-dihydroxy-benzene, droxy- or -methoxybenzene sulfonic acid, then causing a diazonium compound which is 1-amino-2-hydroxynaphthalene-4-sulfonic acid, free from sulfonic acid groups to react with the 6-nitro-2-amino-1-hydroxynaphthalene - 4 -sul said monoazo dyestuff and after-treating the 0. fonic acid. so-obtained disazo dyestuff with copper-yielding For the dyestuffs of the type (b) and (c) : agents, with the condition that at least one of 3-amino-4-hydroxy-, -methoxy- or -chloro-1:1'- the diazo components is substituted by a phenyl diphenylsulfone-5- or -3'-sulfonic acid, 3-amino nucleus bound by a non-basic bridge.
    [Show full text]
  • Cofactor Binding Protects Flavodoxin Against Oxidative Stress
    Cofactor Binding Protects Flavodoxin against Oxidative Stress Simon Lindhoud1., Willy A. M. van den Berg1., Robert H. H. van den Heuvel2¤, Albert J. R. Heck2, Carlo P. M. van Mierlo1, Willem J. H. van Berkel1* 1 Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands, 2 Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands Abstract In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4- nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox- active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications.
    [Show full text]
  • Secondary Alkane Sulfonate (SAS) (CAS 68037-49-0)
    Human & Environmental Risk Assessment on ingredients of household cleaning products - Version 1 – April 2005 Secondary Alkane Sulfonate (SAS) (CAS 68037-49-0) All rights reserved. No part of this publication may be used, reproduced, copied, stored or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the HERA Substance Team or the involved company. The content of this document has been prepared and reviewed by experts on behalf of HERA with all possible care and from the available scientific information. It is provided for information only. Much of the original underlying data which has helped to develop the risk assessment is in the ownership of individual companies. HERA cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in this publication. 1. Executive Summary General Secondary Alkane Sulfonate (SAS) is an anionic surfactant, also called paraffine sulfonate. It was synthesized for the first time in 1940 and has been used as surfactant since the 1960ies. SAS is one of the major anionic surfactants used in the market of dishwashing, laundry and cleaning products. The European consumption of SAS in detergent application covered by HERA was about 66.000 tons/year in 2001. Environment This Environmental Risk Assessment of SAS is based on the methodology of the EU Technical Guidance Document for Risk Assessment of Chemicals (TGD Exposure Scenario) and the HERA Exposure Scenario. SAS is removed readily in sewage treatment plants (STP) mostly by biodegradation (ca. 83%) and by sorption to sewage sludge (ca.
    [Show full text]
  • Reactivity of Benzenesulfonic Acids in the Hydrogen-Isotope Exchange Reaction
    RADIOISOTOPES,52,57-64(2003) Original Reactivity of Benzenesulfonic Acids in the Hydrogen-Isotope Exchange Reaction Dongyu ZHAO, Hiroshi IMAIZUMI* and Naoki KANO* Graduate School of Science and Technology, Niigata University *Department of Chemistry and Chemical Engineering , Faculty of Engineering, Niigata University 8050 Ikarashi 2-Nocho, Niigata-shi, Niigata Pref. 950-2181, Japan Received September 2, 2002 In order to reveal the reactivity of a functional group in an aromatic compound having two substituents in the aromatic ring, the hydrogen-isotope exchange reaction (T for-H exchange reaction) between tritiated water vapor (HTO vapor) and 3-amino-4-methoxybenzenesulfonic acid (and 2-aminotoluene-5-sulfonic acid) was dynamically observed at 50•Ž (and 70•Ž) in a gas-solid system. Consequently, the specific activity of the acid increased with time, and it showed that the T for-H exchange reaction occurred. Applying the A•h-McKay plot method to the data observed, the rate constant of each functional group for the reaction was obtained. After the additive property of the Hammett's rule was applied to this work; the new substituent constants were obtained. From the above-mentioned, the following four items have been confirmed. (1) The reactivity of the functional groups can be dynamically analyzed, and the A•h-McKay plot method is useful to analyze the reactivity. (2) The additive property of the Hammett's rule is applicable to quantitative comparison of the reactivity of the functional groups. (3) The reactivity of the functional groups can be simultaneously analyzed by using the A•h-McKay plot method in the T-for-H exchange reaction.
    [Show full text]
  • PDF (ELM-03-Chapter3.Pdf)
    46 Chapter 3 THIOL/ARYLSULFONIC ACID-PAIRED CATALYSTS FOR THE SYNTHESIS OF BISPHENOLS Abstract We recently demonstrated that mesoporous silica materials functionalized with pairs of alkylsulfonic acid and thiol groups are excellent catalysts for the synthesis of bisphenols from the condensation of phenol and various ketones, with activity and selectivity highly dependent on the thiol/acid distance. Here, we report the synthesis and catalytic properties of a mesoporous silica bearing thiol groups paired with stronger arylsulfonic acid groups. This catalyst was generated by grafting a bissilane precursor molecule containing both a disulfide and a sulfonate ester bond onto SBA-15, followed by simultaneous disulfide reduction and sulfonate ester hydrolysis. The resulting catalyst significantly outperformed the alkylsulfonic acid/thiol paired catalyst in bisphenol A and Z synthesis, while maintaining a very high selectivity to the desired isomer p,p’ isomer. The paired catalyst had similar activity to a randomly-bifunctionalized arylsulfonic acid/thiol catalyst in the bisphenol A reaction, but exhibited greater activity and selectivity than the randomly-bifunctionalized catalyst in the bisphenol Z reaction. 47 Introduction Bisphenols, such as bisphenol A and bisphenol Z, are important industrial feedstocks, especially as monomers in polycarbonate polymers and resins. They are synthesized in the acid-catalyzed condensation between a ketone and phenol, yielding the desired p,p’ isomer and a byproduct, the o,p’ isomer (Scheme 3.1). The addition of thiols as a cocatalyst is known to improve both the rate of reaction and the selectivity to the desired isomer. Mineral acids can be used to catalyze the bisphenol condensation reaction, but solid acid catalysts such as polymeric ion-exchange resins are typically used for commercial bisphenol production due to their non-corrosive nature and reusability.
    [Show full text]
  • United States Patent (19) 11 4,395,569 Lewis Et Al
    United States Patent (19) 11 4,395,569 Lewis et al. (45) "Jul. 26, 1983 (54) METHOD OF PREPARNG SULFONCACD 58) Field of Search ................... 560/87, 88, 193, 196, SALTS OF ACYLOXYALKYLAMINES AND 560/220, 221, 222, 127, 38, 49, 155, 169, 171, POLYMERS AND COMPOUNDS 74, 80, 153, 154; 54.6/321 THEREFROM (56) References Cited (75) Inventors: Sheldon N. Lewis, Willow Grove; U.S. PATENT DOCUMENTS Jerome F. Levy, Dresher, both of Pa. 2,628,249 2/1953 Bruno . 2,871,258 1/1959 Hidalgo et al. 73) Assignee: Rohm and Haas Company, 3,211,781 10/1965 Taub et al. Philadelphia, Pa. 3,256,318 7/1966 Brotherton et al. 3,459,786 8/1969 Brotherton et al. * Notice: The portion of the term of this patent 3,468,934 9/1969 Emmons et al. subsequent to Mar. 18, 1997, has been 3,729,416 4/1973 Bruning et al. disclaimed. 4,194,052 3/1980 Lewis et al. ........................ 560/222 FOREIGN PATENT DOCUMENTS 21 Appl. No.: 104,256 1351368 2/1964 France . 22 Filed: Dec. 17, 1979 1507036 12/1967 France . Primary Examiner-Natalie Trousof Assistant Examiner-L. Hendriksen Related U.S. Application Data Attorney, Agent, or Firm-Terence P. Strobaugh; (60) Division of Ser. No. 821,068, May 1, 1969, Pat. No. George W. F. Simmons 4,194,052, which is a continuation-in-part of Ser. No. 740,480, Jun. 27, 1968, Pat. No. 4,176,232. 57 ABSTRACT A sulfonic acid salt of an acyloxyalkylamine is prepared (51) Int, C. ..................... C07C 67/08; C07C 101/00 by reaction of an organic acid or amino-acid with a (52) U.S.
    [Show full text]
  • Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420 49 3)
    EPA-823-R-18-307 Public Comment Draft Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420-49-3) This document is a Public Comment draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency policy. This information is distributed solely for the purpose of public review. This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Human Health Toxicity Values for Perfluorobutane Sulfonic Acid (CASRN 375-73-5) and Related Compound Potassium Perfluorobutane Sulfonate (CASRN 29420 49 3) Prepared by: U.S. Environmental Protection Agency Office of Research and Development (8101R) National Center for Environmental Assessment Washington, DC 20460 EPA Document Number: 823-R-18-307 NOVEMBER 2018 This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Disclaimer This document is a public comment draft for review purposes only. This information is distributed solely for the purpose of public comment. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. i This document is a draft for review purposes only and does not constitute Agency policy. DRAFT FOR PUBLIC COMMENT – DO NOT CITE OR QUOTE NOVEMBER 2018 Authors, Contributors, and Reviewers CHEMICAL MANAGERS Jason C.
    [Show full text]
  • Hydroxylamine-O -Sulfonic Acid — a Versatile Synthetic Reagent
    Hydroxylamine-O -sulfonic acid — a versatile synthetic reagent Raymond G. Wallacef School of Chemistry Brunei University Uxbridge, Middlesex UBS 3PH Great Britain imidazoli nones and related derivatives are time to these various modes of reaction. discussed in the review. Many of these The uses of HOSA as a reagent are organiz­ preparations can be carried out in high ed below according to the different syn­ yield, thetic transformations that it can bring about. Hydroxylamine-Osulfonic acid, NHj-OSOjH (abbreviated to HOSA in Probably by far the most well known this article) has become in recent years and explored reactions of HOSA are commercially available. Although much animation reactions, illustrating elec­ fruitful chemistry has been carried out us­ trophilic attack by HOSA, with amination ing HOSA, to this author's knowledge, on nitrogen being the most important, there has been no systematic review in although a significant number of English* of its use as a synthetic reagent. It animations on both carbon and sulfur have is a chemically interesting compound been reported, Amination on phosphorus because of the ability of the nitrogen center also occurs. to act in the role of both nucleophile and AMINATION electrophile, dependent on circumstances, Synopsis (a) At a nitrogen atom and thus it has proved to be a reagent of Hydroxylamine-0-sulfonic acid (0 Preparation of mono- and di- great synthetic versatility. (HOSA) has only recently become widely substituted hydrazines and trisubstituied commercially available despite the fact that H,N-Nu hydrazinium salts it has proved to be a valuable synthetic reagent in preparative organic chemistry.
    [Show full text]
  • Of Operation and Control Ion-Exchange Processes For
    TECHNICAL REPORTS SERIES No. 78 Operation and Control Of Ion-Exchange Processes for Treatment of Radioactive Wastes INTERNATIONAL ATOMIC ENERGY AGENCY,VIENNA, 1967 OPERATION AND CONTROL OF ION-EXCHANGE PROCESSES FOR TREATMENT OF RADIOACTIVE WASTES The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GERMANY, FEDERAL NIGERIA ALBANIA REPUBLIC OF NORWAY ALGERIA GHANA PAKISTAN ARGENTINA GREECE PANAMA AUSTRALIA GUATEMALA PARAGUAY AUSTRIA HAITI PERU BELGIUM HOLY SEE PHILIPPINES BOLIVIA HUNGARY POLAND BRAZIL ICELAND PORTUGAL BULGARIA INDIA ROMANIA BURMA INDONESIA SAUDI ARABIA BYELORUSSIAN SOVIET IRAN SENEGAL SOCIALIST REPUBLIC IRAQ SIERRA LEONE CAMBODIA ISRAEL SINGAPORE CAMEROON ITALY SOUTH AFRICA CANADA IVORY COAST SPAIN CEYLON JAMAICA SUDAN CHILE JAPAN SWEDEN CHINA JORDAN SWITZERLAND COLOMBIA KENYA SYRIAN ARAB REPUBLIC CONGO, DEMOCRATIC KOREA, REPUBLIC OF THAILAND REPUBLIC OF KUWAIT TUNISIA COSTA RICA LEBANON TURKEY CUBA LIBERIA UKRAINIAN SOVIET SOCIALIST CYPRUS LIBYA REPUBLIC CZECHOSLOVAK SOCIALIST LUXEMBOURG UNION OF SOVIET SOCIALIST REPUBLIC MADAGASCAR REPUBLICS DENMARK MALI UNITED ARAB REPUBLIC DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN IRELAND EL SALVADOR MOROCCO UNITED STATES OF AMERICA ETHIOPIA NETHERLANDS URUGUAY FINLAND NEW ZEALAND VENEZUELA FRANCE NICARAGUA VIET-NAM GABON YUGOSLAVIA The Agency's Statute was approved on 26 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957, The Headquarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1967 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Kamtner Ring 11, A-1010 Vienna I, Austria.
    [Show full text]
  • INTRODUCTION to PFAS November 8, 2019
    INTRODUCTION TO PFAS November 8, 2019 trcsolutions.com | PFAS in the News https://pfasproject.com trcsolutions.com 2 Today’s Topics • PFAS Naming Conventions • Physical/Chemical Properties of PFAS • Sources of PFAS and Potentially- affected Sites • Replacement PFAS Chemistry • AFFF • Toxicology 3 PFAS Naming Conventions 4 Acronyms • PFC = Per-fluorinated chemical PFCA • PFAS = Per- and Poly-fluoroalkyl substances Perfluoroalkyl Substances PFAA • PFAA = Perfluoroalkyl acids PFSA • PFOA = Perfluorooctanoic acid (perfluorooctanoate) • PFOS = Perfluorooctane sulfonic acid (perfluorooctane sulfonate) • PFCA = Perfluorocarboxylic acids • PFSA = Perfluorosulfonic acids trcsolutions.com 5 Perfluorinated Compounds (PFCs) PFCs: Do not use this acronym anymore! • PFCs previously used to describe greenhouse gases • PFCs do not include polyfluorinated compounds 6 Quick Chemistry Lesson #1 • Remember: PFAS are Per and Polyfluoroalkyl substances • Per-fluoroalkyl substances: fully fluorinated alkyl tail • Perfluoroalkane carboxylates (or carboxylic acids): PFCAs FFF F F F O COOH = Head F C C C C (PFOA) C C C C OH F PFAAs F FFFFFF Alkyl tail, fully fluorinated • Perfluoroalkane sulfonates (or sulfonic acids): PFSAs FFF F F F F F F C C C C (PFOS) C C C C SO3H SO3H= Head F F FFFFFF 7 Quick Chemistry Lesson #2 • Remember: PFAS are Per and Polyfluoroalkyl substances • Poly-fluoroalkyl substances: non-fluorine atom (typically hydrogen or oxygen) attached to at least one carbon atom in the alkane chain Fluorotelomer Alcohol (8:2 FTOH) FFF F F F F F HH C C C
    [Show full text]
  • And TMS Ethers to Sulfonate Esters Using Fecl3-Montmorillonite K-10 Clay Barahman Movassagha and Salman Shokri Department of Chemistry, K
    An Efficient One-Pot Conversion of THP- and TMS Ethers to Sulfonate Esters Using FeCl3-Montmorillonite K-10 Clay Barahman Movassagha and Salman Shokri Department of Chemistry, K. N. Toosi University of Technology, P. O. Box 16315-1618, Tehran, Iran a Kermanshah Oil Refining Company, Kermanshah, Iran Reprint requests to Dr. B. Movassagh. E-mail: [email protected] Z. Naturforsch. 60b, 763 – 765 (2005); received March 29, 2005 Various tetrahydropyranyl and trimethylsilyl ethers are efficiently transformed into the correspond- ing sulfonate esters with sulfonyl chlorides in the presence of FeCl3-Montmorillonite K-10 clay. Key words: Sulfonate Esters, FeCl3-Montmorillonite K-10, Trimethylsilyl Ethers, Tetrahydropyranyl Ethers, Clay Catalyst Sulfonate esters are especially useful substrates in sions of THP and TMS ethers into the correspond- nucleophilic substitution reactions used in synthesis. ing carboxylic esters in the presence of Montmoril- Their preparation from alcohols is an effective way lonite K-10 clay [7, 8]. In continuation of our ongo- of installing a reactive leaving group, e.g. on an alkyl ing program to develop environmentally benign meth- chain. p-Toluenesulfonate- and methanesulfonate es- ods using supported reagents, this article describes ters are the most frequently used groups for preparative a new, simple, and efficient one-pot protocol for the work. The usual method for preparation of sulfonates deprotection-sulfonylation of THP and TMS ethers relies on the use of the corresponding sulfonyl chlo- with sulfonyl chlorides in refluxing acetonitrile using ride or anhydride in the presence of triethylamine [1], FeCl3 impregnated Montmorillonite K-10 as a mild pyridine [2], 1,4-diazabicyclo[2.2.2]octane (DABCO) and non-corrosive solid catalyst (Scheme 1).
    [Show full text]
  • Why Nature Chose Selenium Hans J
    Reviews pubs.acs.org/acschemicalbiology Why Nature Chose Selenium Hans J. Reich*, ‡ and Robert J. Hondal*,† † University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States ‡ University of WisconsinMadison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States ABSTRACT: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173−1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se−O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides.
    [Show full text]