Mapping Fragmented Agricultural Systems in the Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery

Total Page:16

File Type:pdf, Size:1020Kb

Mapping Fragmented Agricultural Systems in the Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery 04-GC-005.qxd 7/13/12 8:49 PM Page 839 Mapping Fragmented Agricultural Systems in the Sudano-Sahelian Environments of Africa Using Random Forest and Ensemble Metrics of Coarse Resolution MODIS Imagery Elodie Vintrou, Mamy Soumaré, Simon Bernard, Agnès Bégué, Christian Baron, and Danny Lo Seen Abstract Key deliverables of food security systems in terms of We worked on the assumption that agricultural systems crop monitoring consist of early estimates of cultivated area shaped the landscape through human cropping practices, and crop-type distribution, cropping practices (cropping and that the resulting landscape can be described with a intensity, crop calendar, water, and fertilizer inputs), detec- set of coarse resolution satellite-derived metrics (spectral, tion of growth anomalies, and crop yield estimates. Remote textural, temporal, and spatial metrics). A Random Forest sensing plays an important role in delivering information for classification model was developed at the village scale in crop monitoring in insecure countries (e.g., Thenkabail et al., South Mali, based on 100 samples, with data on the main 2009a; Thenkabail et al., 2011; Thenkabail et al., 2009c). type of agricultural system in each village (three-class Satellites help locate and estimate areas of crop types and typology), and 30 MODIS-derived and socio-environmental crop potential yield at local scales (e.g., Bruzzone et al., metrics calculated on agricultural areas. The model was 1997). However, remote sensing techniques face numerous found to perform well (overall accuracy of 60 percent) and challenges for crop mapping of larger areas such as the was stable. Class A (food crops) and B (intensive agricul- continents and the globe (Thenkabail, 2010). Global monitor- ture) displayed good producer’s accuracy (70 percent and ing typically resorts to using free low- and medium-resolu- 67 percent, respectively), while class C (mixed agriculture) tion images (Hountondji et al., 2006; Justice et al., 1985), but was less accurate (50 percent). The most important metrics these images do not enable precise localization of the crops. were shown to be the annual mean of NDVI, followed by the This is particularly true in regions with fragmented cropped phenology transition dates and texture metrics. However, areas, like West Africa, where 20 percent to 40 percent of when considering each set of metrics separately, texture crop classification error using MODIS is inherent to the emerged as the most discriminating factor (with 53 percent structure of the landscape (Vintrou et al., 2011). One way to of global accuracy). This result, i.e., that even coarse get around this problem is to develop sub-pixel approaches resolution imagery contains textural information that can (e.g., Ichokua and Karnieli, 1996) or to increase the scale of be used for crop mapping, is new. Such maps could be the observed objects. used in food security systems as an indicator of system Many papers deal with the sub-pixel approach, which vulnerability, or as spatial inputs for crop yield models. gives correct results in the case of simple landscapes (e.g., De Fries et al., 1997), but is not ideal for the complex landscapes of West Africa. In the Sudano-Sahelian region, Introduction peasant farming is the dominant production system with Sub-Saharan Africa is the only region in the world where low cropland intensification, small fields, and marked per capita food production is declining, making continued between-field and within-field variability of vegetation. The investment in monitoring and aid program mandatory presence of trees in the field and the rainfall regime make it (Brown et al., 2007). Different early warning systems, such even more difficult to distinguish between the natural the Famine Early Warning System Network (FEWS NET - vegetation and the cropped areas (Fritz and See, 2008). USAID) or the Global Information and Early Warning System In this context, we tested an approach that consisted in (GIEWS - FAO), use methods that can identify food security changing the observation scale, and consequently in chang- hazards early enough so that political and budgetary deci- ing the nature of the observed object. We chose to work at a sions can be made in a timely manner. local scale (a village) and with one object (the agricultural system) compatible with the existing coarse resolution imagery. The agricultural system is described by cropping practices (cultivated species and level of intensification) and can be used as the basis for crop monitoring at large scales. Elodie Vintrou, Agnès Bégué, Christian Baron, and Danny There is a real need for better discrimination and identifica- Lo Seen are with CIRAD UMR TETIS, Maison de la Télédé- tion of the main agricultural systems in many regions of the tection, 500 rue J.F. Breton, Montpellier, F-34093 France ([email protected]). Photogrammetric Engineering & Remote Sensing Mamy Soumaré is with IER, Rue Mohamed V, BP 258, Vol. 78, No. 8, August 2012, pp. 839–848. Bamako, Mali. 0099-1112/12/7808–839/$3.00/0 Simon Bernard is with the University of Rouen, LITIS EA © 2012 American Society for Photogrammetry 4108, BP 12 - 76801 Saint-Etienne du Rouvray, France. and Remote Sensing PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING August 2012 839 04-GC-005.qxd 7/13/12 8:49 PM Page 840 world, because they indicate how the system will interact To investigate the applicability of moderate-resolution with the local environment and water conditions and thus imagery for the classification of agricultural systems, we influence yields and productions. These interactions can be chose to use the example of Mali and, on the crop mask, estimated empirically or by using agro-meteorological calculated spectral, spatial, textural, and temporal metrics models, so as to propose forecast scenarios of crop yield derived from MODIS time-series images. We used a training estimates. data set of observations collected in 100 villages in Mali and Thus, in the context of fragmented landscapes, and due the remotely-sensed metrics associated with each village to to the absence of adequate Earth Observing Systems, the build a Random Forest (RF) statistical model, capable of objective of this study was to develop a new approach to predicting the main type of agricultural system in every classifying and mapping the main agricultural systems in village in South Mali. Our paper is organized as follows: West Africa using coarse resolution imagery. The method is after a brief description of the study area, we present the based on the general assumption that human practices shape training data set and the RF algorithm we built. We then the landscape. We adapted this assumption to the cultivated investigate the importance of satellite-derived metrics for domain by claiming that agricultural systems shape the mapping agricultural systems, and present the resulting cultivated part of the landscape, and as a result, these classification of the villages of South Mali. We conclude by systems could be captured through a set of landscape discussing the accuracy and relevance of the method and attributes, such as (a) vegetation biomass, (b) organization of the possible use of the resulting map in food security the landscape components, and (c) vegetation seasonality systems. (phenology and crop calendar). These attributes are known to be accessible using time series of multispectral images. Among these characteristics, biomass estimation is certainly Study Area and Data Sets the most frequently investigated (e.g., Hutchinson, 1991; Prince and Goward, 1995). Concerning landscape organiza- Study Area tion, classical pixel-based classification methods do not Mali is a land-locked country covering of 1,240,192 km2 in make sufficient use of spatial concepts of neighborhood, West Africa between latitudes 10°N and 24°N (Figure 1). proximity, or homogeneity (Burnett and Blaschke, 2003). The topography consists mostly of low plateaus and basins A number of authors used texture analysis to classify high with occasional rocky hills. The plateaus never exceed 300 and very high resolution images (e.g., Kayitakire et al., 2006; or 400 m. Mali has a latitudinal climatic gradient ranging Peddle and Franklin, 1991), but very few studied possibility from sub-humid to semi-arid that, further north, extends to of using the texture of coarse resolution images in land arid and desertic. Like other West African countries along classification (see Tsaneva et al. (2010) for one example). the same latitudinal belt, food security relies on an adequate Concerning vegetation seasonality, recent multitemporal supply of rainfall during the monsoon season. Mali encom- studies demonstrated that MODIS data can be used to detect passes the Sudano-Sahelian zone, where strong dependence unique multi-temporal signatures for each of the major crop on rain-fed agriculture implies exposure to climate variabil- types (e.g., Wardlow et al., 2007), to map double cropping ity, in addition to the impacts population growth have on (e.g., Arvor et al., 2012), or to map irrigated areas (Thenk- food security. Farming is the main source of income for abail et al., 2009b). many people in the Sudano-Sahelian region, where millet Figure 1. Map of Mali showing the geographic location of the 100 villages sampled along the rainfall gradient (1971-2000 year average). 840 August 2012 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING 04-GC-005.qxd 7/13/12 8:49 PM Page 841 and sorghum are the main food crops. The vast majority of • Class C villages represent 34 percent of the data set, and the population (80 percent) consists of subsistence farmers. have less intensive practices, as they cultivate both coarse A few larger farms produce crops for sale (cash crops), grain (sorghum) and a cash crop (cotton). Class C represents mainly cotton and peanuts. In this study, we did not “mixed agriculture” neither completely dedicated to grains, include the Saharan zone in the north of the country where nor to cotton.
Recommended publications
  • 1Ère Année Généralistes
    MINISTERE DE L'EDUCATION NATIONALE REPUBLIQUE DU MALI = = = = = = = UN PEUPLE UN BUT UNE FOI CENTRE NATIONAL DES EXAMENS ET CONCOURS DE L'EDUCATION = = = = = = = NOTE DE SERVICE N°2015-_______________/MEN-CNECE LES ELEVES-MAÎTRES DONT LES NOMS SUIVENT SONT DECLARES ADMIS PAR ORDRE ALPHABETIQUE A L'EXAMEN DE PASSAGE EN 2EME ANNEE DES INSTITUTS DE FORMATION DE MAÎTRES (GENERALISTES DEF), SESSION DE JUIN 2015 N°ord Prénoms Nom Date Naiss. Lieu Nais. Sexe Sco Centres 4 Ibrahim ABDOULAYE 16/10/1992Diré M R IFM DIRE 5 Moussa ABDOURHAMANE 00/00/1994 Ansongo MR IFM GAO 13 Fodé AHMED 30/01/1993 Koutiala MP IFM GAO 14 Moussa AKLININE 26/11/1995 Gao MR IFM GAO 23 Mariama Ali 25/01/1993 Gao FR IFM GAO 24 Adidiatou ALIOU 12/07/1996Badji-Haoussa F P IFM SEVARE 27 Matalla AMMAR 00/00/1992Tombouctou M R IFM DIRE 28 Anou Emmanuel ARAMA Vers 1995Sama M P IFM SEVARE 31 Fatoumata Youssouf ATIYOU 16/11/1996Tombouctou F P IFM DIRE 36 Alou BAGAYOGO Vers 1993 Warsala M P IFM SEGOU 39 Fatoumata BAGAYOKO 22/08/1995Bamako F P IFM KANGABA 41 Coumbourou BAH 18/01/1994 Sévaré FR IFM SEVARE 44 Adiaratou BALLO Vers 1995 Sikasso FP IFM SIKASSO 46 Diaminatou BALLO 17/01/1994 Sikasso FP IFM SIKASSO 47 Issouf BALLO 25/05/1996 Blendio MP IFM SIKASSO 48 Mamadou BALLO 20/06/1994 Dougoubala MP IFM SIKASSO 53 Chata BAMBA 08/10/1996 Sikasso FP IFM SIKASSO 54 Karim BAMBA Vers 1996 Nimbougou MP IFM SIKASSO 57 Abdoulaye BARRY 12/04/1994Koro M P IFM KORO 58 Ibrehima BARRY 25/03/1995 N’gueguesso M R IFM KOUTIALA 59 Korotimi BARRY 19/10/1996Sando F P IFM SEGOU 60 Lancina BARRY 17/10/1994
    [Show full text]
  • FINAL REPORT Quantitative Instrument to Measure Commune
    FINAL REPORT Quantitative Instrument to Measure Commune Effectiveness Prepared for United States Agency for International Development (USAID) Mali Mission, Democracy and Governance (DG) Team Prepared by Dr. Lynette Wood, Team Leader Leslie Fox, Senior Democracy and Governance Specialist ARD, Inc. 159 Bank Street, Third Floor Burlington, VT 05401 USA Telephone: (802) 658-3890 FAX: (802) 658-4247 in cooperation with Bakary Doumbia, Survey and Data Management Specialist InfoStat, Bamako, Mali under the USAID Broadening Access and Strengthening Input Market Systems (BASIS) indefinite quantity contract November 2000 Table of Contents ACRONYMS AND ABBREVIATIONS.......................................................................... i EXECUTIVE SUMMARY............................................................................................... ii 1 INDICATORS OF AN EFFECTIVE COMMUNE............................................... 1 1.1 THE DEMOCRATIC GOVERNANCE STRATEGIC OBJECTIVE..............................................1 1.2 THE EFFECTIVE COMMUNE: A DEVELOPMENT HYPOTHESIS..........................................2 1.2.1 The Development Problem: The Sound of One Hand Clapping ............................ 3 1.3 THE STRATEGIC GOAL – THE COMMUNE AS AN EFFECTIVE ARENA OF DEMOCRATIC LOCAL GOVERNANCE ............................................................................4 1.3.1 The Logic Underlying the Strategic Goal........................................................... 4 1.3.2 Illustrative Indicators: Measuring Performance at the
    [Show full text]
  • Année Universitaire
    Résultats provisoires de la session de RATTRAPAGE au titre de l'année universitaire 2018-2019 MINISTERE DE L' ENSEIGNEMENT SUPERIEUR REPUBLIQUE DU MALI ET DE LA RECHERCHE SCIENTIFIQUE Un Peuple -Un But - Une Foi ************* ************* UNIVERSITE DES LETTRES ET DES SCIENCES HUMAINES DE BAMAKO (ULSHB) ************* FACULTE DES SCIENCES HUMAINES ET DES SCIENCES DE L'EDUCATION (FSHSE) ************* Bamako, le 11 septembre 2020 DER/Sociologie-Anthropologie Année Universitaire : 2018 - 2019 CAS DE FRAUDE S S UE MAJEURES UE MINEURES s t N c T NOUVEAU Anthropologie Gle Sociologie Gle Statistique App. Initiation Recher. Philo Psycho. Genre Gest. D N e a E O Prénom (s) o o M M M M T x t Cours Cours Cours Cours e ° MATRICULE l O O O O Gén. Gén. c & Conf. OBS. m TP TP m e u Y Y Y Y o U N° MATRICULE . Sem1 Sem2 Sem1 Sem2 Sem1 Sem2 Sem1 Sem2 o t . Sté E 1 ABNO2101011800 18G1M15825Z Nouradine ABACARINE M Rég Pas 8 8 10 8,67 10 10 10 10 11 11 11 10 10 10 4 10 14 10 5 14 7 Passe-dettes 2 ABMO2712001800 18F1M28398F Mohamed ABDALLA M Rég Pas 8 9 13 10,00 12 11 12 11,667 10 10 10 13 13 13 10 10 14 12 10 4 9 Passe-dettes 3 ABMO1212981700 17F1M06133G Mohamed ABDALLAHI M Rég Réd 10 10 10 10,00 13 13 12 12,667 12 12 12 0 10 11 14,5 11 11 10 9 Passe-dettes 4 ABHA1706991800 18F1M28773E Hamidou ABDOU M Rég Pas 10 10 10 10,00 10 10 11 10,333 11 11 11 10 10 10 8 10 14,5 10 10 8 Passe-dettes 5 ABFA0910991800 18G1F15829J Fatimata ABDOUL AZIZ F Rég Pas 8 8 13 9,67 11 11 11 11 10 10 10 13 13 13 12 10 14 10 10 10 9 Passe-dettes 6 ABMO0408981800 18F1M28775G Mohamed
    [Show full text]
  • Annuaire Statistique 2015 Du Secteur Développement Rural
    MINISTERE DE L’AGRICULTURE REPUBLIQUE DU MALI ----------------- Un Peuple - Un But – Une Foi SECRETARIAT GENERAL ----------------- ----------------- CELLULE DE PLANIFICATION ET DE STATISTIQUE / SECTEUR DEVELOPPEMENT RURAL Annuaire Statistique 2015 du Secteur Développement Rural Juin 2016 1 LISTE DES TABLEAUX Tableau 1 : Répartition de la population par région selon le genre en 2015 ............................................................ 10 Tableau 2 : Population agricole par région selon le genre en 2015 ........................................................................ 10 Tableau 3 : Répartition de la Population agricole selon la situation de résidence par région en 2015 .............. 10 Tableau 4 : Répartition de la population agricole par tranche d'âge et par sexe en 2015 ................................. 11 Tableau 5 : Répartition de la population agricole par tranche d'âge et par Région en 2015 ...................................... 11 Tableau 6 : Population agricole par tranche d'âge et selon la situation de résidence en 2015 ............. 12 Tableau 7 : Pluviométrie décadaire enregistrée par station et par mois en 2015 ..................................................... 15 Tableau 8 : Pluviométrie décadaire enregistrée par station et par mois en 2015 (suite) ................................... 16 Tableau 9 : Pluviométrie enregistrée par mois 2015 ........................................................................................ 17 Tableau 10 : Pluviométrie enregistrée par station en 2015 et sa comparaison à
    [Show full text]
  • Memoire Du Diplome D'etude Approfondie (Dea)
    MINISTERE DE L’ENSEIGNEMENT REPUBLIQUE DU MALI SUPERIEUR ET DE LA RECHERCHE Un Peuple-Un But-Une Foi SCIENTIFIQUE INSTITUT SUPERIEUR DE FORMATION ET DE RECHERCHE APPLIQUEE (ISFRA) MEMOIRE DU DIPLOME D’ETUDE APPROFONDIE (DEA) Option : Population-Environnement, Gestion des Zones Humides et Développement Durable THEME : Analyse de l’évolution des pratiques de pêche dans la commune rurale de Zangasso, cercle de Koutiala au Mali Présenté par : Ousmane CISSE Président du Jury : Directeur de mémoire Pr Moussa KAREMBE, Pr Mahamane H. MAIGA, Professeur Professeur Titulaire à l’USTTB Titulaire à l’ISFRA Membres : Co-encadreur de mémoire Dr Hady DIALLO, Maître Dr Edmond TOTIN, Chercheur à Assistant L’ICRISAT Mahamane H. MAIGA, Professeur à l’ISFRA Date et Lieu de soutenance : Année universitaire 2016-2017 10/08/ 2017 à L’ISFRA Avant-propos ............................................................................................................................. V DEDICACE .............................................................................................................................. VI REMERCIEMENTS ............................................................................................................... VII LISTE DES TABLEAUX, DES CARTES, DES PHOTOS, ET DES FIGURES ................ VIII RESUME .................................................................................................................................. IX INTRODUCTION .....................................................................................................................
    [Show full text]
  • M600kv1905mlia1l-Mliadm22303-Sikasso.Pdf (Français)
    ! ! ! ! ! ! ! ! ! ! ! RÉGION DE SIKASSO - MALI ! ! Map No: MLIADM22303 N'Ga!ssola Yang!asso ! ! ! ! 8°0'W Keninkou 7°0'W Diaforongo 6°0'W 5°0'W Koulala Sourountouna Sanékuy Torodo Baraouéli Diéna ! ! ! Kazangasso ! Niamana Sobala Diéli ! N N ' Mandiakuy ' 0 0 ° ° 3 3 1 Bossofola Yéelekebougou ! 1 ! Kal!aké ! Tiémena Kéme!ni ! Sanando Niala Bla Kalifabougou ! ! Nafadie ! ! Dougouolo ! Karaba Kagoua ! Konobougou Falo Dioundiou Baoulé Diakourouna Nerissso ! ! ! Konkankan ! Diora Koulikoro Gouni S É G O U Somasso Samabogo ! RÉGINOég!ueNla DE SIKASSO P ! Waki 1 ! ! ! Negala Guinina Diaramana Kimparana Begu! ené ^ National Capital Route Pr!incipale ! ! Kambila Dio Gare Gouendo ! M!afouné ! Fana ! Diago ! Safo Talikourou P Chef-lieu Région Rou!te Secondaire Tingolé ! Nianaso! ! Koloni Dombila Kati Kérela Toko!unko ! ! Tienfala ! ! Debéla Baramana Chef-lieu Cercle Tertiary ! ! ! Toura-Kalanga Dialakorodji ! ! Marka-Coungo Kia ! ! ! Chef-lieu Commune FrDoonutibèarbeo Iungteorunationale ! ! ! Tyenfala Sountiani M'Pebougou Pegu!éna Fonfona ! ! Nangola ! ! Kore ! ! ! ! ! ! ! B!ongosso Moribila-Kagoua Kinikai Village Limite Région ! ! ! Toukoro M'Pessoba Zoumanabougou ^ Miéna Dogodouma ! ! Limite Cercle ! M'Pedougou Kenyebaoulé Aéroport ! ! Zan!soni 7 Gouala!bougou ! Wacoro N'Tagonasso ! ! ! M’Pessoba Ou!la ! Faya ! Tasso Fleuve Bamako Baramba ! Koumbia ! ! Sirababougou ! Zone Marécageuse ! Karagouana Mallé! Daboni ! Dandougou N'Tongo!losso ! Kouniana N'Pa!nafa Nien!esso Forêts Classées ! Ouenzzindougou ! K O U L I K O R O ! Bobola-Zangasso ! Lac Kolomosso ! Dorokouma ! Torosogoba Sinde ! 7 ! Bamana N'Tossoni Sorob!asso Djigo!uala Sirake!lé Mountougoula ! ! Ko!un Bele!koro ! Kiffosso 1 Beleko Soba Togobabougou Zangorola Cette carte a été réalisée selon le découpage adminisMtraotnift sd uM Maanldi iàn pgauretisr des ! ! Kon!ina ! Hamidou Goita Dioila ! Gouama Sogotila Famessasso Beledo!ugou ! données de la Direction Nationale des Collectivités Territoriales (DNCT).
    [Show full text]
  • GE84/210 BR IFIC Nº 2747 Section Spéciale Special Section Sección
    Section spéciale Index BR IFIC Nº 2747 Special Section GE84/210 Sección especial Indice International Frequency Information Circular (Terrestrial Services) ITU - Radiocommunication Bureau Circular Internacional de Información sobre Frecuencias (Servicios Terrenales) UIT - Oficina de Radiocomunicaciones Circulaire Internationale d'Information sur les Fréquences (Services de Terre) UIT - Bureau des Radiocommunications Date/Fecha : 25.06.2013 Expiry date for comments / Fecha limite para comentarios / Date limite pour les commentaires : 03.10.2013 Description of Columns / Descripción de columnas / Description des colonnes Intent Purpose of the notification Propósito de la notificación Objet de la notification 1a Assigned frequency Frecuencia asignada Fréquence assignée 4a Name of the location of Tx station Nombre del emplazamiento de estación Tx Nom de l'emplacement de la station Tx B Administration Administración Administration 4b Geographical area Zona geográfica Zone géographique 4c Geographical coordinates Coordenadas geográficas Coordonnées géographiques 6a Class of station Clase de estación Classe de station 1b Vision / sound frequency Frecuencia de portadora imagen/sonido Fréquence image / son 1ea Frequency stability Estabilidad de frecuencia Stabilité de fréquence 1e carrier frequency offset Desplazamiento de la portadora Décalage de la porteuse 7c System and colour system Sistema de transmisión / color Système et système de couleur 9d Polarization Polarización Polarisation 13c Remarks Observaciones Remarques 9 Directivity Directividad
    [Show full text]
  • Rapport Final Projet D’Appui Au Developpement De La Filiere Aquacole Dans La Region De Sikasso Prodefa Mli 09 031 11
    RAPPORT FINAL PROJET D’APPUI AU DEVELOPPEMENT DE LA FILIERE AQUACOLE DANS LA REGION DE SIKASSO PRODEFA MLI 09 031 11 Juin 2018 Table des matières TABLE DES MATIERES ..................................................................................... 1 FICHE D'INTERVENTION ................................................................................... 5 APPRECIATION GENERALE .......................... ERREUR ! SIGNET NON DEFINI. PARTIE 1 : RESULTATS ATTEINTS ET ENSEIGNEMENTS TIRES .................. 7 1 APPRECIATION DE LA STRATEGIE D'INTERVENTION ....................... 7 1.1 CONTEXTE 7 1.2 CHANGEMENTS SIGNIFICATIFS DANS LA STRATEGIE D 'INTERVENTION 10 2 RESULTATS ATTEINTS ........................................................................ 16 2.1 MATRICE DE MONITORING 16 2.2 ANALYSE DES RESULTATS 19 3 DURABILITE ......................................................................................... 30 4 APPRENTISSAGE ................................................................................ 34 4.1 ENSEIGNEMENTS TIRES 34 4.2 RECOMMANDATIONS 34 PARTIE 2 : SYNTHESE DU MONITORING (OPERATIONNEL) 1 SUIVI DES DECISIONS PRISES PAR LA SMCL ...................................... 2 DEPENSES ........................................................................................... 42 3 TAUX DE DECAISSEMENT DE L’INTERVENTION .............................. 42 4 PERSONNEL DE L'INTERVENTION .................................................... 45 5 MARCHES PUBLICS ...........................................................................
    [Show full text]
  • PROGRAMME ATPC Cartographie Des Interventions
    PROGRAMME ATPC Cartographie des interventions Agouni !( Banikane !( TOMBOUCTOU Rharous ! Ber . !( Essakane Tin AÎcha !( Tombouctou !( Minkiri Madiakoye H! !( !( Tou!(cabangou !( Bintagoungou M'bouna Bourem-inaly !( !( Adarmalane Toya !( !( Aglal Raz-el-ma !( !( Hangabera !( Douekire GOUNDAM !( Garbakoira !( Gargando Dangha !( !( G!(ou!(ndam Sonima Doukouria Kaneye Tinguereguif Gari !( .! !( !( !( !( Kirchamba TOMBOUCTOU !( MAURITANIE Dire .! !( HaÏbongo DIRE !( Tonka Tindirma !( !( Sareyamou !( Daka Fifo Salakoira !( GOURMA-RHAROUS Kel Malha Banikane !( !( !( NIAFOUNKE Niafunke .! Soumpi Bambara Maoude !( !( Sarafere !( KoumaÏra !( Dianke I Lere !( Gogui !( !( Kormou-maraka !( N'gorkou !( N'gouma Inadiatafane Sah !( !( !( Ambiri !( Gathi-loumo !( Kirane !( Korientze Bafarara Youwarou !( Teichibe !( # YOUWAROU !( Kremis Guidi-sare !( Balle Koronga .! !( Diarra !( !( Diona !( !( Nioro Tougoune Rang Gueneibe Nampala !( Yerere Troungoumbe !( !( Ourosendegue !( !( !( !( Nioro Allahina !( Kikara .! Baniere !( Diaye Coura !( # !( Nara Dogo Diabigue !( Gavinane Guedebin!(e Korera Kore .! Bore Yelimane !( Kadiaba KadielGuetema!( !( !( !( Go!(ry Youri !( !( Fassoudebe Debere DOUENTZA !( .! !( !( !(Dallah Diongaga YELIMANE Boulal Boni !( !(Tambacara !( !( Takaba Bema # # NIORO !( # Kerena Dogofiry !( Dialloube !( !( Fanga # Dilly !( !( Kersignane !( Goumbou # KoubewelDouentza !( !( Aourou !( ## !( .! !( # K#onna Borko # # #!( !( Simbi Toguere-coumbe !( NARA !( Dogani Bere Koussane # !( !( # Dianwely-maounde # NIONO # Tongo To !( Groumera Dioura
    [Show full text]
  • Decision-Concour-IFM-2020 – SPECIALISTE-BAC
    MINISTERE DE L'EDUCATION NATIONALE REPUBLIQUE DU MALI °°°°°°°°°°°°°°°°°°°°°°°°° Un peuple-Un But-Une Foi SECRETARIAT GENERAL °°°°°°°°°°°°°°°°°°°°°°°°° °°°°°°°°°°°°°°°°°°°°°°°°° DECISION N°2021-____000068 ___/MEN–SG Portant admission au concours direct d'entrée dans les Instituts de Formation de Maîtres. Session de Décembre 2020. Filières: SPECIALISTES-BAC LE MINISTRE DE L’EDUCATION NATIONALE, Vu la Constitution ; Vu la charte de la transition ; Vu la Loi n°99-046/ du 28 décembre 1999, modifiée, portant Loi d’Orientation sur l’Éducation ; Vu l’Ordonnance n°01-043/P-RM du 19 septembre 2001 portant création du Centre national des examens et concours de l’Éducation (CNECE) ; Vu le Décret n°09-692/P-RM du 29 décembre 2009 fixant l’organisation et les modalités de fonctionnement du Centre national des examens et concours de l’Éducation (CNECE) ; Vu le Décret n°2013-529/P-RM du 21 juin 2013 portant allocation d’indemnités au personnel chargé des examens scolaires et concours professionnels ; Vu Le Décret n°2020-00068/PT-M du 27 Septembre 2020, portant nomination du Premier ministre ; Vu Le Décret n°2020-0074/PT du 05 Septembre 2020, portant nomination des membres du Gouvernement ; Vu la Décision n°2020-003224/MEN-SG du 16 novembre 2020 portant ouverture d’un concours direct d’entrée dans les Instituts de Formation des Maîtres-filière Spécialistes, session de décembre 2020, SPECIALISTES-BAC 1/91 Sur proposition du Directeur du Centre National des Examens et Concours de l’Éducation, DECIDE : Article 1 :: Les candidats dont les noms suivent sont
    [Show full text]
  • M650kv1906mlia1p-Mliadm22302-Koulikoro.Pdf (French (Français))
    RÉGION DE KOULIKORO - MALI Map No: MLIADM22302 9°0'W 8°0'W 7°0'W 6°0'W M A U R I T A N I E ! ! ! Mo!ila Mantionga Hamd!allaye Guirel Bineou Niakate Sam!anko Diakoya ! Kassakare ! Garnen El Hassane ! Mborie ! ! Tint!ane ! Bague Guessery Ballé Mou! nta ! Bou!ras ! Koronga! Diakoya !Palaly Sar!era ! Tedouma Nbordat!i ! Guen!eibé ! Diontessegue Bassaka ! Kolal ! ! ! Our-Barka Liboize Idabouk ! Siramani Peulh Allahina ! ! ! Guimbatti Moneke Baniere Koré ! Chedem 1 ! 7 ! ! Tiap! ato Chegue Dankel Moussaweli Nara ! ! ! Bofo! nde Korera Koré ! Sekelo ! Dally ! Bamb!oyaha N'Dourba N 1 Boulal Hi!rte ! Tanganagaba ! S É G O U ! Djingodji N N ' Reke!rkaye ' To!le 0 Boulambougou Dilly Dembassala 0 ° ! ! ! ° 5 ! ! 5 1 Fogoty Goumbou 1 Boug!oufie Fero!bes ! Mouraka N A R A Fiah ! ! Dabaye Ourdo-Matia G!nigna-Diawara ! ! ! Kaw! ari ! Boudjiguire Ngalabougou ! ! Bourdiadie Groumera Dabaye Dembamare ! Torog! ome ! Tarbakaro ! Magnyambougou Dogofryba K12 ! Louady! Cherif ! Sokolo N'Tjib! ougou ! Warwassi ! Diabaly Guiré Ntomb!ougou ! Boro! dio Benco Moribougou ! ! Fallou ! Bangolo K A Y E S ! Diéma Sanabougou Dioumara ! ! ! Diag! ala Kamalendou!gou ! Guerigabougou ! Naou! lena N'Tomodo Kolo!mina Dianguirdé ! ! ! ! Mourdiah ! N'Tjibougou Kolonkoroba Bekelo Ouolo! koro ! Gomitra ! ! Douabougou ! Mpete Bolib! ana Koira Bougouni N16 ! Sira! do Madina-Kagoro ! ! N'Débougou Toumboula Sirao!uma Sanmana ! ! ! Dessela Djemene ! ! ! Werekéla N8 N'Gai Ntom! ono Diadiekabougou ! ! Dalibougou !Siribila ! ! Barassafe Molodo-Centre Niono Tiemabougou ! Sirado ! Tallan ! ! Begn!inga ! ! Dando! ugou Toukoni Kounako Dossorola ! Salle Siguima ! Keke Magassi ! ! Kon!goy Ou!aro ! Dampha Ma!rela Bal!lala ! Dou!bala ! Segue D.T.
    [Show full text]
  • PROMISAM Final Technical Report, Covering the Period
    Présidence de la APCAM/MSU/USAID République Projet de Mobilisation des Commissariat à la Initiatives en matière de Sécurité Alimentaire au Mali Sécurité Alimentaire (PROMISAM) PROMISAM PROJECT TO MOBILIZE FOOD SECURITY INITIATIVES IN MALI (Projet de Mobilisation des Initiatives en Matière de Sécurité Alimentaire au Mali) http://www.aec.msu.edu/agecon/fs2/mali_fd_strtgy/index.htm Final Technical Report, covering the period October 2004 – December 2007 Bamako – March 2008 This report was prepared by John Staatz, Niama Nango Dembélé, Abdramane Traoré and Valerie Kelly. PROMISAM Bamako Office ACI 2000, rue 339, porte 158 Hamdallaye Bamako, Mali Tel.: +223 222 34 19 Fax: +223 223 34 82 Name Position Email Nango Dembélé Director, COP [email protected] Abdramane Traore Project Assistant [email protected] Maïmouna Traore Admin. Asst./ Accountant [email protected] Office in the US: Department of Agricultural Economics Michigan State University 202 Agriculture Hall East Lansing, MI 48824-1039 Tel.: +1-517-355-1519 Fax: +1-517-432-1800 Contact Persons Position Email John Staatz Co-Director & Professor [email protected] Valerie Kelly Associate Professor, International Development [email protected] TABLE OF CONTENTS Executive Summary...................................................................................................................... ii 1. Background and Objectives .................................................................................................. 1 1.1 Background and Context ...............................................................................................
    [Show full text]