ALABAMA University Libraries

Total Page:16

File Type:pdf, Size:1020Kb

ALABAMA University Libraries THE UNIVERSITY OF ALABAMA University Libraries Dynamics of Ringed Barred Spiral Galaxies. I. Surface Photometry and Kinematics of NGC 1433 and NGC 6300 Ronald J. Buta – University of Alabama et al. Deposited 06/21/2019 Citation of published version: Buta, R., et al. (2001): Dynamics of Ringed Barred Spiral Galaxies. I. Surface Photometry and Kinematics of NGC 1433 and NGC 6300. The Astronomical Journal, 121(1). DOI: 10.1086/318024 © 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE ASTRONOMICAL JOURNAL, 121:225È243, 2001 January ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. DYNAMICS OF RINGED BARRED SPIRAL GALAXIES. I. SURFACE PHOTOMETRY AND KINEMATICS OF NGC 1433 AND NGC 6300 R. BUTA,1,2 STUART D. RYDER,2,3 GREGORY J. MADSEN,2,4 KAREN WESSON,5 D. A. CROCKER,1,2 AND F. COMBES6 Received 2000 July 11; accepted 2000 October 10 ABSTRACT This paper presents new near-infrared images and surface photometry and Ha Fabry-Perot radial velocities for NGC 1433 and NGC 6300, two large and previously well-studied nearby ringed barred spiral galaxies. Stellar absorption-line radial velocities and new optical surface photometry are also pre- sented for NGC 1433. The data are intended to set the stage for dynamical modeling of the two galaxies, with the principal goals being to derive mass distributions, bar mass-to-light ratios, bar pattern speeds, and resonance locations, parameters which have been derived for very few ringed disk galaxies. The pres- ence of strong rings and pseudorings in the two galaxies allows the possibility to link speciÐc orbital resonances with the observed rings. The new data allow us to derive a fairly complete composite rota- tion curve of NGC 1433, leading us to make some interesting preliminary judgments about the structure of the galaxy. The new data also verify the previous Ðnding that the radial velocity of the Seyfert nucleus in NGC 6300 di†ers from the actual systemic velocity of the galaxy by nearly 100 km s~1. We demon- strate in this paper that the o†set is not an artifact of signiÐcant extinction in the inner regions of the galaxy. Key words: galaxies: individual (NGC 1433, NGC 6300) È galaxies: kinematics and dynamics È galaxies: structure 1. INTRODUCTION axies, NGC 1433 and NGC 6300. Our goals are to simulate the structure of these galaxies using a test-particle code and Ringed disk galaxies are an important subgroup of the from the simulations derive the pattern speed of the bar, the barred spiral galaxy population. Rings are thought to form locations of orbital resonances, and the mass-to-light ratio by gas accumulation at resonances, under the continuous of the bar. Here all we do is present the supporting obser- action of gravity torques from the bar pattern (Buta & vational data needed for the simulations. This includes new Combes 1996). This association with orbital resonances Fabry-Perot velocity Ðelds, near-infrared images, long-slit makes rings in barred galaxies useful tracers of internal spectroscopy, and new optical surface photometry. The dynamics, and given the relative abundance of rings in simulations will be presented in Buta & Combes 2001 barred galaxies, means that studies of ringed galaxies could (Paper II). A preliminary discussion of these simulations is shed light on the dynamics of the disk galaxy population as provided by Buta & Combes (2000). a whole. However, very few ringed barred galaxies have ever been the subject of a detailed dynamical analysis. An excep- 2. SUMMARY OF PREVIOUS OBSERVATIONS OF NGC 1433 tion is IC 4214, for which a successful model was obtained AND 6300 by Salo et al. (1999). Dynamical models can be used to derive not only the mass distribution in a ringed barred The galaxies we analyze here are well studied, excellent spiral, but also the pattern speed of the bar and the location examples of ringed barred spiral galaxies. NGC 1433 is a of corotation relative to the ends of the bar. Such models classic ““ theta ÏÏ spiral Ðrst studied in great detail by Buta can also be used to test the idea that rings are connected (1986, hereafter B86). It is the nearest example of a ringed with speciÐc orbital resonances with the bar. Since bar barred spiral of de Vaucouleurs typeSB(rs)ab.- The inner pattern speeds are one of the fundamental unknowns of ring in this case is actually a pseudoring made up of tightly galaxy dynamics, studies of ringed galaxies could be partic- wrapped spiral arms that wind into an oval shape aligned ularly useful for determining trends in this parameter. along the bar axis. The galaxy also has an outer pseudoring In this paper, we set the stage for a dynamical analysis of about twice the diameter of the bar and a nuclear ring two large and somewhat dissimilar ringed barred disk gal- about 0.1 times the diameter of the bar. Just beyond the inner ring, on the leading sides of the bar, the galaxy also shows two striking partial spiral arcs (““ plumes ÏÏ) that are ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ 1 Department of Physics and Astronomy, University of Alabama, rarely seen in barred galaxies (Buta 1984). Tuscaloosa, Alabama 35487-0324. Other early studies of NGC 1433 include that of Baum- 2 Visiting Astronomer, Cerro Tololo Inter-American Observatory, gart & Peterson (1986), who presented some photographic National Optical Astronomy Observatories, operated by the Association information on the near-infrared properties of the bar and of Universities for Research in Astronomy (AURA), Inc., under coopera- noted isophote twisting in the inner regions and a Freeman tive agreement with the National Science Foundation. 3 Anglo-Australian Observatory, P.O. Box 296, Epping, NSW 1710, (1970) type II exponential disk proÐle. Simien & de Vaucou- Australia. leurs (1986) used standard decomposition techniques to 4 Department of Astronomy, University of Wisconsin, 475 North derive a bulge contribution of 13% in blue light, uncertain Charter Street, Madison, WI 53706. because of the strong bar. Harnett (1987) mapped the radio 5 School of Environment, Duke University, Box 900328, Durham, NC 27708. continuum emission from NGC 1433 and found a slight 6 DEMIRM, Observatoire de Paris, 61 Avenue de lÏObservatoire, elongation of emission along the bar axis. Maia, da Costa, F75014 Paris, France. & Latham (1989) have placed NGC 1433 into a large group 225 226 BUTA ET AL. Vol. 121 (G13) including more than 40 other large, nearby southern CIRIM was used to observe NGC 6300 in 1997 July, also galaxies. The mean Virgocentric velocity of the group is on the CTIO 1.5 m telescope. In this case, it was only neces- only 753 km s~1. sary to observe two mosaic positions. At each mosaic posi- NGC 6300 is a well-known Seyfert 2 galaxy (Phillips, tion, we obtained two sets of Ðve dithered frames based on Charles, & Baldwin 1983) and hence has been the subject of 10 internal coadds of 6 s each. The Ðnal mosaic constructed many studies. It is an excellent SB(rs)Ètype spiral that pro- has a Ðeld of view of8.2@ ] 5.6.@ Since the observations were vides an interesting contrast with NGC 1433. First studied made with some clouds present, and no H-band aperture in global detail by Buta (1987, hereafter B87), NGC 6300 is photometry is available, we could not reliably calibrate this characterized by a relatively weak bar and strong spiral image. inner pseudoring. On deprojecting the galaxy, B87 noticed that the inner pseudoring is misaligned with the bar axis by 3.2. Optical Fabry-Perot Interferometry nearly 80¡. This misalignment is unusual for ringed barred The optical velocity data of NGC 1433 and NGC 6300 galaxies and in this case suggests the possibility that the were obtained in 1997 November and July with the Rutgers spiral arms in the inner pseudoring have a di†erent pattern Fabry-Perot (RFP) interferometer attached to the CTIO 1.5 speed from that of the bar. m and 4 m telescopes, respectively. The broad etalon with a The distribution and velocity Ðeld of atomic hydrogen in full width at half-maximum (FWHM) of 2.4Ó was used for NGC 1433 and 6300 were obtained by Ryder et al. (1996). all of the observations, and the Ha line was the only emis- These observations provided well-determined estimates of sion line used for the radial velocity measurements. the orientation parameters of the two galaxies. For NGC For NGC 1433, the velocity interval needed to cover the 1433, Ryder et al. determined a (receding) kinematic line of velocity Ðeld into the continuum was from 830 to 1290 km nodes position angle of 201¡ and favored an inclination of s~1. Two sequences of nine frames each and separated by 33¡ based on ellipse Ðts to outer isophote shapes by B86. 1.2Ó on average were used to cover this interval. Two We will not be able to improve much on these estimates sequences were used because the Ðeld of view of the RFP is here, so we will adopt them for some of our analysis. For 7.8@ at f/7.5 on the CTIO 1.5 m telescope, so the galaxy just NGC 6300, Ryder et al. found evidence for warping in the Ðts into the Ðeld. The Ðrst sequence had the galaxy centered outer H I disk, but in the inner optically bright part of the on the west half of the bar, while the second sequence had disk the velocities are consistent with a line of nodes posi- the galaxy centered near the east half of the bar. The two tion angle of 109¡ and an inclination of 50¡, similar to sequences gave us two separate velocity Ðelds which are values derived by B87.
Recommended publications
  • Thesis Reference
    Thesis Multi-wavelenght Observations of INTEGRAL sources & the parameter space occupied by soft γ-ray emitting objects BODAGHEE, Arash Abstract Une vision synthétique des 500 sources détectées par INTEGRAL est présentée. Presque la moitié des sources étaient inconnues à ces énergies (>20 keV). Les études menées sur certains objets ont permis de les classifier comme des HMXBs composés d'étoiles à neutrons pulsantes qui agglomèrent le vent d'étoiles supergéantes. Ainsi, une nouvelle population de PULSARS enfouis a été mise en évidence. En moyenne, les IGRs galactiques sont 4 fois plus absorbées que les sources galactiques connues avant INTEGRAL. Des tendances non-négligeables ressortent des diagrammes Pulse-Absorption et Orbite-Absorption des HMXBs. Les populations de HMXBs OB et Be se séparent en des régions distinctes de ces diagrammes permettant de proposer une contrepartie à un HMXB qui est non-classifié. La distribution spatiale des HMXBs est compatible avec les complexes actifs en formation d'étoiles OB, et la rotation galactique n'améliore pas l'alignement entre les HMXBs et les bras spiraux. Les sources non identifiées ont une distribution spatiale qui rappelle celle des LMXBs. Reference BODAGHEE, Arash. Multi-wavelenght Observations of INTEGRAL sources & the parameter space occupied by soft γ-ray emitting objects. Thèse de doctorat : Univ. Genève, 2007, no. Sc. 3849 URN : urn:nbn:ch:unige-4771 DOI : 10.13097/archive-ouverte/unige:477 Available at: http://archive-ouverte.unige.ch/unige:477 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Département d’astronomie Professeur T.
    [Show full text]
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†ˆ€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H NGC 7192 GALXY IND 22 06.8 -64 19 11.2 1.9 m 1.8 m Elliptical pB,S,R,pmbM 134 NGC 7219 GALXY TUC 22 13.1 -64 51 12.5 1.7 m 1 m 27 SBa pB,S,R,2st nr 134 NGC 7329 GALXY TUC 22 40.4 -66 29 11.3 3.7 m 2.7 m 107 SBbc Ring pB,pS,mE90 134 NGC 7417 GALXY TUC 22 57.8 -65 02 12.3 1.9 m 1.3 m 2 SBab Ring pB,cS,R,gpmbM 134 NGC 7637 GALXY OCT 23 26.5 -81 55 12.5 2.1 m 1.9 m Sc vF,pL,R,vlbM,* nr 134 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H Mel 227 OPNCL OCT 20 12.1 -79 19 5.3 50.0 m II 2 p 135 NGC 6872 GALXY PAV 20 17.0 -70 46 11.8 6.3 m 2.2 m 66 SBb/P F,pS,lE,glbM,1st of 4 135 NGC 6876 GALXY PAV 20 18.3 -70 52 11.1 3 m 2.6 m 80 E3 pB,S,R,eS* sf,2nd of 4 135 NGC 6877 GALXY PAV 20 18.6 -70 51 12.2 2 m 1 m 169 E6 vF,vS,R,3rd of 4 135 NGC 6880 GALXY PAV 20 19.5 -70 52 12.2 2.1 m 1.3 m 35 SBO-a F,S,R,r,vS* att,4 of 4 135 NGC 6920 GALXY OCT 20 44.0 -80 00 12.5 1.8 m 1.5 m SO pB,cS,R,psmbM 135 NGC 6943 GALXY PAV 20 44.6 -68 45 11.4 4 m 2.2 m 130 SBc pF,L,mE,vglbM vS* 135 IC 5052 GALXY PAV 20 52.1 -69 12 11.2 5.9 m 0.9 m 143 SBcd F,L,eE 140 deg 135 NGC 7020 GALXY PAV 21 11.3 -64 02 11.8 3.5 m 1.6 m 165 SBO-a Ring pB,cS,lE,pgbM 135 NGC 7083 GALXY IND 21 35.7 -63 54 11.2 3.6 m 2.1 m 5 Sbc pF,cL,vlE,vgpmbM,r 135 NGC 7096 GALXY IND 21 41.3 -63 55 11.9 1.8 m 1.6 m 130 Sa vF,S,R,vS** nf 135 NGC 7098 GALXY OCT 21 44.3 -75 07 11.3 4 m 2.6 m 74 SB Ring pF,R,g,psmbM,am st 135 NGC 7095 GALXY OCT 21 52.4 -81 32 11.5 4 m 3.3 m Sc F,pL,R,vglbM,*13 inv 135 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • SPIRIT Target Lists
    JANUARY and FEBRUARY deep sky objects JANUARY FEBRUARY OBJECT RA (2000) DECL (2000) OBJECT RA (2000) DECL (2000) Category 1 (west of meridian) Category 1 (west of meridian) NGC 1532 04h 12m 04s -32° 52' 23" NGC 1792 05h 05m 14s -37° 58' 47" NGC 1566 04h 20m 00s -54° 56' 18" NGC 1532 04h 12m 04s -32° 52' 23" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1672 04h 45m 43s -59° 14' 52" NGC 1313 03h 18m 16s -66° 29' 43" NGC 1313 03h 18m 15s -66° 29' 51" NGC 1365 03h 33m 37s -36° 08' 27" NGC 1566 04h 20m 01s -54° 56' 14" NGC 1097 02h 46m 19s -30° 16' 32" NGC 1546 04h 14m 37s -56° 03' 37" NGC 1232 03h 09m 45s -20° 34' 45" NGC 1433 03h 42m 01s -47° 13' 19" NGC 1068 02h 42m 40s -00° 00' 48" NGC 1792 05h 05m 14s -37° 58' 47" NGC 300 00h 54m 54s -37° 40' 57" NGC 2217 06h 21m 40s -27° 14' 03" Category 1 (east of meridian) Category 1 (east of meridian) NGC 1637 04h 41m 28s -02° 51' 28" NGC 2442 07h 36m 24s -69° 31' 50" NGC 1808 05h 07m 42s -37° 30' 48" NGC 2280 06h 44m 49s -27° 38' 20" NGC 1792 05h 05m 14s -37° 58' 47" NGC 2292 06h 47m 39s -26° 44' 47" NGC 1617 04h 31m 40s -54° 36' 07" NGC 2325 07h 02m 40s -28° 41' 52" NGC 1672 04h 45m 43s -59° 14' 52" NGC 3059 09h 50m 08s -73° 55' 17" NGC 1964 05h 33m 22s -21° 56' 43" NGC 2559 08h 17m 06s -27° 27' 25" NGC 2196 06h 12m 10s -21° 48' 22" NGC 2566 08h 18m 46s -25° 30' 02" NGC 2217 06h 21m 40s -27° 14' 03" NGC 2613 08h 33m 23s -22° 58' 22" NGC 2442 07h 36m 20s -69° 31' 29" Category 2 Category 2 M 42 05h 35m 17s -05° 23' 25" M 42 05h 35m 17s -05° 23' 25" NGC 2070 05h 38m 38s -69° 05' 39" NGC 2070 05h 38m 38s -69°
    [Show full text]
  • Nuclear Activity in Circumnuclear Ring Galaxies
    International Journal of Astronomy and Astrophysics, 2016, 6, 219-235 Published Online September 2016 in SciRes. http://www.scirp.org/journal/ijaa http://dx.doi.org/10.4236/ijaa.2016.63018 Nuclear Activity in Circumnuclear Ring Galaxies María P. Agüero1, Rubén J. Díaz2,3, Horacio Dottori4 1Observatorio Astronómico de Córdoba, UNCand CONICET, Córdoba, Argentina 2ICATE, CONICET, San Juan, Argentina 3Gemini Observatory, La Serena, Chile 4Instituto de Física, UFRGS, Porto Alegre, Brazil Received 23 May 2016; accepted 26 July 2016; published 29 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract We have analyzed the frequency and properties of the nuclear activity in a sample of galaxies with circumnuclear rings and spirals (CNRs), compiled from published data. From the properties of this sample a typical circumnuclear ring can be characterized as having a median radius of 0.7 kpc (mean 0.8 kpc, rms 0.4 kpc), located at a spiral Sa/Sb galaxy (75% of the hosts), with a bar (44% weak, 37% strong bars). The sample includes 73 emission line rings, 12 dust rings and 9 stellar rings. The sample was compared with a carefully matched control sample of galaxies with very similar global properties but without detected circumnuclear rings. We discuss the relevance of the results in regard to the AGN feeding processes and present the following results: 1) bright companion galaxies seem
    [Show full text]
  • Arxiv:2005.06079V1 [Astro-Ph.GA] 12 May 2020 Z879 USA
    DRAFT VERSION MAY 14, 2020 Preprint typeset using LATEX style emulateapj v. 4/12/04 THE VARIABLE AND NON-VARIABLE X-RAY ABSORBERS IN COMPTON-THIN TYPE-II ACTIVE GALACTIC NUCLEI SIBASISH LAHA1,2,3 ,ALEX G. MARKOWITZ4,1 , MIRKO KRUMPE5,ROBERT NIKUTTA6,RICHARD ROTHSCHILD1, &TATHAGATA SAHA 4 Draft version May 14, 2020 ABSTRACT We have conducted an extensive X-ray spectral variability study of a sample of 20 Compton-thin type II galaxies using broad band spectra from XMM-Newton, Chandra,and Suzaku. The aim is to study the variability of the neutral intrinsic X-ray obscuration along the line of sight and investigate the properties and location of the dominant component of the X-ray-obscuring gas. The observations are sensitive to absorption columns of 20.5−24 −2 NH ∼ 10 cm of fully- and partially-coveringneutral and/or lowly-ionizedgas on timescales spanning days to well over a decade. We detected variability in the column density of the full-covering absorber in 7/20 sources, on timescales of months-years, indicating a component of compact-scale X-ray-obscuring gas lying along the line of sight of each of these objects. Our results imply that torus models incorporating clouds or overdense regions should account for line of sight column densities as low as ∼ a few ×1021 cm−2. However, 13/20 sources yielded no detection of significant variability in the full-covering obscurer, with upper limits 21−23 −2 to ∆NH spanning 10 cm . The dominant absorbing media in these systems could be distant, such as kpc-scale dusty structures associated with the host galaxy, or a homogeneous medium along the line of sight.
    [Show full text]
  • The Pendulum Clock Lum Clock Around the Hand Section Is Situated Around Iota, Eta and Zeta Horologii
    deep-sky delights Eridanus to its The Pendulum north, Reticulum Clock diagonally east- ward, and Hydrus by Magda Streicher to the south. The [email protected] constellation was originally named Horologium “Time and tide wait for no man” – a Oscillitorium to Image source: Starry Night Pro proverb whose truth can be in no doubt. honour Christian Everything revolves around time, which Huygens, the is why it isn’t at all strange to see a con- famous Dutch stellation called “Horologium, the clock” scientist, inventor in the starry sky. of the pendulum in 1657 and the discov- erer of Saturn’s rings. Horologium is one Going back somewhat in time, Frikkie de of Nicolas-Louis de Lacaille’s (1713-62) Bruyn (Cosmology Director) has drawn fourteen constellations which he created our attention to the following: By the during his stay at the Cape of Good Hope end of the nineteenth century scientists from 1750 to 1752. It was with this visit believed in a universal quantity called that he established the framework for as- time which all clocks would measure. tronomy in South Africa. In my mind’s However, Albert Einstein’s theory of eye I clearly see the gentleman Lacaille relativity had overthrown two pillars of carrying his pocket watch with some the nineteenth-century science: absolute pride, elegantly attached to his jacket by rest, as represented by the idea of an all means of a gold chain (my imagination pervading ether and absolute or univer- again!). Time possibly stood still for sal time. Every person has his or her him too, so that he was able to explore own personal time.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Bar-Induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I
    THE UNIVERSITY OF ALABAMA University Libraries Bar-induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I E. Laurikainen – University of Oulu, Finland H. Salo – University of Oulu, Finland R. Buta – University of Alabama S. Vasylyev – University of Alabama Deposited 08/01/2019 Citation of published version: Laurikainen, E., Salo, H., Buta, R., Vasylyev, S. (2004): Bar-induced Perturbation Strengths of the Galaxies in the Ohio State University Bright Galaxy Survey – I. Monthly Notices of the Royal Astronomical Society, 355(4). DOI: https://doi.org/10.1111/j.1365-2966.2004.08410.x © 2004 Oxford University Press Mon. Not. R. Astron. Soc. 355, 1251–1271 (2004) doi:10.1111/j.1365-2966.2004.08410.x Bar-induced perturbation strengths of the galaxies in the Ohio State University Bright Galaxy Survey – I Eija Laurikainen,1 Heikki Salo,1 Ronald Buta2 and Sergiy Vasylyev2 1Division of Astronomy, Department of Physical Sciences, PO Box 3000, University of Oulu, Oulu, FIN-90014, Finland Downloaded from https://academic.oup.com/mnras/article-abstract/355/4/1251/992987 by University of Alabama user on 01 August 2019 2Department of Physics and Astronomy, Box 870324, University of Alabama, Tuscaloosa, AL 35487, USA Accepted 2004 September 10. Received 2004 September 10; in original form 2004 June 4 ABSTRACT Bar-induced perturbation strengths are calculated for a well-defined magnitude-limited sample of 180 spiral galaxies, based on the Ohio State University Bright Galaxy Survey. We use a gravitational torque method, the ratio of the maximal tangential force to the mean axisymmetric radial force, as a quantitative measure of the bar strength.
    [Show full text]
  • The Bennett Catalogue
    The Bennett Catalogue www.macastro.org.au Catalogue Numbers Type R.A. Dec. U2000 Con. Ben 1 NGC 55 Gal 0:14:54 -39:11 386 Scl Ben 2 NGC 104 GC 0:24:06 -72:05 440 Tuc Ben 3 NGC 247 Gal 0:47:06 -20:46 306 Cet Ben 4 NGC 253 Gal 0:47:36 -25:17 306 Scl Ben 5 NGC 288 GC 0:52:48 -26:35 307 Scl Ben 6 NGC 300 Gal 0:54:54 -37:41 351 Scl Ben 7 NGC 362 GC 1:03:12 -70:51 441 Tuc Ben 8 NGC 613 Gal 1:34:18 -29:25 352 Scl Ben 9 NGC 1068 Gal 2:42:42 -00:01 220 Cet Ben 10 NGC 1097 Gal 2:46:18 -30:17 354 For Ben 10a NGC 1232 Gal 3:09:48 -20:35 311 Eri Ben 11 NGC 1261 GC 3:12:18 -55:13 419 Hor Ben 12 NGC 1291 Gal 3:17:18 -41:08 390 Eri Ben 13 NGC 1313 Gal 3:18:18 -66:30 443 Ret Ben 14 NGC 1316 Gal 3:22:42 -37:12 355 For Ben 14a NGC 1350 Gal 3:31:06 -33:38 355 For Ben 15 NGC 1360 PN 3:33:18 -25:51 312 For Ben 16 NGC 1365 Gal 3:33:36 -36:08 355 For Ben 17 NGC 1380 Gal 3:36:30 -34:59 355 For Ben 18 NGC 1387 Gal 3:37:00 -35:31 355 For Ben 19 NGC 1399 Gal 3:38:30 -35:27 355 For Ben 19a NGC 1398 Gal 3:38:54 -26:20 312 For Ben 20 NGC 1404 Gal 3:38:54 -35:35 355 Eri Ben 21 NGC 1433 Gal 3:42:00 -47:13 391 Hor Ben 21a NGC 1512 Gal 4:03:54 -43:21 391 Hor Ben 22 NGC 1535 PN 4:14:12 -12:44 268 Eri Ben 23 NGC 1549 Gal 4:15:42 -55:36 420 Dor Ben 24 NGC 1553 Gal 4:16:12 -55:47 420 Dor Ben 25 NGC 1566 Gal 4:20:00 -54:56 420 Dor Ben 25a NGC 1617 Gal 4:31:42 -54:36 421 Dor Ben 26 NGC 1672 Gal 4:45:42 -59:15 421 Dor Ben 27 NGC 1763 BN 4:56:48 -66:24 444 Dor Ben 28 NGC 1783 GC 4:58:54 -66:00 444 Dor Ben 29 NGC 1792 Gal 5:05:12 -37:59 358 Col
    [Show full text]
  • Skytools Chart
    36 Ara - Pavo SkyTools 3 / Skyhound.com 2 ζ 6541 NGC 6231 ζ NGC 6124 θ NGC 6322 η η 6496 ζ 1 6388 PK 345-04.1 -4 NGC 6259 NGC 6192 0° 1 ε NGC 6249 ι 1 δ α PK 342-04.1 β IC 4699 μ σ Mu Normae Cluster β2 NGC 6250 NGC 6178 NGC 6204 6352 ω NGC 6200 δ ζ λ θ α IC 4651 NGC 6193 ε ι PK 342-14.1 NGC 6134 6584 6326 NGC 6167 2 Ara γ η 6397 γ1 λ ε1 NGC 6152 α NGC 6208 1 ν μ β 5946 γ ζ NGC 6067 -50° ξ PK 331-05.1 κ 5927 PK 329-02.2 η ζ η NGC 6087 NGC 5999 NGC 5925 Pavo Globular δ 6221 ι1 ξ Collinder 292 α NGC 5822 ν λ 6300 NGC 5823 NGC 6025 π NGC 5749 6744 η PK 325-12.1 γ β β φ1 Pavo δ β NGC 5662 ρ 6362 κ ζ Circinus δ Triangulum Australe ε α Rigel Kentaurus ε 5844 2 -6 α 0 ° β NGC 5617 ζ ζ α Agena 6101 γ γ NGC 5316 ε Apus PK 315-13.1 -7 0° NGC 5281 2 1h h 5 52° x 34° 1 18h 18h00m00.0s -60°00'00" (Skymark) Globular Cl. Dark Neb. Galaxy 8 7 6 5 4 3 2 1 Globule Planetary Open Cl. Nebula 36 Ara - Pavo GALASSIE Sigla Nome Cost. A.R. Dec. Mv. Dim. Tipo Distanza 200/4 80/11,5 20x60 NGC 6221 Ara 16h 52m 47s -59° 12' 59" +10,70 4',6x2',8 Sc 18,0 Mly --- --- --- NGC 6300 Ara 17h 16m 59s -62° 49' 11" +11,00 5',5x3',5 SBb 34,0 Mly --- --- --- NGC 6744 Pav 19h 09m 46s -63° 51' 28" +9,10 17',0x10',7 SABb 21,0 Mly --- --- --- AMMASSI APERTI Sigla Nome Cost.
    [Show full text]
  • Super-Massive Black Hole Scaling Relations and Peculiar Ringed Galaxies
    SUPER-MASSIVE BLACK HOLE SCALING RELATIONS AND PECULIAR RINGED GALAXIES A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY BURCIN MUTLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY MARC S. SEIGAR June, 2017 c BURCIN MUTLU 2017 ALL RIGHTS RESERVED Acknowledgements There are several people who I would like to acknowledge for directly or indirectly contributing to this dissertation. First and foremost, I would like to acknowledge the guidance and support of my ad- visor, Marc S. Seigar. I am thankful to him for his continuous encouragement, patience, and kindness. I appreciate all his contributions of knowledge, expertise, and time, which were invaluable to my success in graduate school. He has set an example of excellence as a researcher, mentor, and role model. In addition, I would like to thank my dissertation committee, Liliya L. R. Williams, M. Claudia Scarlata, and Robert Lysak, for their insightful input, constructive criticism and direction during the course of this dissertation. I have crossed paths with many collaborators who have influenced and enhanced my research. Patrick Treuthardt has been a collaborator for most of the work during my dissertation. The addition of his scientific point of view has improved the quality of the work in this dissertation tremendously. Our discussions have always been stimulating and rewarding. I am thankful to him for mentoring me and being a dear friend to me. I would also like to thank Benjamin L. Davis for numerous helpful advice and inspiring discussions. He has directly involved with many aspects of Chapter 1.
    [Show full text]