Sunn Pest CP

Total Page:16

File Type:pdf, Size:1020Kb

Sunn Pest CP Contingency Plan – Eurygaster integriceps Puton (Sunn Pest) INDUSTRY BIOSECURITY PLAN FOR THE GRAINS INDUSTRY THREAT SPECIFIC CONTINGENCY PLAN SUNN PEST EURYGASTER INTEGRICEPS April 2008 Disclaimer: The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Prepared by Dr Mallik Malipatil and Plant Health Australia Page 1 of 26 Contingency Plan – Eurygaster integriceps Puton (Sunn Pest) CONTINGENCY PLAN EURYGASTER INTEGRICEPS PUTON Contents 1. Pest information/status ............................................................................................................... 4 1.1 Pest Details – Eurygaster integriceps Puton ......................................................................................... 4 1.1.1 General information ....................................................................................................................... 4 1.1.2 Life cycle ......................................................................................................................................... 4 1.1.3 Dispersal ......................................................................................................................................... 6 1.2 Affected Hosts ......................................................................................................................................... 6 1.2.1 Host range ...................................................................................................................................... 6 1.2.2 Geographic distribution .................................................................................................................. 6 1.2.3 Symptoms ....................................................................................................................................... 6 1.3 Entry, establishment and spread ............................................................................................................ 7 1.4 Diagnostic information ............................................................................................................................ 8 1.4.1 Diagnostic protocol ........................................................................................................................ 8 1.4.2 Reference documents .................................................................................................................... 8 1.5 Response checklist ................................................................................................................................. 9 1.5.1 Checklist ......................................................................................................................................... 9 1.5.2 Reference documents .................................................................................................................... 9 1.6 Delimiting survey and epidemiology study............................................................................................. 9 1.6.1 Sampling method ........................................................................................................................... 9 1.6.2 Epidemiological study .................................................................................................................. 10 1.6.3 Models of spread potential .......................................................................................................... 10 1.6.4 Pest Free Area (PFA) guidelines ................................................................................................ 10 1.6.5 Reference documents .................................................................................................................. 11 1.7 Availability of control methods .............................................................................................................. 11 1.7.1 General procedures for control ................................................................................................... 11 1.7.2 Control if small areas are affected .............................................................................................. 11 1.7.3 Control if large areas are affected ............................................................................................... 12 1.7.4 Cultural control ............................................................................................................................. 12 1.7.5 Host plant resistance ................................................................................................................... 12 1.7.6 Chemical control .......................................................................................................................... 12 1.7.7 Mechanical control ....................................................................................................................... 13 1.7.8 Biological control .......................................................................................................................... 13 1.7.9 Reference documents .................................................................................................................. 13 Page 2 of 26 Contingency Plan – Eurygaster integriceps Puton (Sunn Pest) 2 Course of Action – Eradication Methods ................................................................................. 14 2. 1 Destruction strategy .............................................................................................................................. 14 2.1.1 Destruction protocols ................................................................................................................... 14 2.1.2 Decontamination protocols .......................................................................................................... 14 2.1.3 Priorities ........................................................................................................................................ 14 2.1.4 Plants, by-products and waste processing ................................................................................. 15 2.1.5 Disposal issues ............................................................................................................................ 15 2.1.6 Reference documents .................................................................................................................. 15 2.2 Quarantine and movement controls .................................................................................................... 15 2.2.1 Quarantine priorities ..................................................................................................................... 15 2.2.2 Movement control for people, plant material and machinery .................................................... 15 2.2.3 Reference documents ......................................................................................................................... 16 2.3 Zoning ................................................................................................................................................... 16 2.3.1 Destruction zone .................................................................................................................................. 16 2.3.2 Quarantine zone ........................................................................................................................... 16 2.3.3 Buffer zone ................................................................................................................................... 16 2.3.4 Restricted Area .................................................................................................................................... 17 2.3.5 Control Area ......................................................................................................................................... 17 2.3.6 Reference documents .................................................................................................................. 17 2.4 Decontamination and farm clean up ........................................................................................................... 17 2.4.1 Decontamination procedures .............................................................................................................. 17 2.4.1.1 General guidelines for decontamination and clean up ........................................................ 17 2.4.2 General safety precautions.......................................................................................................... 18 2.4.3 Reference documents .................................................................................................................
Recommended publications
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • 2010 Central Asia IPM
    Annual Report FY 2009-10 Oct0ber 1, 2009 to September 30, 2010 Development and Delivery of Ecologically-based IPM Packages in Central Asia Project Management: Dr. Karim Maredia (PI), Michigan State University Dr. Zakir Khalikulov, CGIAR/ICARDA-Project Facilitation Unit, Tashkent, Uzbekistan Wheat IPM Package: Dr. Nurali Saidov, IPM CRSP Coordinator, Tajikistan Dr. Doug Landis, Michigan State University Dr. Bohssini Mustapha, ICARDA Dr. Megan Kennelly, Kansas State University Tomato IPM Package: Dr. Barno Tashpulatova, IPM CRSP Coordinator, Uzbekistan Dr. Frank Zalom, University of California-Davis Dr. Ravza Mavlyanova, AVRDC/World Vegetable Center Potato IPM Package: Dr. Murat Aitmatov, IPM CRSP Coordinator, Kyrgyzstan Dr. David Douches, Michigan State University Dr. George Bird, Michigan State University Dr. Walter Pett, Michigan State University IPM Communication: Ms. Joy Landis, Michigan State University Links with IPM CRSP Global Theme Projects: Pest Diagnostics: Dr. Sally Miller, Ohio State University Viruses: Dr. Naidu Rayapati, Washington State University and Dr. Sue Tolin, Virginia Tech University Gender Issues: Dr. Linda Racioppi and Dr. Zahra Jamal, Michigan State University and Dr. Maria Elisa Christie, Virginia Tech University Socio-Economic Impact Assessment: Dr. Mywish Maredia and Richard Bernsten, Michigan State University, and Dr. George Norton, Virginia Tech University 1 Michigan State University (MSU) in partnership with University of California-Davis, Kansas State University, ICARDA, AVRDC, and several local research and academic institutions and NGOs is implementing a regional IPM program in Central Asia. The three host countries include - Tajikistan, Uzbekistan and Kyrgyzstan. The technical objectives of the Central Asia Regional IPM Program are as follow: 1. Develop ecologically based IPM packages for wheat, tomato and potato through collaborative research and access to new technologies.
    [Show full text]
  • Eurygaster Integriceps Put.)
    FAT BODY ROLE IN THE DYNAMICS OF CEREAL BUG POPULATIONS (EURYGASTER INTEGRICEPS PUT.) Constantin POPOV*) ABSTRACT 1977), but often the observations have been ori- ented on a single factor, clima - tic (Popov, The accumulation of reserve matter and the fat body 1980; Radjani, 1994) or biologi- cal (Popov, level among the E. integriceps species present a great 1979, 1984, 1985; Scepetilni- kova, 1963; ununiformity, both individually and from one zone to another or from one generation to another, being the Polivanova, 1994; Radjabi, 1995) without to try consequence of a complex of factors from which the the explanation of the complexity of all factors climatic and agrotechnical ones are the most important. The fat body presents a significant role into the life-cycle which influence the diapause. The paper presents of this species, constituting one of the most important a complex analysis of the physiological prepara- factors of perpetuation and numerical blasting with in- vasion role. The mean value of the fat body is different tion role, exp ressed by the fat body, on bug between sexes too, the females presenting a higher level. populations during both diapause and active life in The fat body level influences the mortality during dia- pause, the sterility and fertility, strongly influencing the postdiapause. bug population multiplication. The insects with low level of fat matter accumulations have a high mortality per- centage during diapause as well as a very low fertility. MATERIALS AND METHODS The fat body is consumed in a proportion of 25% for maturation during diapause and 50% for oviposition. The main factor of the formation of a well developed fat body The biological material consisted of Eury- is the complete rearing of adults under the best condi- gaster integriceps adults from different genera- tions.
    [Show full text]
  • CANDAN S., SULUDERE Z. Studies on the External Morphology of The
    POLSKIE P I S M O ENTOMOLOGICZNE P O L I S H JOURNAL OF ENTOMOLOGY VOL. 75 : 369-374 Bydgoszcz 30 September 2006 Studies on the external morphology of the eggs of Eurygaster maura (Linnaeus, 1758) (Heteroptera: Scutelleridae) SELAMI CANDAN *, Z EKIYE SULUDERE ** Gazi University, Faculty of Arts and Sciences, Department of Biology, 06500 Teknikokullar, Ankara, Turkey e-mail: *[email protected], **[email protected] ABSTRACT . External morphology of egg of Eurygaster maura (LINNAEUS , 1758) was investigated by light (LM) and scanning electron microscope (SEM). The females were collected from Ankara, Aya ş, Asartepe and maintained under the laboratory conditions. Each female was shown to deposit generally 14 green eggs in a mass. The spherical shaped eggs were 1.04 mm in length and 0.96 mm in width. The first external evidence of embryonic development was the appearance of two red eye spots opposite each other beneath the aero-micropylar processes followed by appearance of a blackish T-shaped egg burster between the eye spots. Egg surface are covered with polygons. They have 20 to 22 aero-micropyles in a shape of truncated cones between polygons. KEY WORDS: Heteroptera, Scutelleridae, Eurygaster maura , chorion, external morphology, aero- micropylar processes, egg-burster, scanning electron microscope INTRODUCTION The taxonomic and phylogenetic importance of eggshell structure in pterygote insects has been demonstrated in various orders at different levels (HINTON 1981, SALKELD 1983, 1984, MARGARITIS 1985). Research on eggs of Heteroptera has been reviewed by SOUTHWOOD (1956), COBBEN (1968), and HINTON (1981). Afterwards, egg surface structure of Heteroptera species including Scutelleridae has been reported by many authors, however accurate knowledge of the egg morphology still lacks in many taxonomic groups (ESSELBAUGH 1946, GRIGOROV 1988, JAVAHERY 1994, SIMICZYJEW 1994, SULUDERE et al.
    [Show full text]
  • Bilimsel Araştırma Projesi (8.011Mb)
    1 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) 2 T.C. GAZİOSMANPAŞA ÜNİVERSİTESİ Bilimsel Araştırma Projeleri Komisyonu Sonuç Raporu Proje No: 2008/26 Projenin Başlığı AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Proje Yöneticisi Prof.Dr. Kenan KARA Bitki Koruma Anabilim Dalı Araştırmacı Turgut ATAY Bitki Koruma Anabilim Dalı (Kasım / 2011) ÖZET* 3 AMASYA, SİVAS VE TOKAT İLLERİNİN KELKİT HAVZASINDAKİ FARKLI BÖCEK TAKIMLARINDA BULUNAN TACHINIDAE (DIPTERA) TÜRLERİ ÜZERİNDE ÇALIŞMALAR Yapılan bu çalışma ile Amasya, Sivas ve Tokat illerinin Kelkit havzasına ait kısımlarında bulunan ve farklı böcek takımlarında parazitoit olarak yaşayan Tachinidae (Diptera) türleri, bunların tanımları ve yayılışlarının ortaya konulması amaçlanmıştır. Bunun için farklı böcek takımlarına ait türler laboratuvarda kültüre alınarak parazitoit olarak yaşayan Tachinidae türleri elde edilmiştir. Kültüre alınan Lepidoptera takımına ait türler içerisinden, Euproctis chrysorrhoea (L.), Lymantria dispar (L.), Malacosoma neustrium (L.), Smyra dentinosa Freyer, Thaumetopoea solitaria Freyer, Thaumetopoea sp. ve Vanessa sp.,'den parazitoit elde edilmiş,
    [Show full text]
  • A Short History Regarding the Taxonomy and Systematic Researches of Platygastroidea (Hymenoptera)
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXIV, 2011 BIOLOGY A SHORT HISTORY REGARDING THE TAXONOMY AND SYSTEMATIC RESEARCHES OF PLATYGASTROIDEA (HYMENOPTERA) O.A. POPOVICI1 and P.N. BUHL2 1 “Al.I.Cuza” University, Faculty of Biology, Bd. Carol I, nr. 11, 700506, Iasi, Romania. 2 Troldhøjvej 3, DK-3310 Ølsted, Denmark, e-mail: [email protected],dk Corresponding author: [email protected] This paper presents an overview of the most important and best-known works that were the subject of taxonomy or systematics Platygastroidea superfamily. The paper is divided into three parts. In the first part of the research surprised the early period can be placed throughout the XIXth century between Latreille and Dalla Torre. Before this period, references about platygastrids and scelionids were made by Linnaeus and Schrank, they are the ones who described the first platygastrid and scelionid respectively. In this the first period work entomologists as: Haliday, Westwood, Walker, Forster, Ashmead, Thomson, Howard, etc., the result of their work being the description of 699 scelionids species which are found quoted in Dalla Torre's catalogue. The second part of the paper is devoted to early 20th century. This vibrant work is marked by the work of two great entomologists: Kieffer and Dodd. In this period one publish the first and only global monograph of platygastrids and scelionids until now. In this monograph are twice the number of species than in Dalla Torre's catalogue which shows the magnitude of the systematic research of those moments. The third part of the paper refers to the late 20th and early 21st century.
    [Show full text]
  • INSECTICIDAL POTENTIAL of Tio2 NANO-PARTICLES AGAINST EURYGASTER TESTUDINARIA (GEOFFROY) UNDER LABORATORY CONDITIONS
    Int. J. Agricult. Stat. Sci. Vol. 16, Supplement 1, pp. 1221-1224, 2020 www.connectjournals.com/ijass DocID: https://connectjournals.com/03899.2020.16.1221 ISSN : 0973-1903, e-ISSN : 0976-3392 ORIGINAL ARTICLE INSECTICIDAL POTENTIAL OF TiO2 NANO-PARTICLES AGAINST EURYGASTER TESTUDINARIA (GEOFFROY) UNDER LABORATORY CONDITIONS Ahmed Saeed Mohmed Department of Field Crops, College of Agriculture, Al-Qasim Green University, Iraq. E-mail: [email protected] Abstract: Nano-particles have become one of the most promising new approaches for pest control in recent years. In this study, laboratory trails were carried out to investigate the insecticidal potential of TiO2 nano-particles against nymphs and adults of Eurygaster testudinaria. TiO2 nano-particles were found to be highly effective against E. testudinaria. The results also showed that mortality rates of adults and nymphs were significantly increased with days after application and concentration of TiO2 nano-particles with 41.15% and 43.08% mortality, respectively at 100 mg/L after 7 days from treatment. Results indicated that TiO2 nano-particles can be used as a valuable way in pest management of E. integriceps to reduce the indiscriminate use of conventional pesticides. Key words: Eurygaster testudinaria, Mortality, Nano-particles. Cite this article Ahmed Saeed Mohmed (2020). Insecticidal potential of TiO2 nano-particles against Eurygaster testudinaria (Geoffroy) under laboratory conditions. International Journal of Agricultural and Statistical Sciences. DocID: https:// connectjournals.com/03899.2020.16.1221 1. Introduction These reasons have led to a growing interest in the novel and effective alternatives that are eco-friendly In recent years, the sunn pest (Eurygaster [Mohmed (2019)].
    [Show full text]
  • Morphological Diagnosis of Sunn Pest, Eurygaster Integriceps (Heteroptera: Scutelleridae) Parasitized by Hexamermis Eurygasteri (Nematoda: Mermithidae)
    Tr. Doğa ve Fen Derg. − Tr. J. Nature Sci. 2017 Vol. 6 No. 1 Morphological diagnosis of Sunn pest, Eurygaster integriceps (Heteroptera: Scutelleridae) parasitized by Hexamermis eurygasteri (Nematoda: Mermithidae) Gülcan TARLA*1, Şener TARLA 1, Mahmut İSLAMOĞLU 1 Abstract Hexamermis eurygasteri Tarla, Poinar and Tarla (Nematoda: Mermithidae) is an important natural enemy of Sunn pest (SP), Eurygaster integriceps Put. (Heteroptera: Scutelleridae) in overwintering areas. Adults of this pest become inactive during hibernation and aestivation about nine months in overwintering areas. These areas are very important for biological control of this pest. Because the overwintering adults with entomoparasitic nematodes can be easily collected from there and they can be sent to uninfected overwintering areas for inoculation. The success of this method depends on the morphological diagnosis of individuals infected with mermithids. It is necessary recognizing the individuals that infected with nematodes collected from overwintering areas to be used as biological control agent for the pest management. As a result of the studies carried out for this purpose, it was determined that the bodies of parasitized SP individuals have a wet and greasy appearance. The movement of infected SP is slowed when near nematodes leaving from the host body. Insect head extends forward, the neck is prolonged and nematodes are usually left the body from the cervix. Before leaving from the hosts, the mean distance between the head at eye level and the thorax was measured as 419.4 ± 117.30 μm (n = 11). Keywords: Eurygaster; Hexamermis; Mermithidae; entomoparasitic nematode; Sunn pest Hexamermis eurygasteri (Nematoda: Mermithidae) tarafından parazitlenmiş Eurygaster integriceps (Heteroptera: Scutelleridae)’in morfolojik teşhisi Özet Hexamermis eurygasteri Tarla, Poinar and Tarla (Nematoda: Mermithidae) kışlak alanlarda süne, Eurygaster integriceps Put.
    [Show full text]
  • Chemical Analysis of the Metathoracic Scent Gland of Eurygaster Maura (L.) (Heteroptera: Scutelleridae)
    J. Agr. Sci. Tech. (2019) Vol. 21(6): 1473-1484 Chemical Analysis of the Metathoracic Scent Gland of Eurygaster maura (L.) (Heteroptera: Scutelleridae) E. Ogur1, and C. Tuncer2 ABSTRACT Eurygaster maura (L.) (Heteroptera: Scutelleridae) is one of the most devastating pests of wheat in Turkey. The metathoracic scent gland secretions of male and female E. maura were analyzed separately by gas chromatography-mass spectrometry. Twelve chemical compounds, namely, Octane, n-Undecane, n-Dodecane, n-Tridecane, (E)-2-Hexenal , (E)- 2-Hexen-1-ol, acetate, Cyclopropane, 1-ethyl-2-heptyl, Hexadecane, (E)-3-Octen-1-ol, acetate, (E)-5-Decen-1-ol, acetate, 2-Hexenoic acid, Butyric acid, and Tridecyl ester were detected in both males and females. These compounds, however, differed quantitatively between the sexes. In both females and males, n-Tridecane and (E)-2-Hexanal were the most abundant compounds and constituted approximately 90% of the total content. Minimal amounts of Octane were detected in males and Hexadecane in females. Keywords: (E)-2-Hexenal, GC-MS, Metathoracic scent gland, n-Tridecane, Wheat. INTRODUCTION 100% in the absence of control measures (Lodos, 1986; Özbek and Hayat, 2003). Eurygaster species (Heteroptera: In the order Heteroptera, nearly all species Scutelleridae) are the most devastating pests have scent glands and many of these are of wheat in an extensive area of the Near colloquially referred to as “stink bugs” and Middle East, Western and Central Asia, (Aldrich, 1988). Both nymphs and adults Eastern and South Central Europe, and have scent glands in Heteroptera species Northern Africa (Critchley, 1998; Vaccino (Abad and Atalay, 1994; Abad, 2000).
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]
  • Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management
    Invasive Stink Bugs and Related Species (Pentatomoidea) Biology, Higher Systematics, Semiochemistry, and Management Edited by J. E. McPherson Front Cover photographs, clockwise from the top left: Adult of Piezodorus guildinii (Westwood), Photograph by Ted C. MacRae; Adult of Murgantia histrionica (Hahn), Photograph by C. Scott Bundy; Adult of Halyomorpha halys (Stål), Photograph by George C. Hamilton; Adult of Bagrada hilaris (Burmeister), Photograph by C. Scott Bundy; Adult of Megacopta cribraria (F.), Photograph by J. E. Eger; Mating pair of Nezara viridula (L.), Photograph by Jesus F. Esquivel. Used with permission. All rights reserved. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-1508-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materi- als or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, micro- filming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Towards Classical Biological Control of Leek Moth
    ____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999.
    [Show full text]