S2 Cells Infected S2 Cells Total Reads (18 28Nt) 22 375 548 18 059

Total Page:16

File Type:pdf, Size:1020Kb

S2 Cells Infected S2 Cells Total Reads (18 28Nt) 22 375 548 18 059 &'(' !"#$% Supplemental Table II: List of genes induced by DCV, FHV and SINV DCV specific (82 genes) Probe number Gene name Synomymus DCV * Putative function Key words 143500_at rho 12.5 signal transduction 153603_at CG10927 4.9 Unknown Cytidine/deoxycytidylate deaminase zinc-binding region 151144_at CG13553 4.2 152245_at CG13335 3.6 151473_i_at syt synaptotagmin p65 3.4 enzyme 143125_at dl dorsal 3.3 DNA binding NF-kappa-B/Rel/dorsal 150552_at CG9996 3.1 Unknown Glycosyl transferase family 8 143770_at Mtk Metchnikowin 3.0 Antifungal peptide activity 141691_at spz spatzle 3.0 Toll binding 141444_at CG2471 3.0 actin binding Leucine-rich repeat 141366_at CG10764 serine protease 3.0 serine-type endopeptidase activity Peptidase trypsin-like serine and cysteine proteases 154443_at CG1667 2.9 unknown 151661_s_at Nrt Neurotactin 2.8 cell adhesion Esterase/lipase/thioesterase 141718_at D12 2.8 transcription factor YEATS family 147495_at CG10081 2.8 Unknown Peptidase M28 143869_at vri vrille 2.8 RNA polymerase II transcription factor activity Basic-leucine zipper (bZIP) transcription factor 151648_at CalpB Calpain-B 2.7 calpain activity Peptidase C2 calpain 152979_at CG31531 2.7 152405_at CG6014 2.7 Unknown C-type lectin 147951_at CG13905 2.7 154983_at CG15634 2.7 AICARFT/IMPCHase bienzyme, Methylglyoxal synthase-like 153761_at CG11089 2.6 Unknown domain 141974_at CG4573 2.6 tyrosine--tRNA ligase; enzyme 153004_at CG8603 2.6 motor 153432_at Thor Thor 2.6 Eukaryotic initiation factor 4E binding Eukaryotic translation initiation factor 4E binding 142200_at CG32477 2.5 151361_at RhoGAP18B 2.5 GTPase activator activity Rho GTPase activation protein 148533_at ninjurin A ninjurin 2.5 cell adhesion 142429_at CG14089 2.5 Collagen triple helix repeat 142097_at Myosin 31DF myosin I 2.5 Actin binding Myosin head (motor domain), IQ calmodulin-binding region 154415_at CG3279 2.5 v-SNARE activity Vesicle transport v-SNARE Fibronectin type III, Immunoglobulin-like, Peptidase M14 143665_at fra frazzled 2.5 netrin receptor activity carboxypeptidase A 153174_at CG9925 2.5 Maternal tudor protein, Zn-finger MYND type 151557_i_at CG32737 2.5 144197_at rdgB 2.5 phosphatidylinositol transporter activity Phosphatidylinositol transfer protein 147151_at CG18279 2.4 155065_at hdc headcase 2.3 signal transduction 151217_at U snoRNA host gene 1 2.3 151871_at CG30494 2.3 ligand binding or carrier Zn-finger C2H2 type, Cytochrome c heme-binding site, 144505_at CG32767 2.3 Nucleic acid binding Immunoglobulin/MHC 152889_at dei delilah 2.3 transcription factor activity Basic helix-loop-helix dimerization domain bHLH Eukaryotic protein of unknown function DUF292, Pancreatic 153798_at CG10103 2.3 transcription factor ribonuclease General substrate transporter, Sugar transporter 154436_at rtet tetracycline resistance 2.3 sugar porter activity superfamily 147575_at CG18413 2.3 1-phosphatidylinositol-45- 1-phosphatidylinositol-45-biphosphate 142250_at norpA 2.3 biphosphate phosphodiesterase phosphodiesterase ; EC:3.1.4.11 153304_at bip1 2.2 145526_at CG4213 2.2 motor 148109_at CG12014 2.2 iduronate-2-sulfatase activity Sulfatase 153934_at CG12190 2.2 transcription factor Zn-finger Ran-binding 153814_at CG17612 2.2 nucleic acid binding Zn-finger C2H2 type 143293_at pbl pebble 2.2 guanyl-nucleotide exchange factor activity Rhodopsin-like GPCR superfamily Dynein heavy chain, Peptidase eukaryotic cysteine 143726_at Dhc93AB Dynein heavy chain at 93AB 2.2 Dynein_heavy;microtubule motor activity peptidase active site, AAA ATPase 155084_at CG17260 2.2 nucleic acid binding Zn-finger RING 148881_at CG13059 2.2 154573_at CG8149 2.2 SAP;DNA binding;4 DNA-binding SAP 146703_at CG30158 2.2 GTP binding Ras GTPase superfamily 153520_at 5-HT7 Serotonin receptor 7 2.2 G-protein coupled serotonin receptor activity Rhodopsin-like GPCR superfamily 154930_at CG3165 3'-5' exonuclease 2.1 enzyme 154682_at Krn Keren 2.1 EGF receptor binding EGF-like domain 146238_at CG32955 2.1 kinesin;motor activity 143507_at mys integrin-beta-subunit 2.1 cell adhesion receptor 143605_at Drs Drosomycin 2.1 antifungal peptide activity Gamma thionin, Knottin 151022_at CG33188 2.1 protein binding Zn-finger AN1-like 147490_at Rgk1 GTP binding protein-like 2.1 RAS small monomeric GTPase activity Ras GTPase superfamily 148775_at CG10006 2.1 Zip;metal ion transporter activity Zinc transporter ZIP 152824_at Ect4 2.1 Sterile alpha motif SAM, ARM repeat fold, TIR Thrombospondin type I, von Willebrand factor type C, 153034_at CG32183 2.1 growth factor activity Cystine knot C-terminal 144380_at CG14770 2.1 Homeodomain-like, ARID (AT-rich interaction domain) 151685_r_at CG32813 2.1 transcription factor protein 148681_at CG12520 2.1 154808_at CG4953 2.1 Protein of unknown function DUF974, Actinoxanthin-like Peptidase S1 chymotrypsin, Apoptosis regulator Bcl-2 151834_at CG32130 2.0 BAG;protein binding protein BAG 141962_at CG5787 2.0 transcription factor; DNA binding Sodium/calcium exchanger membrane region, K+- 151600_at Nckx30C sodium/calcium exchanger 2.0 calcium potassium:sodium antiporter activity dependent Na+/Ca+ exchanger related-protein 148381_r_at CG13674 2.0 141379_at Ag5r Antigen 5-related 2.0 Allergen V5/Tpx-1 related 148130_at ida imaginal discs arrested 2.0 TPR-like 143472_at Ten-m Tenascin major 2.0 cell adhesion EGF-like domain 143221_at Gliotactin gliotactin 2.0 serine esterase 150044_at CG18213 2.0 Zn-finger MYND type 146411_at CG15145 2.0 154066_at wus wurst 2.0 chaperone Heat shock protein DnaJ N-terminal FHV specific (279 genes) Probe number Gene name Synomymus FHV * Putative function Key words 143470_at LysX Lysozyme X 6.9 lysozyme activity, cell death Glycoside hydrolase family 22 IPBinding-protein-dependent transport systems inner 141566_at CG10805 6.0 membrane component, Aldo/keto reductase, HEAT 152381_at Pcaf histone acetyltransferase 5.3 histone acetyltransferase activity Bromodomain, GCN5-related N-acetyltransferase 152230_at CG6778 4.5 glycine--tRNA ligase 155116_at POSH Plenty of SH3s 4.3 receptor signaling complex scaffold activity Zn-finger RING, Neutrophil cytosol factor 2 Leucine-rich repeat, TIR, Interleukin-1 receptor type I/Toll 152907_at 18w 18 wheeler 4.2 transmembrane receptor activity precursor 152730_at CG5205 4.2 RNA helicase activity Sec63 domain, DEAD/DEAH box helicase, AAA ATPase 149122_at CG5571 4.0 Rhodopsin-like GPCR superfamily GTP binding, hydrolase activity acting on acid Protein synthesis factor GTP-binding, Elongation factor Tu 144194_at Dgp-1 3.8 anhydrides in phosphorus-containing domain 2 anhydrides 147210_at CG12868 3.8 Tyrosine specific protein phosphatase, Rhodopsin-like 142986_at CG9311 protein phosphatase-like 3.7 protein-tyrosine-phosphatase activity GPCR superfamily 143828_at Apc APC-like 3.6 beta-catenin binding, microtubule binding Armadillo, APC cysteine-rich 145304_at psh persephone 3.6 serine-type endopeptidase activity Peptidase S1 chymotrypsin 154332_at CG12876 ALix 3.6 signal transducer activity, cell death BRO1, Rho GTPase activation protein cytidine deaminase activity, 146014_at CG8353 cytidine deaminase-like 3.6 Cytidine/deoxycytidylate deaminase zinc-binding region dCMP_cyt_deam;zinc ion binding importin-alpha export receptor activity, cell 143953_at Cas CAS/CSE1 segregation protein 3.6 CAS/CSE C-terminal, Importin-beta N-terminal death, phagocytosis retinoid binding/fatty acid binding lipid binding, Vitellogenin_N;lipid transporter von Willebrand factor type D, Lipid transport protein N- 153828_at CG15828 3.5 protein-like glycoprotein activity terminal, Protein of unknown function DUF1081 peroxisomal carnitine O- 141776_at CG12428 3.4 carnitine O-octanoyltransferase activity Acyltransferase ChoActase/COT/CPT octanoyltransferase protein-tyrosine-phosphatase activity, Tyrosine specific protein phosphatase and dual specificity 145889_at Pez protein phosphatase-like 3.4 cytoskeletal protein binding protein phosphatase 149757_at GstD3 Glutathione S transferase D3 3.4 glutathione transferase activity Glutathione S-transferase 143031_at CG7627 ATP-binding cassette transporter 3.4 ATP-binding cassette (ABC) transporter activity ABC transporter, AAA ATPase 145025_at CG12177 purine nucleosidase 3.3 enzyme Inosine/uridine-preferring nucleoside hydrolase 149173_at CG7632 3.3 enzyme Annexin, Esterase/lipase/thioesterase 150261_at CG4335 3.3 gamma-butyrobetaine dioxygenase activity Gamma-butyrobetaine hydroxylase receptor signaling protein serine/threonine 141756_at Mekk1 heat shock construct of Inoue 3.3 kinase activity, MAP kinase kinase kinase Serine/threonine protein kinase activity 149754_at GstD10 Glutathione S transferase D10 3.3 glutathione transferase activity Glutathione S-transferase 152949_at Cyp6d4 cytochrome P450 CYP6D4 3.2 cytochrome P450 activity Cytochrome P450, E-class P450 group I 152798_at Cyp12c1 cytochrome P450 CYP12C1 3.2 cytochrome P450 activity Cytochrome P450, E-class P450 group I ATP dependent RNA helicase activity, DEAD/DEAH box helicase, ATP-dependent helicase DEAD- 153844_at Rs1 3.2 DEAD;ATP binding box 143384_at trx trithorax 3.2 DNA binding Zn-finger-like PHD finger, FY-rich domain SET-related region 141436_at CG3505 3.2 serine-type endopeptidase activity Peptidase trypsin-like serine and cysteine proteases 152481_at CG9951 3.2 motor Protein of unknown function DUF812 141381_at CG30069 3.2 RNA_pol_Rpb1_R;DNA binding Short-chain dehydrogenase/reductase SDR Pol III transcription termination factor activity, RNA-binding region RNP-1 (RNA recognition motif),
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • Effect of Physical Exercise on Lipolysis in White Adipocytes
    J Phys Fitness Sports Med, 1(2): 351-356 (2012) JPFSM: Short Review Article Effect of physical exercise on lipolysis in white adipocytes Junetsu Ogasawara1*, Takuya Sakurai1, Takako Kizaki1, Kazuto Takahashi2, Hitoshi Ishida2, Tetsuya Izawa3, Koji Toshinai4, Norihiko Nakano5 and Hideki Ohno1 1 Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine,6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan 2 Third Department of Internal Medicine, Kyorin University, School of Medicine,6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan 3 Department of Sports Biochemistry, Faculty of Health and Sports Science, Doshisha University, Tataramiyakodani, Kyotanabe, Kyoto 610-0394, Japan 4 Neurology, Respirology, Endocrinology, and Metabolism, Division of Internal Medicine, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan 5 Aino Institute of Regeneration and Rehabilitation, Aino University, 4-5-4 Higashiohara, Ibaraki, Osaka 567-0012, Japan Received: April 27, 2012 / Accepted: June 12, 2012 Abstract Fatty acids are derived from the hydrolysis of triacylglycerol (TG) found in white adipose tissue, muscle tissue and circulating lipoproteins. The mobilization of free fatty acids (FFA) from white adipose tissue contributes to about 50% of the FFA utilized during moderate- intensity exercise. The delivery of FFA from white adipose tissue is improved by hormone- stimulated lipolytic events in white adipocytes (WA). Thus, the lipolysis in WA that provides fuel for metabolism has been a highly conserved function throughout the course of evolution. This short review outlines our current understanding of the molecular regulation of TG lipases via the lipolytic cascade in WA, as well as provides an account of our recent findings concern- ing changes in the lipolytic molecules of WA that result from acute and habitual exercise.
    [Show full text]
  • Optimization of Lipase Production in Burkholderia Glumae
    Optimization of lipase production in Burkholderia glumae Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt am Institut für Molekulare Enzymtechnologie vorgelegt von Anke Beselin aus Frankfurt a. Main Bochum August 2005 Optimierung der Lipaseproduktion in Burkholderia glumae Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften der Fakultät für Biologie an der Internationalen Graduiertenschule Biowissenschaften der Ruhr-Universität Bochum angefertigt am Institut für Molekulare Enzymtechnologie vorgelegt von Anke Beselin aus Frankfurt a. Main Bochum August 2005 Die vorliegende Arbeit wurde im Rahmen des Europäischen Graduiertenkollegs der Ruhr- Universität Bochum (EGC 795): Regulatory Circuits in Cellular Systems: Fundamentals and Biotechnological Applications angefertigt. Referent: Prof. Dr. K.-E. Jäger Korreferent: Prof. Dr. W. J. Quax Tag der mündlichen Prüfung: 28.10.2005 ___________________________________________________________________________ Danksagungen Herrn Prof. Dr. K.-E. Jäger danke ich für die Überlassung des interessanten und aktuellen Themas, für das rege Interesse am Fortschritt meiner Arbeit, die konstruktiven Diskussionen und die mir gebotene Möglichkeit, die experimentelle Arbeit frei und selbständig zu gestalten. I would like to thank Prof. Dr. W. J. Quax, Laboratory of Pharmaceutical Biology- Rijksuniversität Groningen (NL) for agreeing to co-supervise
    [Show full text]
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • Insulin Controls Triacylglycerol Synthesis Through Control of Glycerol Metabolism and Despite Increased Lipogenesis
    nutrients Article Insulin Controls Triacylglycerol Synthesis through Control of Glycerol Metabolism and Despite Increased Lipogenesis Ana Cecilia Ho-Palma 1,2 , Pau Toro 1, Floriana Rotondo 1, María del Mar Romero 1,3,4, Marià Alemany 1,3,4, Xavier Remesar 1,3,4 and José Antonio Fernández-López 1,3,4,* 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; [email protected] (A.C.H.-P.); [email protected] (P.T.); fl[email protected] (F.R.); [email protected] (M.d.M.R.); [email protected] (M.A.); [email protected] (X.R.) 2 Faculty of Medicine, Universidad Nacional del Centro del Perú, 12006 Huancayo, Perú 3 Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain 4 Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBER-OBN), 08028 Barcelona, Spain * Correspondence: [email protected]; Tel: +34-93-4021546 Received: 7 February 2019; Accepted: 22 February 2019; Published: 28 February 2019 Abstract: Under normoxic conditions, adipocytes in primary culture convert huge amounts of glucose to lactate and glycerol. This “wasting” of glucose may help to diminish hyperglycemia. Given the importance of insulin in the metabolism, we have studied how it affects adipocyte response to varying glucose levels, and whether the high basal conversion of glucose to 3-carbon fragments is affected by insulin. Rat fat cells were incubated for 24 h in the presence or absence of 175 nM insulin and 3.5, 7, or 14 mM glucose; half of the wells contained 14C-glucose. We analyzed glucose label fate, medium metabolites, and the expression of key genes controlling glucose and lipid metabolism.
    [Show full text]
  • Electron Transport Phosphorylation in Rumen Butyrivibrios: Unprecedented ATP Yield for Glucose Fermentation to Butyrate
    HYPOTHESIS AND THEORY published: 24 June 2015 doi: 10.3389/fmicb.2015.00622 Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate Timothy J. Hackmann1 and Jeffrey L. Firkins2* 1 Department of Animal Sciences, University of Florida, Gainesville, FL, USA, 2 Department of Animal Sciences, The Ohio State University, Columbus, OH, USA From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio sp.), we have re-evaluated the contribution of electron transport phosphorylation (ETP) to ATP formation in this group. This group is unique in that most (76%) genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (μH+ and μNa+), which drives ATP synthesis by ETP. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to Edited by: possess NifJ, which reduces oxidized ferredoxin (Fdox) during pyruvate conversion to Emilio M. Ungerfeld, Instituto de Investigaciones acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes Agropecuarias, Chile reduced NAD during crotonyl-CoA reduction. Additionally, 61 genomes possessed all Reviewed by: subunits of the Rnf, which generates μH+ or μNa+ from oxidation of reduced Fd Wolfgang Buckel, (Fdred) and reduction of oxidized NAD. Further, 47 genomes possessed all six subunits Philipps-Universität Marburg, + Germany of the Ech, which generates μH from oxidation of Fdred. For glucose fermentation Robert J. Wallace, to butyrate and H2, the electrochemical potential established should drive synthesis University of Aberdeen, UK of ∼1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes).
    [Show full text]
  • Supplementary Informations SI2. Supplementary Table 1
    Supplementary Informations SI2. Supplementary Table 1. M9, soil, and rhizosphere media composition. LB in Compound Name Exchange Reaction LB in soil LBin M9 rhizosphere H2O EX_cpd00001_e0 -15 -15 -10 O2 EX_cpd00007_e0 -15 -15 -10 Phosphate EX_cpd00009_e0 -15 -15 -10 CO2 EX_cpd00011_e0 -15 -15 0 Ammonia EX_cpd00013_e0 -7.5 -7.5 -10 L-glutamate EX_cpd00023_e0 0 -0.0283302 0 D-glucose EX_cpd00027_e0 -0.61972444 -0.04098397 0 Mn2 EX_cpd00030_e0 -15 -15 -10 Glycine EX_cpd00033_e0 -0.0068175 -0.00693094 0 Zn2 EX_cpd00034_e0 -15 -15 -10 L-alanine EX_cpd00035_e0 -0.02780553 -0.00823049 0 Succinate EX_cpd00036_e0 -0.0056245 -0.12240603 0 L-lysine EX_cpd00039_e0 0 -10 0 L-aspartate EX_cpd00041_e0 0 -0.03205557 0 Sulfate EX_cpd00048_e0 -15 -15 -10 L-arginine EX_cpd00051_e0 -0.0068175 -0.00948672 0 L-serine EX_cpd00054_e0 0 -0.01004986 0 Cu2+ EX_cpd00058_e0 -15 -15 -10 Ca2+ EX_cpd00063_e0 -15 -100 -10 L-ornithine EX_cpd00064_e0 -0.0068175 -0.00831712 0 H+ EX_cpd00067_e0 -15 -15 -10 L-tyrosine EX_cpd00069_e0 -0.0068175 -0.00233919 0 Sucrose EX_cpd00076_e0 0 -0.02049199 0 L-cysteine EX_cpd00084_e0 -0.0068175 0 0 Cl- EX_cpd00099_e0 -15 -15 -10 Glycerol EX_cpd00100_e0 0 0 -10 Biotin EX_cpd00104_e0 -15 -15 0 D-ribose EX_cpd00105_e0 -0.01862144 0 0 L-leucine EX_cpd00107_e0 -0.03596182 -0.00303228 0 D-galactose EX_cpd00108_e0 -0.25290619 -0.18317325 0 L-histidine EX_cpd00119_e0 -0.0068175 -0.00506825 0 L-proline EX_cpd00129_e0 -0.01102953 0 0 L-malate EX_cpd00130_e0 -0.03649016 -0.79413596 0 D-mannose EX_cpd00138_e0 -0.2540567 -0.05436649 0 Co2 EX_cpd00149_e0
    [Show full text]
  • Phyre 2 Results for P25553
    Email [email protected] Description P25553 Thu Jan 5 11:42:11 GMT Date 2012 Unique Job 5024f4b9e5342484 ID Detailed template information # Template Alignment Coverage 3D Model Confidence % i.d. Template Information PDB header:oxidoreductase 1 c2hg2A_ Alignment 100.0 100 Chain: A: PDB Molecule:aldehyde dehydrogenase a; PDBTitle: structure of lactaldehyde dehydrogenase PDB header:oxidoreductase Chain: B: PDB Molecule:betaine aldehyde dehydrogenase; 2 c3ed6B_ 100.0 36 Alignment PDBTitle: 1.7 angstrom resolution crystal structure of betaine aldehyde2 dehydrogenase (betb) from staphylococcus aureus PDB header:oxidoreductase Chain: A: PDB Molecule:formyltetrahydrofolate dehydrogenase; 3 c2o2qA_ 100.0 33 Alignment PDBTitle: crystal structure of the c-terminal domain of rat2 10'formyltetrahydrofolate dehydrogenase in complex with nadp Fold:ALDH-like 4 d1a4sa_ Alignment 100.0 35 Superfamily:ALDH-like Family:ALDH-like PDB header:oxidoreductase Chain: H: PDB Molecule:succinate-semialdehyde dehydrogenase 5 c3ifgH_ Alignment 100.0 34 (nadp+); PDBTitle: crystal structure of succinate-semialdehyde dehydrogenase from2 burkholderia pseudomallei, part 1 of 2 Fold:ALDH-like 6 d1bxsa_ Alignment 100.0 33 Superfamily:ALDH-like Family:ALDH-like Fold:ALDH-like 7 d1o9ja_ Alignment 100.0 33 Superfamily:ALDH-like Family:ALDH-like PDB header:oxidoreductase Chain: A: PDB Molecule:succinate-semialdehyde dehydrogenase 8 c3rh9A_ Alignment 100.0 35 (nad(p)(+)); PDBTitle: the crystal structure of oxidoreductase from marinobacter aquaeolei PDB header:oxidoreductase Chain: B: PDB Molecule:5-carboxymethyl-2-hydroxymuconate 9 c2d4eB_ Alignment 100.0 32 semialdehyde PDBTitle: crystal structure of the hpcc from thermus thermophilus hb8 PDB header:oxidoreductase Chain: G: PDB Molecule:antiquitin; 10 c2jg7G_ 100.0 28 Alignment PDBTitle: crystal structure of seabream antiquitin and elucidation of2 its substrate specificity PDB header:oxidoreductase Chain: C: PDB Molecule:succinate-semialdehyde dehydrogenase 11 c3jz4C_ 100.0 39 Alignment [nadp+]; PDBTitle: crystal structure of e.
    [Show full text]
  • Table 4. V. Cholerae Flexgene ORF Collection
    Table 4. V. cholerae FLEXGene ORF collection Reference Clone protein PlasmID clone GenBank Locus tag Symbol accession identifier FLEX clone name accession Product name VC0001 NP_062585 VcCD00019918 FLH200476.01F DQ772770 hypothetical protein VC0002 mioC NP_062586 VcCD00019938 FLH200506.01F DQ772771 mioC protein VC0003 thdF NP_062587 VcCD00019958 FLH200531.01F DQ772772 thiophene and furan oxidation protein ThdF VC0004 yidC NP_062588 VcCD00019970 FLH200545.01F DQ772773 inner membrane protein, 60 kDa VC0005 NP_062589 VcCD00061243 FLH236482.01F DQ899316 conserved hypothetical protein VC0006 rnpA NP_062590 VcCD00025697 FLH214799.01F DQ772774 ribonuclease P protein component VC0007 rpmH NP_062591 VcCD00061229 FLH236450.01F DQ899317 ribosomal protein L34 VC0008 NP_062592 VcCD00019917 FLH200475.01F DQ772775 amino acid ABC transporter, ATP-binding protein VC0009 NP_062593 VcCD00019966 FLH200540.01F DQ772776 amino acid ABC transproter, permease protein VC0010 NP_062594 VcCD00019152 FLH199275.01F DQ772777 amino acid ABC transporter, periplasmic amino acid-binding portion VC0011 NP_062595 VcCD00019151 FLH199274.01F DQ772778 hypothetical protein VC0012 dnaA NP_062596 VcCD00017363 FLH174286.01F DQ772779 chromosomal DNA replication initiator DnaA VC0013 dnaN NP_062597 VcCD00017316 FLH174063.01F DQ772780 DNA polymerase III, beta chain VC0014 recF NP_062598 VcCD00019182 FLH199319.01F DQ772781 recF protein VC0015 gyrB NP_062599 VcCD00025458 FLH174642.01F DQ772782 DNA gyrase, subunit B VC0016 NP_229675 VcCD00019198 FLH199346.01F DQ772783 hypothetical protein
    [Show full text]
  • Fed State Insulin Insulin Fasted State/ Starvation
    Overview of Carbohydrate Metabolism Glycogen Glycogen Synthesis UDP-Glucose Glycogen Degradation Glucose-1-P Glucose Glucose-6-P Pentose Phosphate Pathway Glycolysis Gluconeogenesis Triose Phosphates 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P Overview of Carbohydrate Metabolism Glycogen Glycogen Synthesis Fed State UDP-Glucose Glycogen Degradation Insulin Glucose-1-P Glucose Glucose-6-P Pentose Phosphate Pathway Glycolysis Gluconeogenesis Triose Phosphates Insulin 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P Overview of Carbohydrate Metabolism Glycogen Glucagon/ Glycogen Synthesis Epinephrine Fasted State/ UDP-Glucose Glycogen Degradation Glucose-1-P Starvation Glucose Glucose-6-P Pentose Phosphate Glucagon/ Pathway Glycolysis Epinephrine Gluconeogenesis Triose Phosphates Glucagon/ Epinephrine 2 Pyruvate 2 Lactate 2 Acetyl-CoA Oxaloacetate Citrate Citric Acid Cycle C02, H20, 12 ~P 1 Hexokinase/ * Glucokinase Phosphofructo- * kinase-1 Pyruvate * kinase * HEXOKINASE inhibited by Glu 6-P * GLUCOKINASE USED IN LIVER Fructose 6-P reduces activity by causing enzyme to translocate to nucleus * * Phosphofructo- kinase-1 * + Fructose 2,6- bisP AMP - ATP, citrate - Glucagon & Epinephrine in Liver * 2 * * Pyruvate Kinase + fructose-1,6-bisP - ATP, alanine * - glucagon & epinephrine Glucokinase Liver: PFK-1 Insulin Increases Transcription Of Genes Encoding These Enzymes Pyruvate Kinase * * * PFK-2/ Liver: PFK-1 Glucagon Epinephrine Pyruvate Kinase * 3 * * PFK-2/
    [Show full text]
  • Fermentation of Dihydroxyacetone by Engineered Escherichia Coli and Klebsiella Variicola to Products
    Fermentation of dihydroxyacetone by engineered Escherichia coli and Klebsiella variicola to products Liang Wanga, Diane Chauliaca,1, Mun Su Rheea,2, Anushadevi Panneerselvama, Lonnie O. Ingrama,3, and K. T. Shanmugama,3 aDepartment of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 Contributed by Lonnie O. Ingram, March 21, 2018 (sent for review January 18, 2018; reviewed by John W. Frost and F. Robert Tabita) Methane can be converted to triose dihydroxyacetone (DHA) by process, formaldehyde can also be produced biologically from chemical processes with formaldehyde as an intermediate. Carbon CO2 with formate as an intermediate (Fig. 1) (7). Dickens and dioxide, a by-product of various industries including ethanol/ Williamson reported as early as 1958 that DHA can be produced butanol biorefineries, can also be converted to formaldehyde biologically by transketolation of hydroxypyruvate and formalde- and then to DHA. DHA, upon entry into a cell and phosphorylation hyde (8). This transketolase is implicated in a unique pentose– to DHA-3-phosphate, enters the glycolytic pathway and can be phosphate–dependent pathway (DHA cycle) in methanol-utilizing fermented to any one of several products. However, DHA is yeast that fixes formaldehyde to xylulose-5-phosphate, yielding inhibitory to microbes due to its chemical interaction with cellular DHA as an intermediate in the production of glyceraldehyde-3- components. Fermentation of DHA to D-lactate by Escherichia coli phosphate in a cyclic mode (9). DHA in the cytoplasm is phos- strain TG113 was inefficient, and growth was inhibited by 30 g·L−1 phorylated by DHA kinase and/or glycerol kinase, and the DHA-P DHA.
    [Show full text]
  • Viewed and Published Immediately Upon Acceptance Cited in Pubmed and Archived on Pubmed Central Yours — You Keep the Copyright
    BMC Bioinformatics BioMed Central Methodology article Open Access Optimization based automated curation of metabolic reconstructions Vinay Satish Kumar1, Madhukar S Dasika2 and Costas D Maranas*2 Address: 1Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA 16802, USA and 2Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA Email: Vinay Satish Kumar - [email protected]; Madhukar S Dasika - [email protected]; Costas D Maranas* - [email protected] * Corresponding author Published: 20 June 2007 Received: 14 December 2006 Accepted: 20 June 2007 BMC Bioinformatics 2007, 8:212 doi:10.1186/1471-2105-8-212 This article is available from: http://www.biomedcentral.com/1471-2105/8/212 © 2007 Satish Kumar et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Currently, there exists tens of different microbial and eukaryotic metabolic reconstructions (e.g., Escherichia coli, Saccharomyces cerevisiae, Bacillus subtilis) with many more under development. All of these reconstructions are inherently incomplete with some functionalities missing due to the lack of experimental and/or homology information. A key challenge in the automated generation of genome-scale reconstructions is the elucidation of these gaps and the subsequent generation of hypotheses to bridge them. Results: In this work, an optimization based procedure is proposed to identify and eliminate network gaps in these reconstructions. First we identify the metabolites in the metabolic network reconstruction which cannot be produced under any uptake conditions and subsequently we identify the reactions from a customized multi-organism database that restores the connectivity of these metabolites to the parent network using four mechanisms.
    [Show full text]