Fresh-Water Mollusks of Cretaceous Age from Montana and Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

Fresh-Water Mollusks of Cretaceous Age from Montana and Wyoming Fresh-Water Mollusks of Cretaceous Age From Montana and Wyoming GEOLOGICAL SURVEY PROFESSIONAL PAPER 233-A Fresh-Water Mollusks of Cretaceous Age From Montana and Wyomin By TENG-CHIEN YEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY, 1950, PAGES 1-20 GEOLOGICAL SURVEY PROFESSIONAL PAPER 233-A Part I: A fluviatile fauna from the Kootenai formation near Harlowton, Montana Part 2: An Upper Cretaceous fauna from the Leeds Creek • area, Lincoln County', Wyoming UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1951 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 45 cents (paper cover) CONTENTS Page Part 1. A fluviatile fauna from the Kootenai formation near Harlowton, Montana. _ 1 Abstract- ______________________________________________________________ 1 Introduction ___________________________________________________________ 1 Composition of the fauna, and its origin.._________________________________ 1 Stratigraphic position and correlations_______________________________---___ 2 Systematic descriptions.__________________________________________________ 4 Bibliography. __________________________________________________________ 9 Part 2. An Upper Cretaceous fauna from the Leeds Creek area, Lincoln County, Wyoming_________________________________________________________ 11 Abstract.__________________-_________________________-____:__-_-_---___ 11 Introduction ___________________________________________________________ 11 Review of previous records___.._______-___-__-____________-_--______---___ 11 Composition of the faunas.______________________________________________ 11 Stratigraphic positions_________________________________________________ 13 Systematic descriptions of the molluscan species.______ _ _________________ 14 Bibliography._ _________________________________________________________ 17 Index..._________________________________________________________________ 19 ILLUSTRATIONS Plate 1. Fossil and recent fresh-water mollusks._______________________ Following index 2. Upper Cretaceous nonmarine mollusks_-___-_--_____________ Following index ni FRESH-WATER MOLLUSKS OF CRETACEOUS AGE FROM MONTANA AND WYOMING l By TENG-CHIEN YEN PART 1. A FLUVIATILE FAUNA FROM THE KOOTENAI FORMATION NEAR HARLOWTON, MONTANA ABSTRACT Shawmut anticline, on the west side of a trail leading The paper presents a fresh-water molluscan assemblage found to the abandoned ranch. in the Kootenai formation southeast of Harlowton, Montana, After publication of Dr. Stanton's report, several which indicates that the enclosing bed is of fluviatile origin. Molluscan faunas from contemporary beds, such as the Cloverly additional collections were made at this locality. They, formation of central Wyoming and the Peterson limestone in the plus certain species from the Cloverly formation and Gannett group of western Wyoming, are compared with it. An the Peterson limestone of Wyoming, are the basis of the account of 29 species of pelecypods and gastropods is given, of present paper. which 4 genera and 8 species of gastropods are herein described as new. COMPOSITION OF THE FAUNA, AND ITS ORIGIN INTRODUCTION The fossiliferous bed, which consists of coarse-grained, It is nearly half a century since the invertebrate shaly sandstone and nodular limestone of rusty color, fauna of the Kootenai formation near Harlowton, yielded the following species of mollusks in addition to Montana, was first described by T. W. Stanton. Dr. some ostracodes and teeth of fish and reptiles: Stanton's paper (1903) was based on a collection made Pelecypoda by members of the Geology Department of Princeton Family Unionidae University, and in it he described the following species Protelliptio douglassi Stanton Unio farri Stanton of fresh-water mollusks: U. natosini McLearn Unio ja/rri Stanton Family Sphaeridae Unio douglassi Stanton Eupera onestae (McLearn)' Campeloma harlowtonensis Stanton Gastropoda Family Neritidae Viviparus montanensis Stanton Mesoneritina nebrascensis (Meek and Hayden) Goniobasis? ortmani Stanton Family Amnicolidae Goniobasis? silberlingi Stanton Reesidella montanaensis (Stanton), n. gen. On the evidence of these few species, Dr. Stanton con­ Stantonogyra silberlingi (Stanton) Mesochilina cretacea, n. gen and sp. cluded at this initial stage of geological exploration of Family Viviparidae the area, that the fossil-bearing bed is "certainly not Campeloma harlowtonensis Stanton older than Lower Cretaceous." The conclusion was Family Pleuroceratidae significant as the recognition of a new assemblage, still Circamelania ortmanni (Stanton), n. gen. acceptable as the standard Lower Cretaceous fresh Family Physidae Physa montanensis, n. sp. water molluscan fauna in North America. P. sp. undet. A The fossiliferous bed is exposed in the SW% sec. 27, Family Planorbidae T. 7N.,K. 16E., about 12 miles southeast of Harlow­ Gyraulus cf. G. veternus (Meek and Hayden) ton, about 6 miles southwest of Winnicook, and about Carinulorbis sp. undet. \% miles northwest of the old Widdecomb Kanch. The The molluscan fauna is rich in variety as well as in bed is well exposed over a few hundred square feet at individuals. The prosobranchian gastropods include the top of a low foothill of the West Dome of the six species represented by many specimens, but the pulmonates yield only four species, each represented by i A contribution from a research project (NR-081-097) supported by the Geophysics only a few individuals. Branch, Office of Naval Research, Department of Navy. It is carried on under ONE Contract N9-onr-92601 with the Smithsonian Institution, Washington, D. C., The fauna seems to indicate that the enclosing bed and is published by permission of the Secretary of the Smithsonian Institution. was of fluviatile origin and that molluscan species 1 FRESH-WATER MOLLUSKS FROM MONTANA AND WYOMING from the upper course of a river were drifted by floods Amnicolidae and gathered in a "pocket," where they were preserved. Amnicola longinqua Gould (abundant) A strikingly similar Recent molluscan assemblage was Fluminicola fusca (Haldeman) (common) collected from silt at a high-flood level at the Great Physidae Falls of the Potomac River, near Washington, D. C. Physa ampullacea Gould (rare) The similarity is emphasized when the faunas are listed Physa sp. undet. (common) in parallel columns: Lymnaeidae Lymnaea utahensis Call (abundant) Kootenai bed near Harlowton Great Falls of the Potomac Lymnaea palustris buttoni Baker (common) River 2 Protelliptio douglassi (com­ Planorbidae mon) Gyraulus vermicularis (Gould) (rare) Unio farri (rare) Elliptic complanatus (com­ Helisoma subcrenatum (Cooper) (rare) Unio natosini (rare) mon) Carinifex newberryi (Lea) (abundant) Eupera onestae (common) Sphaerium stamineum (abundant) The similarity in composition of the Kootenai fauna Mesoneritina nebrascensis to that of the deposit near the Great Falls of the (rare) Potomac River, in addition to suggesting a fluviatile Reesidella montanaensis Amnicola limosa (com­ (abundant) mon) origin for the Kootenai formation, may possibly also Stantonogyra silberlingi Amnicola decisa (rare) imply a general similarity of the water body, in which (rare) Gillia altilis (common) the Kootenai formation was deposited, in movements, Mesochilina cretacea (rare) depth, and volume of the water, permanency and size Campeloma harlowtonensis Campeloma decisum (rare) of the river, and constituents of soil and climate of the (rare) Lioplax subcarinatus (com­ mon) area. However, the abundance of rissoid snails, Circamelania ortmanni Goniobasis virginica (abun­ together with planorbid species, in the Kootenai forma­ (abundant) dant) tion may indicate that a more luxuriant aquatic vege­ Anculosa carinata (com­ tation along the extinct river favored such gastropods. mon) The faunal lists indicate only relative abundance and Physa montanensis (rare) Physa sp. undet. A (rare) Physa heterostropha (rare) the species listed are not to be taken as completely Gyraulus cf. G. veternus representative of the existing fauna. Likewise, it is (rare) known that, although planorbid species have been found Carinulorbis sp. undet. ___________________________ in some parts of the Potomac River they are not repre­ (rare) sented in the collection made at the Great Falls. This However remote it may be, the possibility that the incompleteness suggests that the assemblage has come Kootenai formation is lacustrine should be considered. together from parts of the river where planorbids are A few molluscan species similar to those in the assem­ rare or wanting and the other species are abundant. blage found at the Great Falls are also obtainable in lakes, especially in large ones connected with streams. STRATIGRAPHIC POSITION AND CORRELATIONS In such lakes the assemblage of species is generally It is generally accepted now that the Kootenai forma­ different, however, for there are generally more species tion in Montana is of Early Cretaceous age. On the of pulmonates and more shallow-water forms, and the evidence of the molluscan species, part of these beds fluviatile species, if any, may be represented by few may be correlated with the Cleverly formation in individuals. A convincing example is an assemblage Wyoming and part with the Peterson limestone of the drifted to the shore of Bear Lake, Idaho and Utah, Gannett group in Wyoming and Idaho. The precise which includes the following molluscan species:
Recommended publications
  • Land Snails and Soil Calcium in a Central Appalachian Mountain
    Freshwater Snail Inventory of the Fish River Lakes 2/2012 Report for MOHF Agreement Number CT09A 2011 0605 6177 by Kenneth P. Hotopp Appalachian Conservation Biology PO Box 1298, Bethel, ME 04217 for the Maine Outdoor Heritage Fund 37 Wiscasset Rd. Pittston, ME 04345 Freshwater Snail Inventory of the Fish River Lakes Abstract Freshwater snails were inventoried at the eight major lakes of the Fish River watershed, Aroostook County, Maine, with special attention toward pond snails (Lymnaeidae) collected historically by regional naturalist Olof Nylander. A total of fourteen freshwater snail species in six families were recovered. The pond snail Stagnicola emarginatus (Say, 1821) was found at Square Lake, Eagle Lake, and Fish River Lake, with different populations exhibiting regional shell forms as observed by Nylander, but not found in three other lakes previously reported. More intensive inventory is necessary for confirmation. The occurrence of transitional shell forms, and authoritative literature, do not support the elevation of the endemic species Stagnicola mighelsi (W.G. Binney, 1865). However, the infrequent occurrence of S. emarginatus in all of its forms, and potential threats to this species, warrant a statewide assessment of its habitat and conservation status. Otherwise, a qualitative comparison with the Fish River Lakes freshwater snail fauna of 100 years ago suggests it remains mostly intact today. 1 Contents Abstract ........................................................................................................ 1
    [Show full text]
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • Life Cycle and Early Development of the Thecosomatous Pteropod Limacina Retroversa in the Gulf of Maine, Including the Effect of Elevated CO2 Levels
    Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels Ali A. Thabetab, Amy E. Maasac*, Gareth L. Lawsona and Ann M. Tarranta a. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 b. Zoology Dept., Faculty of Science, Al-Azhar University in Assiut, Assiut, Egypt. c. Bermuda Institute of Ocean Sciences, St. George’s GE01, Bermuda *Corresponding Author, equal contribution with lead author Email: [email protected] Phone: 441-297-1880 x131 Keywords: mollusc, ocean acidification, calcification, mortality, developmental delay Abstract Thecosome pteropods are pelagic molluscs with aragonitic shells. They are considered to be especially vulnerable among plankton to ocean acidification (OA), but to recognize changes due to anthropogenic forcing a baseline understanding of their life history is needed. In the present study, adult Limacina retroversa were collected on five cruises from multiple sites in the Gulf of Maine (between 42° 22.1’–42° 0.0’ N and 69° 42.6’–70° 15.4’ W; water depths of ca. 45–260 m) from October 2013−November 2014. They were maintained in the laboratory under continuous light at 8° C. There was evidence of year-round reproduction and an individual life span in the laboratory of 6 months. Eggs laid in captivity were observed throughout development. Hatching occurred after 3 days, the veliger stage was reached after 6−7 days, and metamorphosis to the juvenile stage was after ~ 1 month. Reproductive individuals were first observed after 3 months. Calcein staining of embryos revealed calcium storage beginning in the late gastrula stage.
    [Show full text]
  • A New Microvertebrate Assemblage from the Mussentuchit
    A new microvertebrate assemblage from the Mussentuchit Member, Cedar Mountain Formation: insights into the paleobiodiversity and paleobiogeography of early Late Cretaceous ecosystems in western North America Haviv M. Avrahami1,2,3, Terry A. Gates1, Andrew B. Heckert3, Peter J. Makovicky4 and Lindsay E. Zanno1,2 1 Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 2 North Carolina Museum of Natural Sciences, Raleigh, NC, USA 3 Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA 4 Field Museum of Natural History, Chicago, IL, USA ABSTRACT The vertebrate fauna of the Late Cretaceous Mussentuchit Member of the Cedar Mountain Formation has been studied for nearly three decades, yet the fossil-rich unit continues to produce new information about life in western North America approximately 97 million years ago. Here we report on the composition of the Cliffs of Insanity (COI) microvertebrate locality, a newly sampled site containing perhaps one of the densest concentrations of microvertebrate fossils yet discovered in the Mussentuchit Member. The COI locality preserves osteichthyan, lissamphibian, testudinatan, mesoeucrocodylian, dinosaurian, metatherian, and trace fossil remains and is among the most taxonomically rich microvertebrate localities in the Mussentuchit Submitted 30 May 2018 fi fi Accepted 8 October 2018 Member. To better re ne taxonomic identi cations of isolated theropod dinosaur Published 16 November 2018 teeth, we used quantitative analyses of taxonomically comprehensive databases of Corresponding authors theropod tooth measurements, adding new data on theropod tooth morphodiversity in Haviv M. Avrahami, this poorly understood interval. We further provide the first descriptions of [email protected] tyrannosauroid premaxillary teeth and document the earliest North American record of Lindsay E.
    [Show full text]
  • Invasive Aquatic Species with the Potential to Affect the Great Sacandaga Lake Region
    Invasive Aquatic Species with the Potential to Affect the Great Sacandaga Lake Region Tiffini M. Burlingame, Research Associate Lawrence W. Eichler, Research Scientist Charles W. Boylen, Associate Director Darrin Fresh Water Institute 5060 Lakeshore Drive Bolton Landing, NY 12814 TABLE OF CONTENTS FISH Alewife (Alosa pseudoharengu)s 3 Goldfish (Carassius auratus) 5 Northern Snakehead (Channa argus) 7 Grass Carp (Ctenopharyngodon idella) 9 Eurasian Ruff (Gymnocephalus cernuus) 11 Brook Silverside (Labidesthes sicculus) 13 White Perch (Morone americana) 15 Round Goby (Neogobius melanostomus) 17 Rainbow Trout (Oncorhynchus mykiss) 19 Sea Lamprey (Petromyzon marinus) 21 White Crappie (Pomoxis annularis) 23 Tubenose Goby (Proterorhinus marmoratus) 25 Brown Trout (Salmo trutta) 27 European Rudd (Scardinius erythrophthalmus) 29 Tench (Tinca tinca) 31 PLANTS & ALGAE Ribbon Leaf Water Plantain (Alisma gramineum) 34 Flowering Rush (Butomus umbellatus) 36 Fanwort (Cabomba caroliniana) 38 Rock Snot (Didymosphenia geminata) 40 Brazilian Elodea (Egeria densa) 42 Water Hyacinth (Eichhornia crassipes) 44 Hydrilla (Hydrilla verticillata) 46 Frogbit (Hydrocharis morsus-ranae) 48 Yellow Flag Iris (Iris pseudacorus) 50 Purple Loosestrife (Lythrum salicaria) 52 Water Clover (Marsilea quadrifolia) 54 Parrot Feather (Myriophyllum aquaticum) 56 Variable Leaf Milfoil (Myriophyllum heterophyllum) 58 Eurasian Water Milfoil (Myriophyllum spicatum) 60 Southern Naiad (Najas guadalupensis) 62 Brittle Naiad (Najas minor) 64 Starry Stonewort (Nitellopsis obtusa) 66 Yellow
    [Show full text]
  • Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier
    Chapter 15 Stratigraphic Framework of the Cretaceous Mowry Shale, Frontier Formation and Adjacent Units, Southwestern Wyoming Province, Volume Title Page Wyoming, Colorado, and Utah By Mark A. Kirschbaum and Laura N.R. Roberts Chapter 15 of Petroleum Systems and Geologic Assessment of Oil and Gas in the Southwestern Wyoming Province, Wyoming, Colorado, and Utah By USGS Southwestern Wyoming Province Assessment Team U.S. Geological Survey Digital Data Series DDS–69–D U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Denver, Colorado: Version 1, 2005 For sale by U.S. Geological Survey, Information Services Box 25286, Denver Federal Center Denver, CO 80225 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. Manuscript approved for publication May 10, 2005 ISBN= 0-607-99027-9 Contents Abstract ………………………………………………………………………………………
    [Show full text]
  • This Is a Digital Document from the Collections of the Wyoming Water Resources Data System (WRDS) Library
    This is a digital document from the collections of the Wyoming Water Resources Data System (WRDS) Library. For additional information about this document and the document conversion process, please contact WRDS at [email protected] and include the phrase “Digital Documents” in your subject heading. To view other documents please visit the WRDS Library online at: http://library.wrds.uwyo.edu Mailing Address: Water Resources Data System University of Wyoming, Dept 3943 1000 E University Avenue Laramie, WY 82071 Physical Address: Wyoming Hall, Room 249 University of Wyoming Laramie, WY 82071 Phone: (307) 766-6651 Fax: (307) 766-3785 Funding for WRDS and the creation of this electronic document was provided by the Wyoming Water Development Commission (http://wwdc.state.wy.us) VOLUME 11-A OCCURRENCE AND CHARACTERISTICS OF GROUND WATER IN THE BIGHORN BASIN, WYOMING Robert Libra, Dale Doremus , Craig Goodwin Project Manager Craig Eisen Water Resources Research Institute University of Wyoming Report to U.S. Environmental Protection Agency Contract Number G 008269-791 Project Officer Paul Osborne June, 1981 INTRODUCTION This report is the second of a series of hydrogeologic basin reports that define the occurrence and chemical quality of ground water within Wyoming. Information presented in this report has been obtained from several sources including available U.S. Geological Survey publications, the Wyoming State Engineer's Office, the Wyoming Geological Survey, and the Wyoming Oil and Gas Conservation Commission. The purpose of this report is to provide background information for implementation of the Underground Injection Control Program (UIC). The UIC program, authorized by the Safe Drinking Water Act (P.L.
    [Show full text]
  • RÉPUBLIQUE FRANÇAISE Ministère De L'environnement, De L'énergie Et
    RÉPUBLIQUE FRANÇAISE II. - L’introduction dans le milieu naturel de spécimens vivants des espèces mentionnées au I. peut être autorisée par l’autorité administrative dans les conditions prévues au II. de l’article L. 411-5 du code de l’environnement. Ministère de l’environnement, de l’énergie et de la mer, en charge des Article 3 relations internationales sur le climat Le directeur de l’eau et de la biodiversité, la directrice générale de la performance économique et environnementale des entreprises et le directeur général de l’alimentation sont chargés, chacun en ce qui le concerne, de l’exécution du présent arrêté, qui sera publié au Journal officiel de la République française. Arrêté du Fait le relatif à la prévention de l’introduction et de la propagation des espèces animales exotiques envahissantes sur le territoire de la Martinique La ministre de l’environnement, de NOR : DEVL1704152A l’énergie et de la mer, chargée des relations internationales sur le climat, La ministre de l’environnement, de l’énergie et de la mer, chargée des relations internationales sur le climat, et le ministre de l’agriculture, de l’agroalimentaire et de la forêt, porte-parole du Gouvernement, Le ministre de l’agriculture, de Vu le règlement (UE) n° 1143/2014 du Parlement européen et du Conseil du 22 octobre l’agroalimentaire et de la forêt, porte-parole 2014 relatif à la prévention et à la gestion de l’introduction et de la propagation des espèces du Gouvernement, exotiques envahissantes, notamment son article 6 ; Vu le code de l’environnement, notamment ses articles L.
    [Show full text]
  • Gastropoda, Pleuroceridae), with Implications for Pleurocerid Conservation
    Zoosyst. Evol. 93 (2) 2017, 437–449 | DOI 10.3897/zse.93.14856 museum für naturkunde Genetic structuring in the Pyramid Elimia, Elimia potosiensis (Gastropoda, Pleuroceridae), with implications for pleurocerid conservation Russell L. Minton1, Bethany L. McGregor2, David M. Hayes3, Christopher Paight4, Kentaro Inoue5 1 Department of Biological and Environmental Sciences, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA 2 Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, 200 9th Street SE, Vero Beach, Florida 32962 USA 3 Department of Biological Sciences, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, Kentucky 40475 USA 4 Department of Biological Sciences, University of Rhode Island, 100 Flagg Road, Kingston, Rhode Island 02881 USA 5 Texas A&M Natural Resources Institute, 578 John Kimbrough Boulevard, 2260 TAMU, College Station, Texas 77843 USA http://zoobank.org/E6997CB6-F054-4563-8C57-6C0926855053 Corresponding author: Russell L. Minton ([email protected]) Abstract Received 7 July 2017 The Interior Highlands, in southern North America, possesses a distinct fauna with nu- Accepted 19 September 2017 merous endemic species. Many freshwater taxa from this area exhibit genetic structuring Published 15 November 2017 consistent with biogeography, but this notion has not been explored in freshwater snails. Using mitochondrial 16S DNA sequences and ISSRs, we aimed to examine genetic struc- Academic editor: turing in the Pyramid Elimia, Elimia potosiensis, at various geographic scales. On a broad Matthias Glaubrecht scale, maximum likelihood and network analyses of 16S data revealed a high diversity of mitotypes lacking biogeographic patterns across the range of E.
    [Show full text]
  • Concluding Remarks
    Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re­ production. Not surprisingly, the extraordinary diversity in size, shape, and struc­ ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de­ pend on liquid semen as the vehicle for spermatozoa. The most plausible expla­ nation is that the development of methods for sperm transfer must have been in­ fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro­ vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef­ fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa.
    [Show full text]
  • Genetic Population Structure of the Pelagic Mollusk Limacina Helicina in the Kara Sea
    Genetic population structure of the pelagic mollusk Limacina helicina in the Kara Sea Galina Anatolievna Abyzova1, Mikhail Aleksandrovich Nikitin2, Olga Vladimirovna Popova2 and Anna Fedorovna Pasternak1 1 Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia 2 Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia ABSTRACT Background. Pelagic pteropods Limacina helicina are widespread and can play an important role in the food webs and in biosedimentation in Arctic and Subarctic ecosystems. Previous publications have shown differences in the genetic structure of populations of L. helicina from populations found in the Pacific Ocean and Svalbard area. Currently, there are no data on the genetic structure of L. helicina populations in the seas of the Siberian Arctic. We assessed the genetic structure of L. helicina from the Kara Sea populations and compared them with samples from around Svalbard and the North Pacific. Methods. We examined genetic differences in L. helicina from three different locations in the Kara Sea via analysis of a fragment of the mitochondrial gene COI. We also compared a subset of samples with L. helicina from previous studies to find connections between populations from the Atlantic and Pacific Oceans. Results. 65 individual L. helinica from the Kara Sea were sequenced to produce 19 different haplotypes. This is comparable with numbers of haplotypes found in Svalbard and Pacific samples (24 and 25, respectively). Haplotypes from different locations sampled around the Arctic and Subarctic were combined into two different groups: H1 and H2. The H2 includes sequences from the Kara Sea and Svalbard, was present only in the Atlantic sector of the Arctic.
    [Show full text]
  • The Cajun Prairie: a Natural History
    The Cajun Prairie: A Natural History The Cajun Prairie: A Natural History By Malcolm F. Vidrine, Ph.D. The Division of Sciences and Mathematics (Louisiana State University Eunice) and The Cajun Prairie Habitat Preservation Society and The Cajun Prairie Gardens (Eunice, Louisiana) Malcolm F. Vidrine Eunice, Louisiana 2010 Front Cover image: Cajun Prairie is a 14” x 18” color pencil drawing by Corinne Louise Greenberg. http://thegardenisateacher.com Cover designed by Van Reed © 2010 by Malcolm Francis Vidrine [email protected] ISBN (paper): 978-0-615-36813-9 CIP Data Dedication To my wife Gail; she has carried the burden of doing so many things to permit my interests to grow. And to my children; each provided me with a separate adventure. Like so much else, this book will be part of their legacy. I hope it helps to explain our front yard. May this book also explain many more front yards! v Contents Page Preface ..............................................................................................................................ix Chapter 1 Introduction ........................................................................................ 1 Chapter 2 The people of the prairie .................................................................. 13 Chapter 3 Pre-settlement to 1870s .................................................................... 23 Chapter 4 1870s-1930s ...................................................................................... 47 Chapter 5 1940s-1970s .....................................................................................
    [Show full text]