Incompatibilities of Concentrated Nitric Acid: Never Mix Concentrated Nitric

Total Page:16

File Type:pdf, Size:1020Kb

Incompatibilities of Concentrated Nitric Acid: Never Mix Concentrated Nitric Incompatibilities of concentrated nitric acid: Never mix concentrated nitric acid and organics, such as acetone, unless you are following a respectable procedure and use a blast shield and proper precautions. Never store mixtures of concentrated acids, particularly nitric acid, and organic or inorganic waste components; immediately dilute any mixtures generated from concentrated acids by slow addition to ice or water in an open plastic container or a plastic bottle behind a shield or hood sash. Chemical Compatibility Chart 1 Inorganic Acids 1 2 Organic acids X 2 3 Caustics X X 3 4 Amines & Alkanolamines X X 4 5 Halogenated Compounds X X X 5 6 Alcohols, Glycols & Glycol Ethers X 6 7 Aldehydes X X X X X 7 8 Ketone X X X X 8 9 Saturated Hydrocarbons 9 10 Aromatic Hydrocarbons X 10 11 Olefins X X 11 12 Petrolum Oils 12 13 Esters X X X 13 14 Monomers & Polymerizable Esters X X X X X X 14 15 Phenols X X X X 15 16 Alkylene Oxides X X X X X X X X 16 17 Cyanohydrins X X X X X X X 17 18 Nitriles X X X X X 18 19 Ammonia X X X X X X X X X 19 20 Halogens X X X X X X X X X X X X 20 21 Ethers X X X 21 22 Phosphorus, Elemental X X X X 22 23 Sulfur, Molten X X X X X X 23 24 Acid Anhydrides X X X X X X X X X X 24 X Represents Unsafe Combinations Represents Safe Combinations Group 1: Inorganic Acids Dichloropropane Chlorosulfonic acid Dichloropropene Hydrochloric acid (aqueous) Ethyl chloride Hydrofluoric acid (aqueous) Ethylene dibromide Hydrogen chloride (anhydrous) Ethylene dichloride Hydrogen fluoride (anhydrous) Methyl bromide Nitric acid Methyl chloride Oleum Methylene chloride Phosphoric acid Monochlorodifluoromethane Sulfuric acid Perchloroethylene Propylene dichloride Group 2: Organic Acids 1,2,4-Trichlorobenzene Acetic acid 1,1,1-Trichloroethane Butyric acid (n-) Trichloroethylene Formic acid Trichlorofluoromethane Propionic acid Rosin Oil Group 6: Alcohols, Glycols and Glycol Ethers Tall oil Allyl alcohol Amyl alcohol Group 3: Caustics 1,4-Butanediol Caustic potash solution Butyl alcohol (iso, n, sec, tert) Caustic soda solution Butylene glycol Corn syrup Group 4: Amines and Alkanolamines Cyclohexyl alcohol Aminoethylethanolamine Decyl alcohol (n, iso) Aniline Dextrose solution Diethanolamine Diacetone alcohol Diethylenetriamine Diethylene glycol Diisopropanolamine Diethylene glycol dimethyl ether Dimethylamine Diethylene glycol monobutyl ether Ethylenediamine Diethylene glycol monoethyl ether Hexamethylenediamine Diethylene glycol monomethyl ether 2-Methyl-5-ethylpyridine Diisobutyl carbitol Monoethanolamine Dipropylene glycol Monoisopropanolamine Dodecanol Morpholine Ethoxylated dodecanol Pyridine Ethoxylated pentadecanol Triethanolamine Ethoxylated tetradecanol Triethlamine Ethoxylated tridecanol Triethylenetetramine Ethoxytriglycol Trimethylamine Ethyl alcohol Ethyl butanol Group 5: Halogenated Compounds 2-Ethylbuytl alcohol Allyl chloride 2-Ethylhexyl alcohol Carbon tetrachloride Ethylene glycol Chlorobenzene Ethylene glycol monobutyl ether Chloroform Ethylene glycol monoethyl ether Chlorohydrines, crude Ethylene glycol monomethyl ether Dichlorobenzene (o-) Furfuryl alcohol Dichlorobenzene (p-) Glycerine Dichlorodifluoromethane Heptanol Dichloroethyl ether Hexanol Group 6: Alcohols, Glycols and Glycol Ethers Ethane (cont.) Heptane Hexylene glycol Hexane Isoamyl alcohol Isobutane Isooctyl alcohol Liquified natural gas Methyoxytriglycol Liquified petroleum gas Methyl alcohol Methane Methylamyl alcohol Nonane Molasses, all n-Paraffins Nonanol Pentane Octanol Petrolatum Pentadecanol Petroleum ethers Polypropylene glycol methyl ether Petroleum naphtha Propyl alcohols (n, iso) Polybutene Propylene glycol Propane Sorbitol Propylene butylene polymer Tetradecanol Tetraethylene glycol Group 10: Aromatic Hydrocarbons Tridecyl alcohol Benzene Triethylene glycol Cumene Undecanol p-Cymene Coal tar oil Group 7: Aldehydes Diethybenzene Acetaldehyde Dodecyl benzene Acrolein (inhibited) Dowtherm Butyraldehyde (n, iso) Ethylbenzene Crotonaldehyde Naphtha, coal tar Decaldehyde (n, iso) Naphthalene (includes molten) 2-Ethyl-3-proplyacrolein Tetrahdyronaphthalene Formaldehyde solutions Toluene Furfural Triethyl benzene Hexamethylenetetramine Xylene (m-, o-, p-) Isooctyl aldehyde Methyl butyraldehyde Group 11: Olefins Methyl formal Butylene Paraformaldehyde 1-Decene Valeraldehyde Dicylcopentadiene Diisobuytlene Group 8: Ketones Dipentene Acetone Dodecene Acetophenone 1-Dodecene Camphor oil Ethylene Cylcohexanone Liquified petroleum gas Diisobutyl ketone 1-Heptene Isophorone 1-Hexane Mesityl oxide Isobutylene Methyl ethyl ketone Nonene Methyl isobutyl ketone 1-Octene 1-Pentene Group 9: Saturated Hydrocarbons Polybutene Butane Propylene Cyclohexane Propylene butylene polymer Group 11: Olefins (cont.) Group 13: Esters Propylene tetramer (dodecene) Amyl acetate 1-Tetradecene Amyl tallate 1-Tridecene Butyl acetates (n, iso, sec) Turpentine Butyl benzyl phthalate 1-Undecene Castor oil Croton oil Group 12: Petroleum Oils Dibutyl phthalate Asphalt Diethyl carbonate Gasolines Dimethyl sulfate Casingead Dioctyl adipate Automotive Dioctyl phthalate Aviation Epoxidized vegetable oils Jet Fuels Ethyl acetate JP-1 (kerosene) Ethyl diacetate JP-3 Ethylene glycol monoethyl ether acetate JP-4 Ethylhexyl tallate JP-5 (kerosene, heavy) Fish oil Kerosene Glycol diacetate Mineral spirits Methyl acetate Naphtha (non aromatic) Methyl amyl acetate Naphtha Neatsfoot oil Solvent Olive oil Stoddard solvent Peanut oil VM&P Propyl acetates (n, iso) Oils Resin oil Absorption oil Soya bean oil Clarified oil Sperm oil Crude oil Tallow Diesel oil Tanner’s oil Fuel oil Vegetable oil No. 1 (kerosene) Wax, carnauba No. 1-D No. 2 Group 14: Monomers and Polymerizable No. 2-D esters No. 4 Acrylic acid (inhibited) No. 5 Acrylonitrile No. 6 Butadiene (inhibited) Lubricating oil Butyl acrylate (n, iso) Mineral oil Ethyl acrylate (inhibited) Mineral seal oil 2-Ethylhexyl acrylate (inhibited) Motor oil Isodecyl acrylate (inhibited) Penetration oil Isoprene (inhibited) Range oil Methyl acrylate (inhibited) Road oil Methyl methacrylate (inhibited) Spindle oil o-Propiolactone Spray oil Styrene (inhibited) Transformer oil Vinyl acetate (inhibited) Turbine oil Vinyl chloride (inhibited) Vinylidene chloride (inhibited) Vinyl toluene Group 15: Phenols Carbolic oil Creosote, coal tar Cresols Nonylphenol Phenol Group 16: Alkylene Oxides Ethylene Oxide Propylene Oxide Group 17: Cyanohydrins Acetone cyanohydrin Ethylene cyanohydrin Group 18: Nitriles Acetonitrile Adiponitrile Group 19: Ammonia Ammonium hydroxide Group 20: Halogens Bromine Chlorine Group 21: Ethers Diethyl ether (ethyl ether) 1, 4, Dioxane Isoprophyl ether Ethers (cont) Tetrahydrofuran Group 22: Phosphorus, elemental Group 23: Sulfur, molten Group 24: Acid Anhydride Acetic anhydride Propionic anhydride Mallinckrodt Specialty Chemicals Co. – Chemical Compatibility List The following provides some chemicals which are incompatible with other compounds. Avoid contacting, in storage and in working, as explosion or toxic fume or other hazard may result. (SOURCE: Mallinckrodt Specialty Chemicals Co. 5/89) Incompatible Substances COMPOUND(S) INCOMPATIBLE WITH: Acetic acid chromic acid, nitric acid, ethylene glycol, perchloric acid, peroxides and permanganates Acetone concentrated sulfuric and nitric acid mixtures Acetylene copper tubing, fluorine, bromine, chlorine, iodine, silver, mercury Ammonia anhydrous mercury, halogens, calcium hypochlorite, hydrogen fluoride (HF) Ammonium Nitrate acids, metal powders, flammable liquids, chlorates, nitrates, sulfur, finely divided organics or combustibles Aniline nitric acid, hydrogen peroxide Arsenic compounds any reducing agent Azides acids Bromine ammonia, acetylene, butadiene, butane, hydrogen, sodium carbide, turpentine, finely divided metals Calcium water, carbon dioxide, carbon tetrachloride, and chlorinated hydrocarbons Carbon, activated calcium hypochlorate, all oxidizing agents Chlorates ammonium salts, acids, metal powders, sulfur, finely divided organics or combustibles, carbon Chromic acid acetic acid, naphthalene, camphor, alcohol, glycerine, turpentine, alkalis, other flammable liquids Chlorine Dioxide ammonia, methane, phosphine, hydrogen sulfide Chlorine ammonia, acetylene, butadiene, benzene, petroleum fractions, hydrogen, sodium carbide, turpentine, and finely divided metal powders Copper acetylene, hydrogen peroxide Cyanides acids and alkalis (bases) Flammable Liquids ammonium nitrate, chromic acid, hydrogen peroxide, nitric acid, sodium peroxide, halogens Fluorine isolate from everything Hydrazine hydrogen peroxide, nitric acid, all oxidizers Hydrocarbons fluorine, chlorine, bromine, chromic acid, peroxide Hydrocyanic acid nitric acid, alkalis Hydrofluoric acid ammonia, alkalis Hydrogen Sulfide fuming nitric acid, oxidizing gases Hypochlorites acids, activated carbons Iodine acetylene, ammonia, hydrogen Mercury sulfuric acid Nitric acid (conc) acetic acid, aniline, chromic acid, hydrocyanic acid, hydrogen sulfide, flammable liquids, flammable gases, copper, brass, heavy metals Nitrites acid Nitroparrafins inorganic bases, amines Oxalic acids silver, mercury Oxygen oils, grease, hydrogen, flammable liquids, solids or gases Perchloric Acid acetic anhydride, bismuth, alcohol, paper, wood, oil and grease Peroxides, organic acids, friction, heat, sparks Phosphorous, white air, oxygen, alkalis, reducing agents Phosphorous pentoxide water Potassium carbon tetrachloride, carbon dioxide, water Potassium chlorate sulfuric and other acids Potassium perchlorate sulfuric and other acids (see
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • An Improved Process for the Production of Cumene
    Europaisches Patentamt European Patent Office © Publication number: 0 537 389 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 91309531.1 int. Ci.5; C07C 2/66, C07C 2/86, C07C 6/12, C07C 15/085 (§) Date of filing: 16.10.91 ® Date of publication of application: @ Applicant: Council of Scientific and Industrial 21.04.93 Bulletin 93/16 Research Rafi Marg @ Designated Contracting States: New Delhi 110 001 (IN) BE DE FR GB IT NL @ Inventor: Pradhan, Ajit Ramchandra National Chemical Laboratory Pune-411008, Maharashtra(IN) Inventor: Rao, Bollapragad Seshagiri National Chemical Laboratory Pune-411008, Maharashtra(IN) 0 Representative: Collier, Jeremy Austin Grey et al J.A.Kemp & Co., 14 South Square, Gray's Inn London WC1R 5LX (GB) 0 An improved process for the production of cumene. © An improved process is disclosed for the preparation of cumene. Cumene is prepared by reacting benzene with a propylating agent in the presence of a catalyst containing metal loaded Zeolite EU-1 in a reactor in the range of a temperature of 150 to 250 °C and a pressure of 1 to 35 atmospheres, the propyl and diisopropylben- zene so formed are separated from the reactor effluent by conventional methods. The diisopropylbenzene is recycled back to the reactor. Simultaneous alkylation and transalkylation reactions occur in a single catalyst bed containing Zeolite EU-1 with a feed containing benzene, propylene and diisopropylbenzene. Cumenes are important chemical precursors in the production of detergents and polymers among others. Oi CO CO IV CO m Rank Xerox (UK) Business Services (3. 10/3.5x/3.0.
    [Show full text]
  • Part I: Carbonyl-Olefin Metathesis of Norbornene
    Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 1 © 2016 Zara Maxine Seibel All Rights Reserved 2 ABSTRACT Part I: Carbonyl-Olefin Metathesis of Norbornene Part II: Cyclopropenimine-Catalyzed Asymmetric Michael Reactions Zara Maxine Seibel This thesis details progress towards the development of an organocatalytic carbonyl- olefin metathesis of norbornene. This transformation has not previously been done catalytically and has not been done in practical manner with stepwise or stoichiometric processes. Building on the previous work of the Lambert lab on the metathesis of cyclopropene and an aldehyde using a hydrazine catalyst, this work discusses efforts to expand to the less stained norbornene. Computational and experimental studies on the catalytic cycle are discussed, including detailed experimental work on how various factors affect the difficult cycloreversion step. The second portion of this thesis details the use of chiral cyclopropenimine bases as catalysts for asymmetric Michael reactions. The Lambert lab has previously developed chiral cyclopropenimine bases for glycine imine nucleophiles. The scope of these catalysts was expanded to include glycine imine derivatives in which the nitrogen atom was replaced with a carbon atom, and to include imines derived from other amino acids. i Table of Contents List of Abbreviations…………………………………………………………………………..iv Part I: Carbonyl-Olefin Metathesis…………………………………………………………… 1 Chapter 1 – Metathesis Reactions of Double Bonds………………………………………….. 1 Introduction………………………………………………………………………………. 1 Olefin Metathesis………………………………………………………………………… 2 Wittig Reaction…………………………………………………………………………... 6 Tebbe Olefination………………………………………………………………………... 9 Carbonyl-Olefin Metathesis…………………………………………………………….
    [Show full text]
  • ||||||IIIHHHHHIIIIUSOO539607A United States Patent (19) (11) Patent Number: 5,139,607 Ward Et Al
    ||||||IIIHHHHHIIIIUSOO539607A United States Patent (19) (11) Patent Number: 5,139,607 Ward et al. 45) Date of Patent: Aug. 18, 1992 54 ALKALINE STRIPPING COMPOSITIONS Attorney, Agent, or Firm-John Lezdey (75) Inventors: Irl E. Ward, Hatfield; Francis W. 57 ABSTRACT Michelotti, Easton, both of Pa. An alkaline positive and negative resist stripping com 73) Assignee: ACT, Inc., Allentown, Pa. position having low volatility and operable at tempera (21) Appl. No.: 690,110 tures less than about 90° C. which comprises, A. about 10 to 30% by weight of tetrahydrofurfuryl (22) Filed: Apr. 23, 1991 alcohol; 51) Int. Cl. ......................... B44C 1/22; B29C 37/00 B. about 5 to 30% by weight of a polyhydric alcohol; 52 U.S. C. .................................... 156/655; 156/668; C. about 10 to 30% by weight of the reaction product of 252/79.5; 430/329 one mole of furfuryl alcohol with about 1 to 20 moles (58) Field of Search............... 252/79.5, 156; 156/655, of an alkylene oxide, 156/659.1, 668; 430/329; 134/22.17, 29, 38, 40 D. about 1 to 30% by weight of a water soluble Bron (56 References Cited stead base type of hydroxide compound, and E. the remainder being water. U.S. PATENT DOCUMENTS The composition comprising a ratio of organic materials 4,078,102 3/1978 Bendz et al. ................... 252/79.5 X 4,686,002 8/1987 Tasset ............................... 156/659.1 to inorganic materials to about 0.25:1 to 3:1. Primary Examiner-William A. Powell 11 Claims, No Drawings 5,139,607 1.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • Writing Total and Net Ionic Equations
    WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3.
    [Show full text]
  • 5. POTENTIAL for HUMAN EXPOSURE 5.1 OVERVIEW White
    WHITE PHOSPHORUS 157 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW White phosphorus can enter the environment from its production, use, accidental spills during loading and unloading for shipment, and accidental spills during transport. Hazardous wastes sites containing white phosphorus can also be a source of phosphorus in the environment. White phosphorus has been found in at least 77 of the 1,430 current or former EPA National Priorities List (NPL) hazardous waste sites (HazDat 1996). However, the number of sites evaluated for white phosphorus is not known. The frequency of these sites within the United States can be seen in Figure 5-l. The persistence of elemental phosphorus in the air is very short due to oxidation to phosphorus oxides and ultimately to phosphorus acids. However, the particulate phosphorus aerosol may be coated with a protective oxide layer that may prevent further oxidation and extend the lifetime of particulate phosphorus in air. Both wet and dry deposition remove unreacted elemental phosphorus and the degradation products from the air. Similarly, elemental phosphorus oxidizes and hydrolyzes in water and in soil. A small amount of elemental phosphorus is lost from soil and water by volatilization. Phosphorus is used as a fumigant in the storage of grain. Because of ease of application, pellets of aluminum or magnesium phosphide are commonly used (Garry et al. 1993). Phosphine, a highly toxic gas, is generated from phosphide. The rate of formation of phosphine (permissible exposure limit [PEL], 0.4 mg/m3) is dependent on the ambient temperature and humidity. Its release is rapid, and it is extremely fatal to the unprotected person (Garry et al.
    [Show full text]
  • Title Crystallization of Stereospecific Olefin Copolymers (Special Issue on Physical Chemistry) Author(S) Sakaguchi, Fumio; Kita
    Crystallization of Stereospecific Olefin Copolymers (Special Title Issue on Physical Chemistry) Author(s) Sakaguchi, Fumio; Kitamaru, Ryozo; Tsuji, Waichiro Bulletin of the Institute for Chemical Research, Kyoto Citation University (1966), 44(4): 295-315 Issue Date 1966-10-31 URL http://hdl.handle.net/2433/76134 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Crystallization of Stereospecifie Olefin Copolymers Fumio SAKAGUCHI,Ryozo KITAMARU and Waichiro TSUJI* (Tsuji Laboratory) Received August 13, 1966 The stereoregularity of isotactic poly(4-methyl-1-pentene) was characterized and isomorphism phenomena were examined for the copolymeric systems of 4-methyl-1-pentene with several olefins in order to study the crystallization phenomena in these olefin copoly- mers polymerized with stereospecific catalysts. The structural heterogeneity or the fine crystalline structure of poly(4-methyl-1-pentene) could be correlated with its molecular structure by viewing this stereoregular homopolymer as if it were a copolymer. Cocrystallization or isomorphism phenomenon was recognized for the copolymeric systems of 4-methyl-1-pentene with butene-1, pentene-1, decene-1 and 3-methyl-1-butene, while no evidence of the phenomenon was obtained for the copolymeric systems with styrene and propylene. The degree of the isomorphism of those copolymers was discussed with the informations on the crystalline phases obtained from the X-ray study, on the constitution of the copolymeric chains in the amorphous phases obtained from the viscoelastic studies and on the other thermodynamical properties of these systems. INTRODUCTION Many works have been made with regard to the homopolymerization of olefins with stereospecific catalysts, i. e. complex catalysts composed of the combination of organometallic compound and transitional metallic compound.
    [Show full text]
  • Agrimer™ Polyvinylpyyrolidone (PVP)
    agrimer ™ polyvinylpyyrolidone (PVP) binder, dispersant rheology, modifier, film former, complexing agent Agrimer™ polyvinylpyrrolidone (PVP) this brochure is divided into two main segments suggested applications General properties and uses 2-10 ¢ complexing agent Agricultural case studies 10 ¢ stabilizers / co-dispersants These case studies highlight the uses of Agrimer™ ¢ binders in dry / wet granulation and extrusion (dry compaction / fluidized-bed spray drying process) polymers in seed coatings, granule and tablet binders and as dispersants. ¢ film-forming agents / binders in seed coatings, dips and pour-ons general properties and uses ¢ biological stabilization ¢ water binding / anti-transpiration properties Agrimer™ PVP products are linear, non-ionic polymers that are soluble in water and many organic solvents. ¢ solubility enhancers via co-precipitation or They are pH stable, and have adhesive, cohesive thermal extrusion and binding properties. The unique ability to adsorb ¢ dye-binding agent on a host of active ingredients makes Agrimer™ PVP regulatory status homopolymers preferred co-dispersants in many The Agrimer™ PVP products listed in this brochure are formulations. Agrimer™ homopolymers have a high exempt from the requirement of a tolerance under glass transition temperature. 40 CFR 180.960. Lower molecular weight (Mw) Agrimer™ polymers (Agrimer™ 15 and Agrimer™ 30) are suitable for physical and chemical properties applications where dusting is a concern, such as The Agrimer™ polymers, a family of homopolymers of seed coatings and agglomeration. Higher Mw polyvinylpyrrolidone, are available in different viscosity Agrimer™ polymers (Agrimer™ 90 and Agrimer™ 120) can grades, ranging from very low to very high molecular build formulation viscosity faster and provide excellent weight. This range, coupled with their solubility in binding and film forming properties.
    [Show full text]
  • Mdi), 1,6 Hexamethylene Diisocyanate (Hdi
    4.03.11. PRODUCTION OF ISOCYANATES FOR POLYURETHANE PRO- DUCTION CHEMICALS AND ALLIED APPLICATION NOTE 4.03.11 PRODUCTION OF ISOCYANATES FOR POLYURETHANE PRODUCTION METHYLENE DIPHENYL DIISOCYANATE (MDI), 1,6 HEXAMETHYLENE DIISOCYANATE (HDI) Typical end products Polyurethane foam for different applications, for example, bedding, of materials can be produced to meet the needs for furniture, packaging, coatings and elastomers. specific applications. Chemical curve: R.I. for MDI at Ref. Temp. of 25˚C Application The most commonly used isocyanates for the production of PU are methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI). If color and transparency are important, an aliphatic diisocyanate such as hexamethylene diisocyanate (HDI) is used. The first step in the production of polyurethane is the synthesis of the raw materials. The diisocyanate is typically produced from basic raw materials via nitration, hydrogenation and phosgenation. The feedstock and initial processing steps depend on the Introduction desired isocyanate, but all go through a phosgenation step. Polyurethanes (PUs) are a class of versatile materials with great potential for use in different applications. For instance, for the production of MDI, benzene and They are used in the manufacture of many different nitric acid are reacted to produce nitrobenzene. After items, such as paints, liquid coatings, elastomers, a hydrogeneration step, the nitrobenzene is converted insulators, elastics, foams and integral skins. to aniline. It is then condensed with formaldehyde to produce methylene diphenyl diamine (MDA), the Polyurethanes are produced by polymerization of precursor for MDI. The MDA is fed to a phosgenation a diisocyanate with a polyol. Because a variety of reactor where it reacts with phosgene to produce the diisocyanates and a wide range of polyols can be end-product MDI.
    [Show full text]
  • Periodic Trends in the Main Group Elements
    Chemistry of The Main Group Elements 1. Hydrogen Hydrogen is the most abundant element in the universe, but it accounts for less than 1% (by mass) in the Earth’s crust. It is the third most abundant element in the living system. There are three naturally occurring isotopes of hydrogen: hydrogen (1H) - the most abundant isotope, deuterium (2H), and tritium 3 ( H) which is radioactive. Most of hydrogen occurs as H2O, hydrocarbon, and biological compounds. Hydrogen is a colorless gas with m.p. = -259oC (14 K) and b.p. = -253oC (20 K). Hydrogen is placed in Group 1A (1), together with alkali metals, because of its single electron in the valence shell and its common oxidation state of +1. However, it is physically and chemically different from any of the alkali metals. Hydrogen reacts with reactive metals (such as those of Group 1A and 2A) to for metal hydrides, where hydrogen is the anion with a “-1” charge. Because of this hydrogen may also be placed in Group 7A (17) together with the halogens. Like other nonmetals, hydrogen has a relatively high ionization energy (I.E. = 1311 kJ/mol), and its electronegativity is 2.1 (twice as high as those of alkali metals). Reactions of Hydrogen with Reactive Metals to form Salt like Hydrides Hydrogen reacts with reactive metals to form ionic (salt like) hydrides: 2Li(s) + H2(g) 2LiH(s); Ca(s) + H2(g) CaH2(s); The hydrides are very reactive and act as a strong base. It reacts violently with water to produce hydrogen gas: NaH(s) + H2O(l) NaOH(aq) + H2(g); It is also a strong reducing agent and is used to reduce TiCl4 to titanium metal: TiCl4(l) + 4LiH(s) Ti(s) + 4LiCl(s) + 2H2(g) Reactions of Hydrogen with Nonmetals Hydrogen reacts with nonmetals to form covalent compounds such as HF, HCl, HBr, HI, H2O, H2S, NH3, CH4, and other organic and biological compounds.
    [Show full text]