Standard Legend 1995

Total Page:16

File Type:pdf, Size:1020Kb

Standard Legend 1995 STANDARD LEGEND 1995 Date of issue : October 1995 The copyright of this document is vested in Shell International Exploration and Production B.V., The Hague, the Netherlands. All rights reserved. This document may be reproduced, stored in any retrieval system or transmitted in any form or by any means without the prior written consent of the copyright owner, except for the purpose of commercial exploitation. SHELL INTERNATIONAL EXPLORATION AND PRODUCTION B.V., THE HAGUE Further copies can be obtained from SIEP, Document Centre if approved by the custodian of this document. INTRODUCTION The Shell Exploration & Production Standard Legend 1995 is the Shell standard for symbols, abbreviations, display formats and terminology applied in hydrocarbon exploration and petroleum engineering. The beginnings of the document can be traced back for some 60 years and consequently its contents reflect both long established and recently introduced practices, as well as international conventions. Some contents of this document are also to be found in the "AAPG Sample Examination Manual" (Swanson, 1981). The aim of this document is to promote a standard for communication within Shell's worldwide operating organisation, and within industry and academia. The document is also available on a CD-ROM (inserted in the back cover). However, for copyright reasons the CD-ROM does not include the fold-out figures. Appendix 7 contains a short guide on its use. Symbols which are individually numbered can be copied from the CD-ROM into other applications. This Standard Legend 1995 is a revision of the 1976 edition. Definitions have been largely omitted; for these, the user is referred to the "Glossary of Geology" (Bates & Jackson, 1987) and the "Geological Nomenclature" (Visser, 1980). The contents of the various chapters are: - Chapter 1.0 General contains sections on Rules for Abbreviations, Report Presentation, and Standard Documents, such as Mud Log, Electrical Log Displays, Well Completion (Composite) Log, Well Proposal, Well Résumé, Play Maps and Cross-sections. - Chapter 2.0 Wells and Hydrocarbons comprises sections such as Well Symbols on Maps and Sections, Well Bore Symbols, Hydrocarbon Shows, Hydrocarbon Fields and Surface Hydrocarbon Seeps. - Chapter 3.0 Topography is based mainly on international conventions. - Chapter 4.0 Geology contains the key sections Lithology, Rock Description, and Stratigraphy including Sequence Stratigraphy. Two stratigraphical charts, 'Geological Data Tables Cenozoic - Mesozoic and Palaeozoic', are enclosed. The section Depositional Environments includes abbreviations and colour codes for palaeobathymetry, and a terminology for detailed facies analysis. The section Palaeogeographical Maps proposes two standards, one for basin scale maps and one for continental/global scale maps. The section Structural Geology includes a subsection on Trap Description. - Chapter 5.0 Geochemistry deals with source rocks, their evaluation, maturity and burial. - Chapter 6.0 Geophysics is a major chapter including Gravity and Magnetics. The section Seismic also encompasses entries on Seismic Interpretation including Seismic Attribute Maps and Seismic Stratigraphy, and Well Shoot and Vertical Seismic Profile. - The Alphabetical Index and the Alphabetical Listing of Abbreviations are to be found at the end of this document, together with a number of Appendices, including one on the RGB/CMYK values of the various colours to be used. The 1995 edition is the result of a multidisciplinary effort by a group of geologists, stratigraphers, geophysicists, geochemists, petroleum engineers and operations engineers from SIEP, Research and Operating Companies striving for consensus without dogma. The Project Steering Group, compiler and contributors hope that this new edition will be as widely used as its 1976 predecessor. The Shell Standard Legend 1995 is classed as a non-confidential document. The Hague, September 1995. The Project Steering Group for the Standard Legend 1995 was: R. Buchanan P.A.B. Marke P.J.D. van Ditzhuijzen B.M. Reinhardt J.R. Freake L.L. Wakefield D.L. Loftus G.J. Williams The main contributors were: J.W. Burggraaff H.P. Mohr T.J. Faulkner J.C. Mondt P.S. Featherstone M.A. Naylor G.E.A. Foubert E.J.M. Overboom E.A. Haan Y.M. Quillien Ms B.K. Howe M.W. Shuster P.J.F. Jeans G.S. Steffens G.W.M. Lijmbach M. Wannier The final draft was reviewed by the Steering Group, Exploration/Production staff of Shell Research B.V., and the following OpCos: Brunei Shell Petroleum Co Sdn Bhd Shell UK Exploration & Production Ltd Nederlandse Aardolie Maatschappij B.V. The Shell Petroleum Development Co of Nigeria Ltd Petroleum Development Oman LLC Sabah Shell Petroleum Co Ltd/Sarawak Shell Bhd Support was also received from Draughting, Desk-Top Publishing, Information Technology and Editing staff: E.P.J. Clavaux J.H. Lek C. van den Ende E.C.M. Schmidt Ms J.J. Hillebrandt J.J. Wachters R.M. Holsnijders A.N.R. Wright Acknowledgements for granting copyrights are due to Professor W.B. Harland (Cambridge), Dr B.U. Haq (Washington), and Nederlandse Aardolie Maatschappij B.V. Compiler and Editor: W.G. Witt Sponsor: D.L. Loftus CONTENTS LIST 1.0 GENERAL 1.1 Rules for Abbreviations 1.2 Report Presentation 1.3 Standard Documents 1.3.1 Mud Log 1.3.2 Electrical Log Displays 1.3.3 Well Completion (Composite) Log 1.3.4 Well Proposal 1.3.5 Well Résumé 1.3.6 Play Maps and Cross-sections 2.0 WELLS AND HYDROCARBONS 2.1 Well Symbols on Maps and Sections 2.1.1 Surface Location Symbols 2.1.2 Subsurface Location Symbols 2.1.2.1 Technical Status 2.1.2.2 Hydrocarbon Status 2.1.2.3 Production Status 2.1.2.4 Injection Status 2.1.2.5 Completion Status 2.1.2.6 Geological/Structural Information 2.1.2.7 Type of Well 2.1.3 Deviated Holes 2.1.4 Horizontal Holes 2.1.5 Multilateral Holes 2.1.6 Multilateral Horizontal Holes 2.2 Well Bore Symbols 2.2.1 General Drilling Data 2.2.2 Formation Lithological Sampling and Dip Data 2.2.3 Casing and Cementations 2.2.4 Completion Methods 2.2.5 Formation Treatment 2.2.6 Production Test Results and Data 2.2.7 Lithology 2.2.8 Hydrocarbons, Gases and Waters 2.2.8.1 Gas 2.2.8.2 Oil 2.2.8.3 Solid Hydrocarbons 2.2.8.4 Formation Waters 2.2.8.5 Vintage Hydrocarbon Show Symbols 2.3 Hydrocarbon Show Reporting 2.4 Hydrocarbon Fields and Prospects on Maps and Sections, Colour Coding 2.5 Surface Hydrocarbon and Water Seeps (Shows) on Maps 2.5.1 Gas 2.5.2 Oil 2.5.3 Solid Hydrocarbons 2.5.4 Surface Water Springs, Seepages 2.5.5 Mud Volcanoes 3.0 TOPOGRAPHY 3.1 Survey Datum 3.2 Survey Reference Points 3.2.1 Horizontal Control Points 3.2.2 Vertical Control Points 3.2.3 Other Position Markers 3.2.4 Survey Control Lines 3.3 Boundaries 3.3.1 Political Boundaries 3.3.2 Concession Boundaries 3.3.3 Area Limits Offshore 3.3.4 Area Limits on Land 3.4 Artificial Features 3.4.1 Linear Features 3.4.2 Point Features 3.4.3 Area Features 3.4.4 Offshore Structures and Markers 3.4.5 Informative Symbols 3.5 Natural Features 3.5.1 Linear Features 3.5.2 Point Features 3.5.3 Area Features 3.5.4 Environmental Maps 3.6 Elevation Contours 3.7 Bathymetric Contours 4.0 GEOLOGY 4.1 Photogeology 4.1.1 Morphological Features 4.1.2 Geological Features 4.2 Lithology 4.2.1 Order of Description 4.2.2 Siliciclastics 4.2.2.1 Framework Composition 4.2.2.2 Siliciclastic Lithotypes 4.2.3 Carbonates 4.2.3.1 Carbonate Classification 4.2.3.2 Carbonate Lithotypes 4.2.4 Mixed Siliciclastics-Carbonates 4.2.5 Evaporites 4.2.6 Organic-rich Rocks 4.2.7 Miscellaneous Sediments 4.2.8 Igneous Rocks 4.2.8.1 Intrusive (Plutonic) Rocks 4.2.8.2 Dykes, Sills 4.2.8.3 Extrusive (Volcanic) Rocks 4.2.8.4 Ophiolites 4.2.9 Metamorphic Rocks 4.2.10 Lithological Colour Symbols 4.3 Rock Description 4.3.1 Texture and Composition 4.3.1.1 Grain Size 4.3.1.2 Sorting 4.3.1.3 Roundness 4.3.1.4 Sphericity 4.3.1.5 Compaction 4.3.1.6 Non-skeletal Particles 4.3.1.7 Non-skeletal Particle Texture and Size 4.3.1.8 Pellets and Coated Grains 4.3.1.9 Skeletal Particles 4.3.1.10 Compositional Siliciclastics Classification 4.3.2 Porosity and Permeability 4.3.2.1 Fabric Selective Porosity 4.3.2.2 Non-fabric Selective Porosity 4.3.2.3 Relative Timing of Porosity Generation 4.3.2.4 Porosity (qualitative by visual estimate) 4.3.2.5 Permeability (qualitative) 4.3.2.6 Archie Classification 4.3.2.7 Archie Porosity Types 4.3.3 Colour Description 4.3.3.1 Colours 4.3.3.2 Modifying Adjectives 4.3.4 Accessory Minerals 4.3.5 Fossils 4.3.5.1 Fossils, General 4.3.5.2 Fossils, Specific 4.3.5.3 Ichnofossils 4.3.5.4 Organogenic Structures 4.3.6 Stratification and Sedimentary Structures 4.3.6.1 Bed Thickness 4.3.6.2 Bedding Appearance 4.3.6.3 Character of Base of Bed 4.3.6.4 Miscellaneous Terms 4.3.6.5 Large Sedimentary Features 4.3.6.6 Cross-bedding 4.3.6.7 Ripplemarks on Bedding Planes 4.3.6.8 Horizontal Lamination 4.3.6.9 Wavy/Irregular/Lenticular Stratification 4.3.6.10 Graded Beds 4.3.6.11 Lineations on Bedding Planes 4.3.6.12 Soft Sediment Deformation 4.3.6.13 Syndepositional Marks and Miscellaneous Structures 4.3.7 Post-depositional Features 4.3.7.1 Miscellaneous Post-depositional Features 4.3.7.2 Diagenetic Structures 4.3.7.3 Nodules/Concretions 4.4 Stratigraphy 4.4.1 Lithostratigraphy 4.4.1.1 Lithostratigraphical Terminology 4.4.1.2 Lithostratigraphical Gaps 4.4.2 Biostratigraphy 4.4.2.1 Zonal Terminology 4.4.2.2 Zones/Zonation 4.4.2.3 Quantity Symbols for Distribution Charts 4.4.3 Chronostratigraphy and Geochronology 4.4.4 Sequence Stratigraphy 4.4.5 Stratigraphical Boundaries on Maps 4.4.5.1 General 4.4.5.2 Layer Maps 4.4.6 Gaps and Unknown Formations
Recommended publications
  • A Brief History of Till Research and Developing Nomenclature
    k 7 2 A Brief History of Till Research and Developing Nomenclature With relief one remembers that, after all, the facts gathered with such infinite care, over so many years, are in no ways affected: their permanency is untouched, their value as high as ever. It is the interpretation which has gone astray. Carruthers (1953, p. 36) A benchmark publication in the development of till nomenclature was contained in the final report by the INQUA Commission on Genesis and Lithology of Glacial Quaternary Deposits, entitled ‘Genetic Classification of Glacigenic Deposits’ (Goldthwait and Matsch, 1989; Figure 2.1). Most significant in this report was the paper by Aleksis Dreimanis (Figure 2.2), entitled ‘Tills: Their Genetic Terminology k k and Classification’, a summary of the findings of the Till Work Group, which operated over the period 1974–1986. It was a synthesis of knowledge and a rationale for a unified process-based nomenclature but at the same time afforded the presentation of alternative standpoints on till classification, and hence delivered a selection of frameworks containing complex and overlapping genetic terms. More broadly, ‘till’ at this juncture was defined as: a sediment that has been transported and is subsequently deposited by or from glacier ice, with little or no sorting by water. (Dreimanis and Lundqvist, 1984, p. 9) As a way forward, the Till Work Group, through Dreimanis (1989), arrived at a series of nomencla- ture diagrams (Figure 2.3), which aimed at an inclusive but at the same time simplified and unambigu- ous, process-based till classification scheme. More specifically, Dreimanis (1989), within the same volume, compiled a table of diagnostic characteristics for differentiating what he termed ‘lodgement till’, ‘melt-out till’ and ‘gravity flowtill’.
    [Show full text]
  • Style, Scale and Significance of Sand Bodies in the Northern and Central Belts, Southwest Southern Uplands
    Journal ofthe Geological Society, London, Vol. 144, 1987, pp. 787-805, 13 figs, 3 tables, Printed in Northern Ireland Style, scale and significance of sand bodies in the Northern and Central Belts, southwest Southern Uplands G.KELLINGl, P. DAVIES' & J. HOLROYD2 1 Geology Department, University of Keele, Staffs. ST5 5BG, UK 21 Blythe Road, Forsbrook, Blythe Bridge, Staffs., UK Abstract: Sedimentological and biostratigraphical data fromthe Rhinns of Galloway andadjacent areas in SW Scotland confirm that deep-water depositional systems consistently operated along, and were sourced from, the northwestern margin of an asymmetrical basin during the late Ordovician and earlySilurian, while pelagic facies accumulated simultaneously tothe SE, providing ascenario analogous to many modern trench systems. Most of the observedsedimentological anomalies, with regard to thisgeneral model, can be explained within the context of the varied styles of trench-filling depositional systems, briefly reviewed here, and the major stratigraphic and sedimentologic features can be best explained in terms of a geotectonically evolving fore-arcregion. Two main phases of development are recognized: (a) Llandeilo-late Ashgill: during this time interval the fore-arc trench region was tectonically juxtaposed against an active continental margin arc. Small- to medium-scale, SE-prograding sand-rich fans were formed within a relatively narrow trench, leading to axial diversion of the fans, initially to NE but later mainly to SW. Simultaneously a coarse volcanilithic sediment apron, flanking the arc, migrated gradually northeastwards, probably in response to relative fault displacement of the arc and trench; (b) Llandovery: during this time interval the fore-arc trench region was dominated by a variety of mainly fan-typedepositional systems which were exclusively sourced(at least until theuppermost Llandovery) from the northwestern margin.
    [Show full text]
  • Cat Herding on a Global Scale
    OneGeology-Europe – an INSPIRE testbed for semantic harmonisation of „geology“ data across Europe (WP 3) Kristine Asch and John Laxton Project deliverables • Interoperable on- shore geology spatial dataset • with ”progress • Mutilingual metadata for towards discovery harmonisation” • View services • Forerunner and “guinea • Geological pig” for the vocabulary and data implementation of specifications for INSPIRE Directive Europe • Use case studies Fact Vast amount of data hidden in the archives and hard disks in governmental organisations across Europe … Kristine Asch ©BGR.de And they are all different.. Edge matching at national boundaries? Î National boundary Î geological terms and classifications (age, lithology, tectonics ..) Î age of data (mapping campaign) Î choice of units to be mapped Î level of detail / scale Î topographical base (projection, spheroid, drainage system, ...) Î Portrayal (colours and symbols) Î Mapped border of the units Interoperability and harmonisation • Interoperability – when the data model/structure and properties to describe its parts (what GeoSciML does) is agreed – E.g. agreeing a data model will have the feature of “GeologicUnit” with properties of “age” and “lithology” • Semantic harmonisation – when the use of the same definitions and classifications to describe a concept/term is agreed – E.g. ‘clay’. The same concept can be labelled with several terms (“argilla” in Italian, “Ton” in German), but needs to have the same definition, in this case of “clay/Ton/argilla, …”): > 50% particles < 0,004 mm (Wentworth
    [Show full text]
  • A Systematic Nomenclature for Metamorphic Rocks
    A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites).
    [Show full text]
  • Geochemical Consideration of Some Granitoids Around Ojirami-Ogbo and Environs, Southwestern Nigeria
    PRINT ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Manage. Electronic ISSN 1119-8362 https://www.ajol.info/index.php/jasem Vol. 23 (6) 1127-1131 June 2019 http://ww.bioline.org.br/ja Geochemical Consideration of some Granitoids around Ojirami-Ogbo and Environs, Southwestern Nigeria *1ODOKUMA-ALONGE, O; 2EGWUATU, PN; 3OKUNUWADJE, SE Department of Geology, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria *Corresponding Author Email: [email protected] ABSTRACT: Five (5) granitoid samples from Ojirami-Ogbo and Environs in Akoko-Edo area of southwestern Nigeria were obtained with the aim of determining their geochemical properties using the XRF and Xrd techniques. Results from the analysis revealed the presence of SiO2 (51.41-64.84%), Al2O3 (21.37-36.25%), Fe2O3 (5.89-8.02%), MgO (0.98-2.11%), K2O (0.02-0.97%) and Na2O (0.04-0.08%) all in wt%. Using the Al2O3 and SiO2 saturation schemes in classifying igneous rocks, sample two, three, four and five gave Al2O3 wt% values of 33.30%, 32.00%, 23.20%, 21.37% greater than the molars proportions of (Al2O3/CaO+Na2O+K2O) with values 22.54, 30.06, 22.10 and 14.07, and are peraluminous rocks while sample one had 36.25% and 43.10, respectively and is considered to be metaluminous. The SiO2 composition of the rocks ranges from 51.41-66.40% hence reveals a mafic to intermediate composition. The main felsic minerals from XrD analysis revealed the presence of quartz, alkali and plagioclase feldspars. Using the QAP diagram, the rocks fall within the granitoidal class.
    [Show full text]
  • Geochronological and Geochemical Constraints on the Origin of Clastic Meta-Sedimentary Rocks Associated with the Yuanjiacun BIF from the Lüliang Complex, North China
    Lithos 212–215 (2015) 231–246 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Geochronological and geochemical constraints on the origin of clastic meta-sedimentary rocks associated with the Yuanjiacun BIF from the Lüliang Complex, North China Changle Wang a,b, Lianchang Zhang a,⁎,YanpeiDaia,b,CaiyunLanb,c a Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China b University of Chinese Academy of Sciences, Beijing 100049, China c Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangdong, Guangzhou 510640, China article info abstract Article history: The Lüliang Complex is situated in the central part of the western margin of the Trans-North China Orogen Received 6 May 2014 (TNCO) in the North China Craton (NCC), and consists of metamorphic volcanic and sedimentary rocks and Accepted 14 November 2014 granitoid intrusions. The Yuanjiacun Formation metasediments occupy roughly the lowest part of the Lüliang Available online 27 November 2014 Group and are mainly represented by well-bedded meta-pelites (chlorite schists and sericite–chlorite phyllites), banded iron formations (BIFs) and meta-arenites (sericite schists), which have undergone greenschist-facies Keywords: metamorphism. The youngest group of detrital zircons from the meta-arenite samples constrains their maximum Yuanjiacun Formation Lüliang Complex depositional age at ~2350 Ma. In combination with previous geochronological studies on meta-volcanic rocks in Trans-North China Orogen the overlying Jinzhouyu Formation, the depositional age of the Yuanjiacun Formation can be constrained Detrital zircon between 2350 and 2215 Ma. The metasediments have suffered varying degrees of source weathering, measured Geochemistry using widely employed weathering indices (e.g., CIA, CIW, PIA and Th/U ratios).
    [Show full text]
  • Proterozoic Deformation in the Northwest of the Archean Yilgarn Craton, Western Australia Catherine V
    Available online at www.sciencedirect.com Precambrian Research 162 (2008) 354–384 Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia Catherine V. Spaggiari a,∗, Jo-Anne Wartho b,1, Simon A. Wilde b a Geological Survey of Western Australia, Department of Industry and Resources, 100 Plain Street, East Perth, Western Australia 6004, Australia b Department of Applied Geology, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia Received 31 January 2007; received in revised form 19 September 2007; accepted 16 October 2007 Abstract The Narryer Terrane within the northwestern Yilgarn Craton contains the oldest crust in Australia. The Jack Hills greenstone belt is located within the southern part of the Narryer Terrane, and structures cutting it and surrounding rocks have been dated using the 40Ar/39Ar technique. The results show that east-trending, dextral, transpressive shearing was related to the 1830–1780 Ma Capricorn Orogeny, followed by further deformation and/or cooling between c. 1760 and 1740 Ma. These results confirm that major deformation has affected the northwestern part of the Yilgarn Craton in an intracratonic setting during the Proterozoic. Proterozoic structures have been interpreted to extend south beyond the Narryer Terrane into the northern part of the Youanmi Terrane (Murchison Domain), and include the Yalgar Fault, previously interpreted as the boundary between the Narryer and Youanmi Terranes. Terrane amalgamation pre-dated the emplacement of c. 2660 Ma granites in both terranes, and the current expression of the Yalgar Fault must represent a younger, reworked, post-amalgamation structure, possibly controlled by the tectonic boundary. However, new aeromagnetic and gravity imagery does not show the eastern part of the Yalgar Fault as a major structure.
    [Show full text]
  • BCGS IC1997-03.Pdf
    For information on the contents of this document contact: Ministry of Employment and Investment Energy and Minerals Division British Columbia Geological Survey Branch 5 - 1810 Blanshard Street PO Box 9320, Stn Prov Gov't Victoria, BC, V8W 9N3 Attn: W.J. McMillan, Manager, Map ing Section Fax: 250-952-0381 [mail: [email protected] or; B. Grant, Editor, GSB Fax: 250-952-0451 E-mail : [email protected]. bc.ca Canadian Cataloguing in Publication Data I Main entry under title: Specifications and guidelines for bedrock mapping in British Columbia Includes bibliographical references: p. ISBN 0-7726-2950-1 1. Geological mapping - British Columbia. 2. Geology, Structural - British Columbia. 3. Geology - Maps - Symbols. I. British Columbia. Geological Survey Branch. Victoria British Columbia May 1997 October, 1996 TaMb Off GmQmQs Introduction . 3 Fission Track Dating Technique . 36 Part 1: Fundamental Bedrock Mapping Concepts 5 Usual Application of Geochronology . 36 Part 2: Mapping and Field Survey Procedures. 7 Materials Suitable for Dating. 36 2-1 Overview. 7 Rubidium-strontium Dating . 38 2-2 Bedrock Field Survey Databases . 10 Uranium-Lead Dating . 3 8 2-3 Quality Control, Correlation, and Map Lead Isotope Analysis . 38 Reliability . 11 Fission Track Dating . 38 Part 3: Data Representation On Bedrock Maps 13 Analytical Procedure . 39 3-1 Title Block . 13 Quaternary Dating Methods . 39 3-2 Base Map Specifications . 15 Radiocarbon Dating . 39 3-3 Reliability Diagrams . 15 Potassium-Argon Dating of Quaternary 3-4 Legend . 16 Volcanic Rocks. 40 3-5 Map Attributes . 17 Fission Track Dating . 40 3-6 Symbols. 17 Sampling . 41 3-7 Map-unit Designations .
    [Show full text]
  • Archean and Paleoproterozoic Geology of the Northwestern Split Lake Block, Superior Province, Manitoba (Parts of NTS 54D4, 5, 6 and 64A1) by R.P
    GS-16 Archean and Paleoproterozoic geology of the northwestern Split Lake Block, Superior Province, Manitoba (parts of NTS 54D4, 5, 6 and 64A1) by R.P. Hartlaub1, C.O. Böhm, Y.D. Kuiper2, M.S. Bowerman1 and L.M. Heaman1 Hartlaub, R.P., Böhm, C.O., Kuiper, Y.D., Bowerman, M.S. and Heaman, L.M. 2004: Archean and Paleoproterozoic geology of the northwestern Split Lake Block, Superior Province, Manitoba (parts of NTS 54D4, 5, 6 and 64A1); in Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 187–194. Summary The Split Lake Block is a shear zone–bounded lozenge of Archean and Paleoproterozoic rock that lies along the northwestern paleomargin of the Superior Province. The oldest units in the area include pelite, and mafic to ultramafic granulite that is interpreted to be supracrustal in origin. An igneous complex, composed of anorthosite, anorthositic gabbro, gabbro and mafic tonalite, has an unknown age relationship to these supracrustal rocks. Both the supracrustal rocks and the igneous complex occur as coherent bodies and as disrupted layers, rafts and xenoliths in younger granite, granodiorite and tonalite. The presence of granulite-facies mineral assemblages in Archean rocks indicates that the Split Lake Block was deeply buried during the Neoarchean. Local retrogression of the granulite-facies assemblages occurred during a later amphibolite-facies event. Overall, the lithological and metamorphic characteristics of the Split Lake Block are similar to those of the bounding Pikwitonei Granulite Domain. Additional isotopic study will be required, however, before a detailed chronological comparison is possible. A suite of weakly metamorphosed and variably deformed mafic dikes crosscuts the high-grade Archean rocks and constitutes at least 15% of the exposed outcrop in the Split Lake Block.
    [Show full text]
  • Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf
    Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 16, 2007, pp. 181–209. Copyright ©TÜB‹TAK Nature, Provenance and Relationships of Early Miocene Palaeovalley Fills, Northern Adana Basin, Turkey: Their Significance for Sediment-Bypassing on a Carbonate Shelf A. SAM‹ DERMAN1 & KEMAL GÜRBÜZ2 1 Türkiye Petrolleri A.O., Arama Grubu, Mustafa Kemal Mahallesi, 2. Cadde, No. 86, Sö¤ütözü, TR-06100 Ankara, Turkey (E-mail: [email protected]) 2 Çukurova Üniversitesi, Jeoloji Mühendisli¤i Bölümü, Balcal›, TR-01100 Adana, Turkey Abstract: The Gildirli Formation is the oldest Neogene rock unit in the Adana Basin and was formed prior to the regionally extensive Early Miocene marine transgression. These coarse clastic red-beds provide important evidence about the causes and early phases of filling in this large trough, because the Gildirli Formation sediments fill an irregular palaeotopography carved out of Palaeozoic and Mesozoic basement rocks. Detailed study of the Gildirli Formation reveals the existence of at least two alluvial fans supplied from different source areas. A northeastern fan, exposed around Gildirli Village, was fed by streams draining an area of ophiolitic mélange, Mesozoic and older limestones, and fills an irregular palaeomorphology around and northeast of Gildirli. The southwestern fan, in the Nergizlik area, is dominated by debris flow and sheet flow rudites derived from an area of entirely carbonate bedrock. The lower part of the southwestern fan is characterised by well- bedded carbonate breccias and conglomerates that occupy deep, steep-sided palaeovalleys with approximate E–W trends (parallelling the main basin-margin), whereas higher parts of this fan are muddier and show channelised fluvial and floodplain attributes.
    [Show full text]
  • The Nature of C. 2.0 Ga Crust Along the Southern Margin of the Gascoyne Complex by S
    Geological Survey of Western Australia 1998–99 Annual Review The nature of c. 2.0 Ga crust along the southern margin of the Gascoyne Complex by S. Sheppard1, S. A. Occhipinti, I. M. Tyler, and D. R. Nelson Remapping of the ROBINSON RANGE* Abstract and GLENBURGH 1:250 000 map sheets in 1997 and 1998, as part of the The southern part of the Gascoyne Complex consists of foliated and Southern Gascoyne Complex Project, gneissic granites of the Dalgaringa Supersuite, as well as pelitic and combined with SHRIMP U–Pb zircon calc-silicate gneisses of the Camel Hills Metamorphics, the protoliths geochronology (Nelson, 1998, 1999), of which were deposited between c. 2025 and c. 1960 Ma. The confirms that rocks of the Yilgarn Dalgaringa Supersuite mainly consists of 2005–1975 Ma foliated and Craton are not present north of the gneissic tonalite, granodiorite, and monzogranite. SHRIMP U–Pb Errabiddy Shear Zone in the mapped dating has not yet found any trace of Archaean rocks of the Yilgarn area (Fig. 1). Instead, the crust along Craton in the southern Gascoyne Complex. The complex may have the southern margin of the Gascoyne formed as a convergent continental margin above a northwesterly Complex mainly, or entirely, formed dipping subduction zone before it was accreted to the Yilgarn between 2005 and 1975 Ma. Craton at c. 1960 Ma during the Glenburgh Orogeny. Furthermore, this crust was deformed and metamorphosed at KEYWORDS: Proterozoic, structural terranes, granite, medium to high grade up to 150 geochronology, Gascoyne Complex, Dalgaringa million years before collision of the Supersuite, Camel Hills Metamorphics, Glenburgh Yilgarn and Pilbara Cratons between Orogeny 1840 and 1800 Ma (Tyler et al., 1998; Occhipinti et al., 1998).
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]