bioRxiv preprint doi: https://doi.org/10.1101/064642; this version posted August 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Detailed 3D Multi-Loop Aggregate/Rosette Chromatin Architecture and Functional Dynamic Organization of the Human and Mouse Genomes Tobias A. Knoch1*, Malte Wachsmuth2, Nick Kepper1,4, Michael Lesnussa1, Anis Abuseiris1, A. M. Ali Imam1,3, Petros Kolovos1,3, Jessica Zuin5, Christel E. M. Kockx6, Rutger W. W. Brouwer6, Harmen J. G. van de Werken3, Wilfred F. J. van IJken6, Kerstin S. Wendt5, and Frank G. Grosveld3 1Biophysical Genomics, Dept. Cell Biology & Genetics, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands 2Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany 3Cell Biology, Dept. Cell Biology & Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands 4Genome Organization & Function, BioQuant & German Cancer Research Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany 5Cohesin in Chromatin Structure and Gene Regulation, Dept. Cell Biology & Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands 6Center for Biomics, Dept. Cell Biology & Genetics, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands * corresponding author:
[email protected] Knoch et al. 1 bioRxiv preprint doi: https://doi.org/10.1101/064642; this version posted August 15, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: The dynamic three-dimensional chromatin architecture of genomes and its co- evolutionary connection to its function – the storage, expression, and replication of genetic information – is still one of the central issues in biology.