Transcriptional Gene Expression Profiling of Small Cell Lung Cancer Cells1

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Gene Expression Profiling of Small Cell Lung Cancer Cells1 [CANCER RESEARCH 63, 1943–1953, April 15, 2003] Transcriptional Gene Expression Profiling of Small Cell Lung Cancer Cells1 Nina Pedersen,2 Shila Mortensen,2 Susanne B. Sørensen, Mikkel W. Pedersen, Klaus Rieneck, Lone F. Bovin, and Hans Skovgaard Poulsen3 Department of Radiation Biology, The Finsen Centre [N. P., S. M., M. W. P., S. B. S., H. S. P.] and Institute for Inflammation Research, IIR 7521 [K. R., L. F. B.], National University Hospital, Copenhagen DK-2100, Denmark ABSTRACT expression profiles, which can distinguish between these subclasses, have been revealed by microarray analyses (1–3). A global gene expression analysis using oligonucleotide microarrays Because of the aggressive behavior of SCLC and the very poor was performed on many human small cell lung cancer (SCLC) cell lines in outcome of present treatments, new therapeutic methods for systemic cell culture and/or as xenografts. The expression was compared with the expression profiles of 18 normal tissues. treatment of SCLC are in high demand. Using global gene expression In a hierarchical cluster analysis the cell lines clustered distinctly from analysis we have searched for genes that are highly and/or specifically normal tissues and grouped into four clusters. One cluster consisted of two expressed in all or most of the tumor cells with the aim to identify related cell lines and was markedly different from the other SCLC cell novel potential targets for the development of new therapeutic agents. lines, whereas the rest of the clusters grouped together. Two subclusters These could be surface molecules for direct targeting in radio-, toxin, contained the classical SCLC types and one subcluster the variant SCLC or gene therapy, or molecules to which development of cancer vac- type, thus identifying many genes with differential expression between the cines could be used. Other potential targets are molecules involved in two variants of SCLC. All of the xenografts clustered closest to the cell maintenance of the malignant phenotype, such as oncogenes and lines from which they originated and had the same expression levels as the antiapoptotic molecules, to which inhibitors can be applied or lost cells grown in culture for the majority of genes. activity restored. The analysis confirmed the high expression of many genes identified previously as highly expressed in SCLC cells including neuroendocrine A characteristic of all of tumors and their metastases, both between markers, oncogenes, and genes involved in cell proliferation and division. patients and within a tumor, is their heterogenicity, making the de- The analysis furthermore identified a number of molecules not identified velopment of therapeutic strategies difficult, as some cells invariably previously as expressed in SCLC. Several of these are expressed in low or can escape the treatment. Sufficient material of SCLC tumors from undetectable amounts in the majority of normal tissues and, therefore, are patients is extremely difficult to obtain both in number of specimens potential targets for new therapeutic approaches. By including the pub- and sufficient amounts for microarray analysis. Therefore, we used an lished array profiles of six ressected SCLC tumors from Bhattacharjee et alternative approach and used the expression profiles of 21 SCLC al. (A. Bhattacharjee et al., Proc. Natl. Acad. Sci. USA, 98: 13790–13795, cells lines obtained from five different laboratories and 8 xenografted 2001.), the analysis revealed that most of the novel potential targets tumors from these cell lines to compare to the expression profiles of expressed by SCLC cell lines and xenografts were also expressed in the 17 normal adult tissues. By this analysis, we identified several genes tumors. This analysis demonstrates the value of using cell lines and xenografts highly and specifically expressed by all or most of the SCLC cell for expression profiling, when a limited quantity of tumor material is lines, xenografts, and 6 ressected tumors with no or little expression available. in normal tissues, which could be candidates for therapeutic targeting. In addition, the analysis clearly divided the SCLC cell lines into two INTRODUCTION distinct subclasses with different expression profiles. SCLC4 is an aggressive disease, which is generally disseminated at MATERIALS AND METHODS the time of diagnosis. Initially the cancer is responsive to chemother- apy, but almost always recurs in a resistant form resulting in a 5-year Cell Culture. The following human SCLC cell lines were used: CPH 54A, survival rate of Ͻ5%. SCLC is generally correctly identified by CPH 54B (4), GLC-2, GLC-3, GLC-14, GLC-16, GLC-19, GLC-26, GLC-28 pathological means, wherefore identification of new markers for clas- (5–7), DMS 53, DMS 79, DMS 92, DMS 114, DMS 153, DMS 273, DMS 406, sification of this tumor type is not pertinent. This is in contrast to the DMS 456 (8), NCI H69, NCI N417 (9), MAR 24H and MAR 86MI (10, 11). situation for discrimination of subclasses of other lung tumor forms, CPH 54 A and B were propagated in MEM (Eagle), all of the GLC, NCI, MAR such as adenocarcinomas, for which therapeutic response and survival cell lines and DMS 79 were propagated in RPMI 1640, and all DMS (except DMS 79) were propagated in Waymouth medium, all supplemented with 10% rates can differ markedly despite similar pathology. Differences in FCS. All of the serum and media were obtained from Invitrogen (Tåstrup, Denmark). Received 8/28/02; accepted 2/14/03. Xenografts. Cells (0.5–1.2 ϫ 107) from the cell lines CPH 54A, GLC-3, The costs of publication of this article were defrayed in part by the payment of page GLC-14, DMS 273, NCI H69, NCI N417, and MAR 24H were inoculated charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. bilaterally in the flanks of 12–13-week-old BALB/c nude mice. The mice were 1 Supported by Odin Medical A/S, the Danish Cancer Society, the Danish Medical sacrificed, and the xenografted tumors were harvested when one of the tumors Research Council, The Danish Rheumatism Association, and the A. P. Møller Foundation had reached a maximal diameter of 1 cm. The cell line CPH 136A was only for the Advancement of Medical Science. propagated in nude mice by inoculation of a 2-mm tumor block. Necrotic tissue 2 These two authors contributed equally to this work. 3 To whom requests for reprints should be addressed, at Department of Radiation was removed, and the tumors were either processed immediately or stored in Biology, Finsen Centre, Section 6321, National University Hospital, Blegdamsvej 9, RNAlater (Ambion, Cambridgeshire, United Kingdom) for RNA extraction. DK-Copenhagen 2100, Denmark. Phone: 45-35-45-63-03; Fax: 45-35-45-63-01; E-mail: Isolation of RNA. Total RNA from normal, human tissues were obtained skovgaard @rh.dk. from either Clontech (Brøndby, Denmark; fetal brain, brain, lung, kidney, 4 The abbreviations used are: SCLC, small cell lung cancer; RT-PCR, reverse transcrip- tion-PCR; MAGE, melanoma-associated antigen; DDC, L-dopa decarboxylase; GRP, gastrin- heart, trachea, adrenal gland, prostate, salivary gland, and thyroid) or from releasing peptide; SGNE1, secretory granule, neuroendocrine protein 1; ASCL1, achaete scute Ambion (lung, liver, brain, pancreas, spleen, small intestine, skeletal muscle, homologous protein; NCAM1, neural cell adhesion molecule 1; GRIA2, ionotropic glutamate colon, stomach, and testis). Only one sample was analyzed in duplicate (lung receptor 2; GRM8, metabotropic glutamate receptor 8; NPTXR, neuronal pentraxin receptor; RNA from Clontech and Ambion) and one in triplicate (two different batches ITGAE, integrin subunit ␣ E; PTTG1, pituitary tumor transforming gene (securin); TIMP, tissue inhibitor of metalloproteinase; MMP, metalloproteinase; pRB, retinoblastoma protein; brain RNA from Clontech and one from Ambion). The duplicates and tripli- INSM1, insulinoma-associated antigen 1; ENO2, neuron-specific enolase 2 (NSE). cates showed similar expression profiles, and only the results using the RNA 1943 Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2003 American Association for Cancer Research. CHIPS ANALYSIS OF SMALL CELL LUNG CANCER from Ambion are shown here. RNA from cell lines in exponential growth was cell lines were distributed in 4 subclasses (A, B, C, and D). The cluster harvested (after trypsinization for adherent cells), and total RNA from ϳ107 D only contains the CPH 54 cell lines and has an expression pattern cells was isolated using the RNeasy kit (Qiagen) according to the manufac- distinctly different from the remainder of the SCLC lines. The 6 turer’s instructions. RNA from xenografted tumors were homogenized in ressected tumors clustered closely together, and closest to the normal TRIzol (Invitrogen) and purified according to the manufacturer’s instruction. tissues and the CPH 54 lines. It has been shown previously that these The TRIzol isolated RNA was additionally purified using the RNAeasy kit SCLC tumors cluster distinctly apart from other forms of lung cancers (Qiagen, Albertslund, Denmark). Affymetrix Oligonucleotide Array. The preparation of biotin cRNA was and normal lung (1). prepared essentially as described in the Affymetrix Expression Analysis Tech- The cell lines GLC-14, -16, and -19 were established from the same nical Manual. Briefly,10 ␮g of RNA was used as template to generate double- patient during longitudinal follow-up. These cell lines have been stranded cDNA using
Recommended publications
  • Aberrant Methylation Underlies Insulin Gene Expression in Human Insulinoma
    ARTICLE https://doi.org/10.1038/s41467-020-18839-1 OPEN Aberrant methylation underlies insulin gene expression in human insulinoma Esra Karakose1,6, Huan Wang 2,6, William Inabnet1, Rajesh V. Thakker 3, Steven Libutti4, Gustavo Fernandez-Ranvier 1, Hyunsuk Suh1, Mark Stevenson 3, Yayoi Kinoshita1, Michael Donovan1, Yevgeniy Antipin1,2, Yan Li5, Xiaoxiao Liu 5, Fulai Jin 5, Peng Wang 1, Andrew Uzilov 1,2, ✉ Carmen Argmann 1, Eric E. Schadt 1,2, Andrew F. Stewart 1,7 , Donald K. Scott 1,7 & Luca Lambertini 1,6 1234567890():,; Human insulinomas are rare, benign, slowly proliferating, insulin-producing beta cell tumors that provide a molecular “recipe” or “roadmap” for pathways that control human beta cell regeneration. An earlier study revealed abnormal methylation in the imprinted p15.5-p15.4 region of chromosome 11, known to be abnormally methylated in another disorder of expanded beta cell mass and function: the focal variant of congenital hyperinsulinism. Here, we compare deep DNA methylome sequencing on 19 human insulinomas, and five sets of normal beta cells. We find a remarkably consistent, abnormal methylation pattern in insu- linomas. The findings suggest that abnormal insulin (INS) promoter methylation and altered transcription factor expression create alternative drivers of INS expression, replacing cano- nical PDX1-driven beta cell specification with a pathological, looping, distal enhancer-based form of transcriptional regulation. Finally, NFaT transcription factors, rather than the cano- nical PDX1 enhancer complex, are predicted to drive INS transactivation. 1 From the Diabetes Obesity and Metabolism Institute, The Department of Surgery, The Department of Pathology, The Department of Genetics and Genomics Sciences and The Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
    [Show full text]
  • Specific Functions of the Wnt Signaling System in Gene Regulatory Networks
    Specific functions of the Wnt signaling system in PNAS PLUS gene regulatory networks throughout the early sea urchin embryo Miao Cui, Natnaree Siriwon1, Enhu Li2, Eric H. Davidson3, and Isabelle S. Peter3 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125 Contributed by Eric H. Davidson, October 9, 2014 (sent for review September 12, 2014; reviewed by Robert D. Burke and Randall T. Moon) Wnt signaling affects cell-fate specification processes throughout Fig. 1A. Cells located at the vegetal pole will become skeleto- embryonic development. Here we take advantage of the well-studied genic mesodermal cells. These cells are surrounded by the veg2 gene regulatory networks (GRNs) that control pregastrular sea urchin cell lineage. This lineage consists of veg2 mesodermal cells, lo- embryogenesis to reveal the gene regulatory functions of the entire cated adjacent to skeletogenic cells and giving rise to all other Wnt-signaling system. Five wnt genes, three frizzled genes, two se- mesodermal cell fates such as esophageal muscle cells, blasto- creted frizzled-related protein 1 genes, and two Dickkopf genes are coelar cells, and pigment cells, and of veg2 endoderm cells, expressed in dynamic spatial patterns in the pregastrular embryo of which will form the foregut and parts of the midgut. At a further Strongylocentrotus purpuratus. We present a comprehensive analysis distance from the vegetal pole, but still within the vegetal half of of these genes in each embryonic domain. Total functions of the the embryo, is the veg1 lineage, consisting of veg1 endoderm, Wnt-signaling system in regulatory gene expression throughout the located adjacent to veg2 endoderm and giving rise to the other embryo were studied by use of the Porcupine inhibitor C59, which parts of the midgut and the hindgut, and of veg1 ectoderm, the interferes with zygotic Wnt ligand secretion.
    [Show full text]
  • Multifactorial Erβ and NOTCH1 Control of Squamous Differentiation and Cancer
    Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks, … , Karine Lefort, G. Paolo Dotto J Clin Invest. 2014;124(5):2260-2276. https://doi.org/10.1172/JCI72718. Research Article Oncology Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ–dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer. Find the latest version: https://jci.me/72718/pdf Research article Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer Yang Sui Brooks,1,2 Paola Ostano,3 Seung-Hee Jo,1,2 Jun Dai,1,2 Spiro Getsios,4 Piotr Dziunycz,5 Günther F.L.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Research Article Characterization, Tissue Expression, and Imprinting Analysis of the Porcine CDKN1C and NAP1L4 Genes
    Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 2012, Article ID 946527, 7 pages doi:10.1155/2012/946527 Research Article Characterization, Tissue Expression, and Imprinting Analysis of the Porcine CDKN1C and NAP1L4 Genes Shun Li,1 Juan Li,1 Jiawei Tian,1 Ranran Dong,1 Jin Wei,1 Xiaoyan Qiu,2 and Caode Jiang2 1 School of Life Science, Southwest University, Chongqing 400715, China 2 College of Animal Science and Technology, Southwest University, Chongqing 400715, China Correspondence should be addressed to Caode Jiang, [email protected] Received 4 August 2011; Revised 25 October 2011; Accepted 15 November 2011 Academic Editor: Andre Van Wijnen Copyright © 2012 Shun Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. CDKN1C and NAP1L4 in human CDKN1C/KCNQ1OT1 imprinted domain are two key candidate genes responsible for BWS (Beckwith-Wiedemann syndrome) and cancer. In order to increase understanding of these genes in pigs, their cDNAs are characterized in this paper. By the IMpRH panel, porcine CDKN1C and NAP1L4 genes were assigned to porcine chromosome 2, closely linked with IMpRH06175 and with LOD of 15.78 and 17.94, respectively. By real-time quantitative RT-PCR and polymorphism-based method, tissue and allelic expression of both genes were determined using F1 pigs of Rongchang and Landrace reciprocal crosses. The transcription levels of porcine CDKN1C and NAP1L4 were significantly higher in placenta than in other neonatal tissues (P<0.01) although both genes showed the highest expression levels in the lung and kidney of one- month pigs (P<0.01).
    [Show full text]
  • ¬LACZ-REPORTER MAPPING of Dlx5/6 EXPRESSION AND
    Received: 26 December 2019 Revised: 10 May 2020 Accepted: 11 May 2020 DOI: 10.1002/cne.24952 RESEARCH ARTICLE LacZ-reporter mapping of Dlx5/6 expression and genoarchitectural analysis of the postnatal mouse prethalamus Luis Puelles1 | Carmen Diaz2 | Thorsten Stühmer3 | José L. Ferran1 | Margaret Martínez-de la Torre1 | John L. R. Rubenstein3 1Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, Abstract University of Murcia, Murcia, Spain We present here a thorough and complete analysis of mouse P0-P140 prethalamic 2 Department of Medical Sciences, School of histogenetic subdivisions and corresponding nuclear derivatives, in the context of Medicine and Institute for Research in Neurological Disabilities, University of Castilla- local tract landmarks. The study used as fundamental material brains from a transgenic La Mancha, Albacete, Spain mouse line that expresses LacZ under the control of an intragenic enhancer of Dlx5 3Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, and Dlx6 (Dlx5/6-LacZ). Subtle shadings of LacZ signal, jointly with pan-DLX immu- UCSF Medical School, San Francisco, noreaction, and several other ancillary protein or RNA markers, including Calb2 and California Nkx2.2 ISH (for the prethalamic eminence, and derivatives of the rostral zona limitans Correspondence shell domain, respectively) were mapped across the prethalamus. The resulting model Luis Puelles, Department of Human Anatomy and Psychobiology, School of Medicine, of the prethalamic region postulates tetrapartite rostrocaudal and dorsoventral subdi- University of Murcia, Murcia 30071, Spain. visions, as well as a tripartite radial stratification, each cell population showing a char- Email: [email protected] acteristic molecular profile. Some novel nuclei are proposed, and some instances of Carmen Díaz, Department of Medical potential tangential cell migration were noted.
    [Show full text]
  • Primary Driver Mutations in GTF2I Specific to the Development Of
    cancers Article Primary Driver Mutations in GTF2I Specific to the Development of Thymomas Rumi Higuchi 1, Taichiro Goto 1,* , Yosuke Hirotsu 2 , Yujiro Yokoyama 1, Takahiro Nakagomi 1, Sotaro Otake 1, Kenji Amemiya 2,3, Toshio Oyama 3, Hitoshi Mochizuki 2 and Masao Omata 2,4 1 Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; [email protected] (R.H.); [email protected] (Y.Y.); [email protected] (T.N.); [email protected] (S.O.) 2 Genome Analysis Center, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; [email protected] (Y.H.); [email protected] (K.A.); [email protected] (H.M.); [email protected] (M.O.) 3 Department of Pathology, Yamanashi Central Hospital, Yamanashi 400-8506, Japan; [email protected] 4 Department of Gastroenterology, The University of Tokyo Hospital, Tokyo 113-8655, Japan * Correspondence: [email protected]; Tel.: +81-55-253-7111 Received: 16 June 2020; Accepted: 22 July 2020; Published: 24 July 2020 Abstract: Thymomas are rare mediastinal tumors that are difficult to treat and pose a major public health concern. Identifying mutations in target genes is vital for the development of novel therapeutic strategies. Type A thymomas possess a missense mutation in GTF2I (chromosome 7 c.74146970T>A) with high frequency. However, the molecular pathways underlying the tumorigenesis of other thymomas remain to be elucidated. We aimed to detect this missense mutation in GTF2I in other thymoma subtypes (types B). This study involved 22 patients who underwent surgery for thymomas between January 2014 and August 2019.
    [Show full text]
  • Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion.
    [Show full text]
  • Whole Genome Comparative Genomic Hybridization of Ewing Sarcoma Indicates Cytoskeleton, Migration and Protein Trafficking †
    Proceedings Whole Genome Comparative Genomic Hybridization of Ewing Sarcoma Indicates Cytoskeleton, Migration and Protein Trafficking † Burçin Baran 1, Safiye Aktaş 1,*, Hülya Tosun 1,2, Gülden Diniz 1,2, Yasemin Çakır 1,2, Tekincan Çağrı Aktaş 1, Zekiye Altun 1 and Nur Olgun 1 1 Institute of Oncology, Dokuz Eylul University, Izmir 35340, Turkey; [email protected] (B.B.); [email protected] (H.T.); [email protected] (G.D.); [email protected] (Y.Ç.); [email protected] (T.Ç.A.); [email protected] (Z.A.); [email protected] (N.O.) 2 Dr.Behcet Uz Children’s Research Hospital, Izmir 35210, Turkey * Correspondence: [email protected] † Presented at the 2nd International Cell Death Research Congress, Izmir, Turkey, 1–4 November 2018. Published: 5 December 2018 Abstract: Ewing sarcoma is a bone and soft tissue tumor either neuroectodermal or mesenchymal originated and affecting children and adolescents. In the present study, we aimed to find out prognostic and predictive biomarkers for Ewing sarcoma. Hence, we examined the copy number alterations (and related possible genes) among ten Ewing sarcoma patient samples and possible associations with the clinical outcome. DNA extraction from formalin fixed paraffin embedded archive tissues was performed. Whole genome Comparative Genomic Hybridization (CGH) was performed by NimbleGen and recorded as single Panel Rainbow through chromosomes 1–22, X and Y. Data was interpreted by SignalMap software and genetic regions matching the deletion or amplification loci were recorded. The mean age of the patients was 8.6 years. Three of the cases were male, while seven were female. According to CGH analysis, the most common DNA copy number alterations were found in SLIT-ROBO Rho GTPase activating protein (srGAP2), RANBP2 like GRIP domain (RGPD5), nephrocystin 1 (NPHP1), GTF2I repeat domain containing 2 (GTF2IRD2), pyridoxal dependent decarboxylase domain containing 1 (PXDC1), which were found down- regulated among 7 of 10 patients.
    [Show full text]
  • Rb-Mediated Neuronal Differentiation Through Cell-Cycle–Independent Regulation of E2f3a
    PLoS BIOLOGY Rb-Mediated Neuronal Differentiation through Cell-Cycle–Independent Regulation of E2f3a Danian Chen1,2,3, Rene Opavsky4,5,6, Marek Pacal1,2,3, Naoyuki Tanimoto7, Pamela Wenzel4,5,6, Mathias W. Seeliger7, Gustavo Leone4,5,6, Rod Bremner1,2,3* 1 Genetics and Development Division, Toronto Western Research Institute, University Health Network, University of Toronto, Ontario, Canada, 2 Department of Ophthalmology and Visual Science, University of Toronto, Ontario, Canada, 3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada, 4 Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio, United States of America, 5 Department of Molecular Genetics, Ohio State University, Columbus, Ohio, United States of America, 6 Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America, 7 Ocular Neurodegeneration Research Group, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Germany It has long been known that loss of the retinoblastoma protein (Rb) perturbs neural differentiation, but the underlying mechanism has never been solved. Rb absence impairs cell cycle exit and triggers death of some neurons, so differentiation defects may well be indirect. Indeed, we show that abnormalities in both differentiation and light- evoked electrophysiological responses in Rb-deficient retinal cells are rescued when ectopic division and apoptosis are blocked specifically by deleting E2f transcription factor (E2f) 1. However, comprehensive cell-type analysis of the rescued double-null retina exposed cell-cycle–independent differentiation defects specifically in starburst amacrine cells (SACs), cholinergic interneurons critical in direction selectivity and developmentally important rhythmic bursts. Typically, Rb is thought to block division by repressing E2fs, but to promote differentiation by potentiating tissue- specific factors.
    [Show full text]
  • Actin Nucleator Spire 1 Is a Regulator of Ectoplasmic Specialization in the Testis Qing Wen1,Nanli1,Xiangxiao 1,2,Wing-Yeelui3, Darren S
    Wen et al. Cell Death and Disease (2018) 9:208 DOI 10.1038/s41419-017-0201-6 Cell Death & Disease ARTICLE Open Access Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis Qing Wen1,NanLi1,XiangXiao 1,2,Wing-yeeLui3, Darren S. Chu1, Chris K. C. Wong4, Qingquan Lian5,RenshanGe5, Will M. Lee3, Bruno Silvestrini6 and C. Yan Cheng 1 Abstract Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell–cell and Sertoli cell–spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood–testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell–cell interface, and the apical ES at the Sertoli–spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro.
    [Show full text]