FKBP52 Regulates TRPC3-Dependent Ca<Sup>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
TRPC5 Regulates Axonal Outgrowth in Developing Retinal Ganglion Cells
Laboratory Investigation (2020) 100:297–310 https://doi.org/10.1038/s41374-019-0347-1 ARTICLE TRPC5 regulates axonal outgrowth in developing retinal ganglion cells 1 1 2 1 1 Mai Oda ● Hanako Yamamoto ● Hidetaka Matsumoto ● Yasuki Ishizaki ● Koji Shibasaki Received: 22 July 2019 / Revised: 15 November 2019 / Accepted: 15 November 2019 / Published online: 16 December 2019 © The Author(s), under exclusive licence to United States and Canadian Academy of Pathology 2019 Abstract The TRPC5 ion channel is activated upon depletion of intracellular calcium stores, as well as by various stimuli such as nitric oxide (NO), membrane stretch, and cold temperatures. TRPC5 is abundantly expressed in the central nervous system where it has important neuronal functions. In the chick retina, TRPC5 expression was shown to be restricted to amacrine cells (ACs) and Müller glial cells, although its expression was also observed in the ganglion cell layer (GCL) in displaced ACs, as determined by their characteristic cell morphology. However, it is possible that this expression analysis alone might be insufficient to fully understand the expression of TRPC5 in retinal ganglion cells (RGCs). Hence, we analyzed TRPC5 expression by in situ hybridization and immunostaining in the developing mouse retina, and for the first time identified that 1234567890();,: 1234567890();,: developing and mature RGCs strongly express TRPC5. The expression begins at E14.5, and is restricted to ACs and RGCs. It was reported that TRPC5 negatively regulates axonal outgrowth in hippocampal neurons. We thus hypothesized that TRPC5 might have similar functions in RGCs since they extend very long axons toward the brain, and this characteristic significantly differs from other retinal cell types. -
TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons
cells Article TRPC1 Regulates the Activity of a Voltage-Dependent Nonselective Cation Current in Hippocampal CA1 Neurons 1, 1 1,2 1,3, Frauke Kepura y, Eva Braun , Alexander Dietrich and Tim D. Plant * 1 Pharmakologisches Institut, BPC-Marburg, Fachbereich Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 2, 35043 Marburg, Germany; [email protected] (F.K.); braune@staff.uni-marburg.de (E.B.); [email protected] (A.D.) 2 Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, 80336 München, Germany 3 Center for Mind, Brain and Behavior, Philipps-Universität Marburg, 35032 Marburg, Germany * Correspondence: plant@staff.uni-marburg.de; Tel.: +49-6421-28-65038 Present address: Institut für Bodenkunde und Pflanzenernährung/Institut für angewandte Ökologie, y Hochschule Geisenheim University, Von-Lade-Str. 1, 65366 Geisenheim, Germany. Received: 27 November 2019; Accepted: 14 February 2020; Published: 18 February 2020 Abstract: The cation channel subunit TRPC1 is strongly expressed in central neurons including neurons in the CA1 region of the hippocampus where it forms complexes with TRPC4 and TRPC5. To investigate the functional role of TRPC1 in these neurons and in channel function, we compared current responses to group I metabotropic glutamate receptor (mGluR I) activation and looked +/+ / for major differences in dendritic morphology in neurons from TRPC1 and TRPC1− − mice. mGluR I stimulation resulted in the activation of a voltage-dependent nonselective cation current in both genotypes. Deletion of TRPC1 resulted in a modification of the shape of the current-voltage relationship, leading to an inward current increase. In current clamp recordings, the percentage of neurons that responded to depolarization in the presence of an mGluR I agonist with a plateau / potential was increased in TRPC1− − mice. -
Snapshot: Mammalian TRP Channels David E
SnapShot: Mammalian TRP Channels David E. Clapham HHMI, Children’s Hospital, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA TRP Activators Inhibitors Putative Interacting Proteins Proposed Functions Activation potentiated by PLC pathways Gd, La TRPC4, TRPC5, calmodulin, TRPC3, Homodimer is a purported stretch-sensitive ion channel; form C1 TRPP1, IP3Rs, caveolin-1, PMCA heteromeric ion channels with TRPC4 or TRPC5 in neurons -/- Pheromone receptor mechanism? Calmodulin, IP3R3, Enkurin, TRPC6 TRPC2 mice respond abnormally to urine-based olfactory C2 cues; pheromone sensing 2+ Diacylglycerol, [Ca ]I, activation potentiated BTP2, flufenamate, Gd, La TRPC1, calmodulin, PLCβ, PLCγ, IP3R, Potential role in vasoregulation and airway regulation C3 by PLC pathways RyR, SERCA, caveolin-1, αSNAP, NCX1 La (100 µM), calmidazolium, activation [Ca2+] , 2-APB, niflumic acid, TRPC1, TRPC5, calmodulin, PLCβ, TRPC4-/- mice have abnormalities in endothelial-based vessel C4 i potentiated by PLC pathways DIDS, La (mM) NHERF1, IP3R permeability La (100 µM), activation potentiated by PLC 2-APB, flufenamate, La (mM) TRPC1, TRPC4, calmodulin, PLCβ, No phenotype yet reported in TRPC5-/- mice; potentially C5 pathways, nitric oxide NHERF1/2, ZO-1, IP3R regulates growth cones and neurite extension 2+ Diacylglycerol, [Ca ]I, 20-HETE, activation 2-APB, amiloride, Cd, La, Gd Calmodulin, TRPC3, TRPC7, FKBP12 Missense mutation in human focal segmental glomerulo- C6 potentiated by PLC pathways sclerosis (FSGS); abnormal vasoregulation in TRPC6-/- -
Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells
cells Article Involvement of TRPC4 and 5 Channels in Persistent Firing in Hippocampal CA1 Pyramidal Cells Alberto Arboit 1,2,3, Antonio Reboreda 1,4 and Motoharu Yoshida 1,3,4,5,* 1 German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; [email protected] (A.A.); [email protected] (A.R.) 2 Otto-von-Guericke University, 39120 Magdeburg, Germany 3 Faculty of Psychology, Ruhr University Bochum (RUB), Universitätsstraße 150, 44801 Bochum, Germany 4 Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany 5 Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany * Correspondence: [email protected] Received: 1 December 2019; Accepted: 1 February 2020; Published: 5 February 2020 Abstract: Persistent neural activity has been observed in vivo during working memory tasks, and supports short-term (up to tens of seconds) retention of information. While synaptic and intrinsic cellular mechanisms of persistent firing have been proposed, underlying cellular mechanisms are not yet fully understood. In vitro experiments have shown that individual neurons in the hippocampus and other working memory related areas support persistent firing through intrinsic cellular mechanisms that involve the transient receptor potential canonical (TRPC) channels. Recent behavioral studies demonstrating the involvement of TRPC channels on working memory make the hypothesis that TRPC driven persistent firing supports working memory a very attractive one. However, this view has been challenged by recent findings that persistent firing in vitro is unchanged in TRPC knock out (KO) mice. To assess the involvement of TRPC channels further, we tested novel and highly specific TRPC channel blockers in cholinergically induced persistent firing in mice CA1 pyramidal cells for the first time. -
Heteromeric TRP Channels in Lung Inflammation
cells Review Heteromeric TRP Channels in Lung Inflammation Meryam Zergane 1, Wolfgang M. Kuebler 1,2,3,4,5,* and Laura Michalick 1,2 1 Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; [email protected] (M.Z.); [email protected] (L.M.) 2 German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany 3 German Center for Lung Research (DZL), 35392 Gießen, Germany 4 The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada 5 Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada * Correspondence: [email protected] Abstract: Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial bar- rier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protec- tive strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review. Keywords: heteromeric TRP assemblies; pulmonary inflammation; endothelial permeability; TRPC3/6; TRPV1/4; TRPC1/4 Citation: Zergane, M.; Kuebler, W.M.; Michalick, L. Heteromeric TRP Channels in Lung Inflammation. Cells 1. Introduction 2021, 10, 1654. https://doi.org Pulmonary microvascular endothelial cells are a key constituent of the blood air bar- /10.3390/cells10071654 rier that has to be extremely thin (<1 µm) to allow for rapid and efficient alveolo-capillary gas exchange. -
TRPC5 Does Not Cause Or Aggravate Glomerular Disease
BRIEF COMMUNICATION www.jasn.org TRPC5 Does Not Cause or Aggravate Glomerular Disease Xuexiang Wang , Ranadheer R. Dande, Hao Yu, Beata Samelko, Rachel E. Miller, Mehmet M. Altintas, and Jochen Reiser Department of Medicine, Rush University Medical Center, Chicago, Illinois ABSTRACT Transient receptor potential channel 5 (TRPC5) is highly expressed in brain and or pharmacologic inhibition of TRPC5 pro- kidney and mediates calcium influx and promotes cell migration. In the kidney, loss tected mice from albuminuria. Yet, the di- of TRPC5 function has been reported to benefit kidney filter dynamics by balancing rect effect of TRPC5 overexpression in mice podocyte cytoskeletal remodeling. However, in vivo gain-in-function studies of was not shown and a direct pathogenic TRPC5 with respect to kidney function have not been reported. To address this role of TRPC5 for proteinuria remained gap, we developed two transgenic mouse models on the C57BL/6 background by obscure. overexpressing either wild-type TRPC5 or a TRPC5 ion-pore mutant. Compared with We generated two novel transgenic nontransgenic controls, neither transgenic model exhibited an increase in protein- mouse models by overexpression of ei- uria at 8 months of age or a difference in LPS-induced albuminuria. Moreover, acti- ther wild-type TRPC5 (TG) or pore mu- vation of TRPC5 by Englerin A did not stimulate proteinuria, and inhibition of TRPC5 tant dominant negative TRPC5 (DN) in by ML204 did not significantly lower the level of LPS-induced proteinuria in any mice on a C57BL/6 background (B/6). group. Collectively, these data suggest that the overexpression or activation of With these unique models, we have the the TRPC5 ion channel does not cause kidney barrier injury or aggravate such injury opportunity to investigate the functional under pathologic conditions. -
Ion Channels 3 1
r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia. -
Supplementary Tables and Figures
SUPPLEMENTARY DATA Supplementary Table 1. SiRNA sequence (5’-3’) Gene Forward Reverse si-HRD1-1# GCAUGGCAGUCCUGUACAU dTdT AUGUACAGGACUGCCAUGC dTdT si-HRD1-2# GAGCCAUCCGCAACAUGAA dTdT UUCAUGUUGCGGAUGGCUC dTdT si-MafA CCAUCGAGUACGUCAACGA dTdT UCGUUGACGUACUCGAUGG dTdT ©2020 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db19-1060/-/DC1 SUPPLEMENTARY DATA Supplementary Table 2. Primer sequences for qRT-PCR (5’-3’) Gene Forward Reverse human HRD1 GCTCACGCCTACTACCTCAAA GCCAGACAAGTCTCTGTGACG mouse mafA AAGCGGCGCACGCTCAAGAA GGTCCCGCTCCTTGGCCAGA mouse insulin1 CACTTCCTACCCCTGCTGG ACCACAAAGATGCTGTTTGACA mouse β-actin AGGCCAACCGTGAAAAGATG AGAGCATAGCCCTCGTAGATGG human β-actin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT ©2020 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db19-1060/-/DC1 SUPPLEMENTARY DATA Supplementary Table 3. Primer sequences for ChIP (5’-3’) Gene promoter Forward Reverse mouse Insulin1, 2 GGAACTGTGAAACAGTCCAAGG CCCCCTGGACTTTGCTGTTTG ©2020 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db19-1060/-/DC1 SUPPLEMENTARY DATA Supplementary Table 4. Primer sequences for PCR (5’-3’) Gene Forward Reverse HRD1-pDsred CCCAAGCTTATGTTCCGCACCGCAGT GGGGTACCCAGTGGGCAACAGGGG HRD1-pCMV- Flag GGGGTACCATGTTCCGCACCGCAGT CCCAAGCTTGTGGGCAACAGGGGACT C HRD1-pCMV-HA GGCCATGGGCCATATGGGATCCTTCC AGGGATGCCACCCGGGGATCCTCAGT GCACCGCAGTGATG GGGCAACAGGGGAC HRD1-N-HA GGCCATGGGCCATATGGGATCCTTCC -
TRPC3 Channels Confer Cellular Memory of Recent Neuromuscular Activity
TRPC3 channels confer cellular memory of recent neuromuscular activity Paul Rosenberg*, April Hawkins*, Jonathan Stiber*, John M. Shelton†, Kelley Hutcheson*, Rhonda Bassel-Duby†, Dong Min Shin‡, Zhen Yan*, and R. Sanders Williams*§ *Departments of Internal Medicine and Pharmacology, Duke University Medical School, Durham, NC 27710; †Department of Molecular Biology and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and ‡Department of Oral Biology, Yonsei University, Seoul 120-749, South Korea Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 11, 2004 (received for review December 9, 2003) Skeletal muscle adapts to different patterns of motor nerve activity a role for non-voltage-dependent calcium influx from the by alterations in gene expression that match specialized properties extracellular space in controlling the subcellular compartmen- of contraction, metabolism, and muscle mass to changing work talization and transactivator function of NFAT. In particular, demands (muscle plasticity). Calcineurin, a calcium͞calmodulin- expression of TRPC3, a nonselective calcium influx channel, is dependent, serine–threonine protein phosphatase, has been increased in response to neurostimulation and activated cal- shown to control programs of gene expression in skeletal muscles, cineurin and is limiting to NFAT-dependent transactivation. as in other cell types, through the transcription factor nuclear We propose that TRPC3 channels participate in a positive factor of activated T cells (NFAT). This study provides evidence that feedback circuit, thereby conferring a form of cellular memory the function of NFAT as a transcriptional activator is regulated by that is a prominent feature of adaptive plasticity of skeletal neuromuscular stimulation in muscles of intact animals and that muscles in response to neurostimulation. -
Genome-Wide Analysis of Epigenetic Silencing Identifies BEX1 and BEX2 As Candidate Tumor Suppressor Genes in Malignant Glioma
Research Article Genome-Wide Analysis of Epigenetic Silencing Identifies BEX1 and BEX2 as Candidate Tumor Suppressor Genes in Malignant Glioma Greg Foltz,1,3 Gi-Yung Ryu,1 Jae-Geun Yoon,1 Timothy Nelson,1 Jessica Fahey,1 Amanda Frakes,1 Hwahyung Lee,1 Lorie Field,1 Kaitlin Zander,1 Zita Sibenaller,1 Timothy C. Ryken,1 Rajeev Vibhakar,2 Leroy Hood,3 and Anup Madan1,3 1Neurogenomic Research Laboratory, Department of Neurosurgery; 2Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa; and 3Institute for Systems Biology, Seattle, Washington Abstract common underlying epigenetic mechanisms, such as promoter hypermethylation, histone deacetylation, histone methylation, Promoter hypermethylation and histone deacetylation are and other histone modifications, which directly or indirectly common epigenetic mechanisms implicated in the transcrip- alter chromatin structure (3–5). When combined with microarray tional silencing of tumor suppressor genes in human cancer. analysis, the pharmacologic reversal of one or more of these We treated two immortalized glioma cell lines, T98 and U87, common underlying epigenetic mechanisms provides a powerful and 10patient-derived primary glioma cell lines with screening tool for the comprehensive identification of epigenet- trichostatin A (TSA), a histone deacetylase inhibitor, or 5- ically silenced genes on a global scale. Several recent studies aza-2¶-deoxycytidine (5-AzaC), a DNA methyltransferase in- have validated this large-scale approach using DNA methyltrans- hibitor, to comprehensively identify the cohort of genes ferase and histone deacetylase (HDAC) inhibitors, either alone or reactivated through the pharmacologic reversal of these in combination, in a variety of human cancers, including distinct but related epigenetic processes. -
Ca Influx and Protein Scaffolding Via TRPC3 Sustain PKC and ERK
Research Article 927 Ca2+ influx and protein scaffolding via TRPC3 sustain PKC and ERK activation in B cells Takuro Numaga1,2, Motohiro Nishida3, Shigeki Kiyonaka1,4, Kenta Kato1, Masahiro Katano1, Emiko Mori1, Tomohiro Kurosaki5, Ryuji Inoue6, Masaki Hikida7, James W. Putney, Jr2 and Yasuo Mori1,4,* 1Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan 2Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA 3Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan 4CREST, JST, Chiyoda-ku, Tokyo 102-0075, Japan 5Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan 6Department of Physiology, School of Medicine, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan 7Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan *Author for correspondence ([email protected]) Accepted 18 December 2009 Journal of Cell Science 123, 927-938 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.061051 Summary 2+ Ca signaling mediated by phospholipase C that produces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and diacylglycerol (DAG) controls 2+ 2+ lymphocyte activation. In contrast to store-operated Ca entry activated by Ins(1,4,5)P3-induced Ca release from endoplasmic reticulum, the importance of DAG-activated Ca2+ entry remains elusive. Here, we describe the physiological role of DAG-activated Ca2+ entry channels in B-cell receptor (BCR) signaling.