Electrocatalysts Prepared by Galvanic Replacement
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Environmentally Friendly Anticorrosive Polymeric Coatings
applied sciences Review Environmentally Friendly Anticorrosive Polymeric Coatings Mirko Faccini 1,* , Lorenzo Bautista 2, Laura Soldi 2, Ana M. Escobar 2 , Manuela Altavilla 1, Martí Calvet 2 , Anna Domènech 2 and Eva Domínguez 2 1 Centro de Excelencia en Nanotecnología (CEN), Leitat Chile, Calle Román Díaz 532, Providencia, Santiago 7500724, Chile; [email protected] 2 Leitat Technological Center, Surface Chemistry Area, Applied Chemistry & Materials Department, Terrassa 08225, Barcelona, Spain; [email protected] (L.B.); [email protected] (L.S.); [email protected] (A.M.E.); [email protected] (M.C.); [email protected] (A.D.); [email protected] (E.D.) * Correspondence: [email protected] Abstract: This paper provides a synthetic and comprehensive overview on environmentally friendly anticorrosive polymeric coatings. Firstly, the economic and environmental impact of corrosion is presented to highlight the need of anticorrosive polymeric coatings as a flexible and effective solution to protect a metal. Secondly, the implementation of regulations together with the consumer awareness for environmental considerations and protection of health are the driving force for a progressive but significant change in the sector. Therefore, within the protective organic coatings market, this article provides a review of the most recent developments in environmentally friendly solutions, including bio-based and water-borne epoxy, hyperbranched polyester for low- volatile organic compounds (VOC) coatings, waterborne polyurethane and non-isocyanate polyurethanes (NIPUs), and graphene or bio-based fillers for acrylics. Moreover, this paper outlines new trends such as smart additives, bio- based corrosion inhibitors, and functional antibiocorrosive coatings as superhydrophobics. Finally, Citation: Faccini, M.; Bautista, L.; industrially relevant applications of environmentally friendly anticorrosive polymeric coatings Soldi, L.; Escobar, A.M.; Altavilla, M.; including solutions for marine and off-shore industries are summarized. -
Electrochemical Cells
Electrochemical cells = electronic conductor If two different + surrounding electrolytes are used: electrolyte electrode compartment Galvanic cell: electrochemical cell in which electricity is produced as a result of a spontaneous reaction (e.g., batteries, fuel cells, electric fish!) Electrolytic cell: electrochemical cell in which a non-spontaneous reaction is driven by an external source of current Nils Walter: Chem 260 Reactions at electrodes: Half-reactions Redox reactions: Reactions in which electrons are transferred from one species to another +II -II 00+IV -II → E.g., CuS(s) + O2(g) Cu(s) + SO2(g) reduced oxidized Any redox reactions can be expressed as the difference between two reduction half-reactions in which e- are taken up Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) Reduction of Zn2+: Zn2+(aq) + 2e- → Zn(s) Difference: Cu2+(aq) + Zn(s) → Cu(s) + Zn2+(aq) - + - → 2+ More complex: MnO4 (aq) + 8H + 5e Mn (aq) + 4H2O(l) Half-reactions are only a formal way of writing a redox reaction Nils Walter: Chem 260 Carrying the concept further Reduction of Cu2+: Cu2+(aq) + 2e- → Cu(s) In general: redox couple Ox/Red, half-reaction Ox + νe- → Red Any reaction can be expressed in redox half-reactions: + - → 2 H (aq) + 2e H2(g, pf) + - → 2 H (aq) + 2e H2(g, pi) → Expansion of gas: H2(g, pi) H2(g, pf) AgCl(s) + e- → Ag(s) + Cl-(aq) Ag+(aq) + e- → Ag(s) Dissolution of a sparingly soluble salt: AgCl(s) → Ag+(aq) + Cl-(aq) − 1 1 Reaction quotients: Q = a − ≈ [Cl ] Q = ≈ Cl + a + [Ag ] Ag Nils Walter: Chem 260 Reactions at electrodes Galvanic cell: -
On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 Against Metal Electrodes
nanomaterials Article Fluoride-Ion Batteries: On the Electrochemical Stability of Nanocrystalline La0.9Ba0.1F2.9 against Metal Electrodes Maria Gombotz 1,* , Veronika Pregartner 1, Ilie Hanzu 1,2,* and H. Martin R. Wilkening 1,2 1 Institute for Chemistry and Technology of Materials, Technical Universtiy of Graz, Graz 8010, Austria; [email protected] (V.P.); [email protected] (H.M.R.W.) 2 ALISTORE—European Research Institute, CNRS FR3104, Hub de l’Energie, Rue Baudelocque, 80039 Amiens, France * Correspondence: [email protected] (M.G.); [email protected] (I.H.) Received: 27 September 2019; Accepted: 23 October 2019; Published: 25 October 2019 Abstract: Over the past years, ceramic fluorine ion conductors with high ionic conductivity have stepped into the limelight of materials research, as they may act as solid-state electrolytes in fluorine-ion batteries (FIBs). A factor of utmost importance, which has been left aside so far, is the electrochemical stability of these conductors with respect to both the voltage window and the active materials used. The compatibility with different current collector materials is important as well. In the course of this study, tysonite-type La0.9Ba0.1F2.9, which is one of the most important electrolyte in first-generation FIBs, was chosen as model substance to study its electrochemical stability against a series of metal electrodes viz. Pt, Au, Ni, Cu and Ag. To test anodic or cathodic degradation processes we carried out cyclic voltammetry (CV) measurements using a two-electrode set-up. We covered a voltage window ranging from −1 to 4 V, which is typical for FIBs, and investigated the change of the response of the CVs as a function of scan rate (2 mV/s to 0.1 V/s). -
GALVANIC/DISSIMILAR METAL CORROSION What It Is and How to Avoid It ASSDA Technical FAQ No 1 1 Edition 2, May 2009
AUSTRALIAN STAINLESS STEEL DEVELOPMENT ASSOCIATION GALVANIC/DISSIMILAR METAL CORROSION What it is and how to avoid it ASSDA Technical FAQ No 1 1 Edition 2, May 2009 Contact between dissimilar metals Metal to metal contact The graph shows that stainless steels have occurs frequently but is often not two ranges of potential. The usual, passive Galvanic corrosion can only occur if the a problem. The aluminium head behaviour is shown by the light hatching. dissimilar metals are in electrical contact. However, if the passive film breaks down, on a cast iron block, the solder on The contact may be direct or by an the stainless steel corrodes and its a copper pipe, galvanising on a external pipe or wire or bolt. If the potential is in the dark bar range. steel purlin and the steel fastener dissimilar metals are insulated from each in an aluminium sheet are common other by suitable plastic strips, washers or As a rule of thumb, if the potential examples. sleeves then galvanic corrosion cannot difference is less than 0.1 volt, then it is occur. Paint is not a reliable electrical unlikely that galvanic corrosion will be significant. WHAT CAUSES GALVANIC insulator especially under bolt heads or CORROSION? nuts or washers or near edges of sheets of If all three conditions are met then metal. The paint is usually damaged on galvanic corrosion is probable and the rate For galvanic or dissimilar or installation or by subsequent movement. of corrosion will be influenced by the electrolytic corrosion to occur, Note that the chromium oxide film layer relative area and the current density three conditions must be met: on the stainless steel is very thin and not delivered by the noble metal. -
Galvanic Cell Notation • Half-Cell Notation • Types of Electrodes • Cell
Galvanic Cell Notation ¾Inactive (inert) electrodes – not involved in the electrode half-reaction (inert solid conductors; • Half-cell notation serve as a contact between the – Different phases are separated by vertical lines solution and the external el. circuit) 3+ 2+ – Species in the same phase are separated by Example: Pt electrode in Fe /Fe soln. commas Fe3+ + e- → Fe2+ (as reduction) • Types of electrodes Notation: Fe3+, Fe2+Pt(s) ¾Active electrodes – involved in the electrode ¾Electrodes involving metals and their half-reaction (most metal electrodes) slightly soluble salts Example: Zn2+/Zn metal electrode Example: Ag/AgCl electrode Zn(s) → Zn2+ + 2e- (as oxidation) AgCl(s) + e- → Ag(s) + Cl- (as reduction) Notation: Zn(s)Zn2+ Notation: Cl-AgCl(s)Ag(s) ¾Electrodes involving gases – a gas is bubbled Example: A combination of the Zn(s)Zn2+ and over an inert electrode Fe3+, Fe2+Pt(s) half-cells leads to: Example: H2 gas over Pt electrode + - H2(g) → 2H + 2e (as oxidation) + Notation: Pt(s)H2(g)H • Cell notation – The anode half-cell is written on the left of the cathode half-cell Zn(s) → Zn2+ + 2e- (anode, oxidation) + – The electrodes appear on the far left (anode) and Fe3+ + e- → Fe2+ (×2) (cathode, reduction) far right (cathode) of the notation Zn(s) + 2Fe3+ → Zn2+ + 2Fe2+ – Salt bridges are represented by double vertical lines ⇒ Zn(s)Zn2+ || Fe3+, Fe2+Pt(s) 1 + Example: A combination of the Pt(s)H2(g)H Example: Write the cell reaction and the cell and Cl-AgCl(s)Ag(s) half-cells leads to: notation for a cell consisting of a graphite cathode - 2+ Note: The immersed in an acidic solution of MnO4 and Mn 4+ reactants in the and a graphite anode immersed in a solution of Sn 2+ overall reaction are and Sn . -
Electrochemical Cells - Redox Reactions Can Be Used in a Controlled Manner to Make a Battery
Chapter 17 Worksheet #2 Name __________________________ Electrochemical Cells - Redox reactions can be used in a controlled manner to make a battery. A galvanic cell (voltaic cell or battery) converts the chemical energy of the reactants into electrical energy. BATTERY: Anode - AN OX, RED CAT Cathode - Salt Bridge - A tube containing a salt (such as KCl or NaNO3) solution that is used to connect two half-cells in an electrochemical cell; allows the passage of ions (maintains charge neutrality), but prevents the mixing of half-cell electrolytes. Shorthand notation for a galvanic cell: Zn(s)│Zn2+(aq)║Cu2+(aq)│Cu(s) where the anode is on the left, the cathode on the right, │ indicates the interface between the metal and solution, and ║ indicates the salt bridge. In many cells, the electrode itself does not react but serves only as a channel to direct electrons to or from the solution where a reaction involving other species takes place. The electrode itself is unaffected. Platinum and graphite are inert in most (but not all) electrochemical reactions. The Cu electrode could be replaced by a platinum or graphite electrode in the Zn/Cu battery: Zn(s)│Zn2+(aq)║Cu2+(aq)│Pt(s) Construct a battery from the reaction: Cr(s) + Pb2+(aq) Cr3+(aq) + Pb(s) Construct a galvanic cell using platinum electrodes and the reaction: - - + 2+ 10 Br (aq) + 2 MnO4 (aq) + 16 H (aq) 5 Br2(ℓ) + 2 Mn (aq) + 8 H2O(ℓ) A salt bridge is not required in a battery in which the reactants are physically separated from each other. -
Electrochemistry: Elektrolytic and Galvanic Cell Co08 Galvanic Series (Beketov, Cca 1860)
1/26 Electrochemistry: Elektrolytic and galvanic cell co08 Galvanic series (Beketov, cca 1860): Li, Ca, Al, Mn, Cr Zn, Cd Fe, Pb, [H2], Cu, Ag, Au ≈ ≈ ⊕ Cell = system composed of two electrodes and an electrolyte. electrolytic cell: electric energy chemical reaction ! galvanic cell: chemical reaction electric energy ! reversible galvanic cell (zero current) Electrodes anode = electrode where oxidation occurs Cu Cu2+ + 2 e ! − 2 Cl Cl2 + 2 e − ! − cathode = electrode where reduction occurs 2 Cu + + 2 e Cu credit: Wikipedia (free) − ! Cl2 + 2 e 2 Cl − ! − Oxidation and reduction are separated in a cell. The charge flows through the circuit. 2/26 Anode and cathode co08 electrolytic cell galvanic cell '$ '$ - - ⊕&% &% ⊕ Cl2 Cu2+ Cu2+ Pt Cl ! ! 2 Cu Cl Cl − Cu − CuCl2(aq) CuCl2(aq) anode cathode anode cathode “anions go to the anode” 3/26 Galvanic cells: electrodes, convention co08 Electrodes(= half-cells) may be separated by a porous separator, polymeric mem- brane, salt bridge. Cathode is right (reduction) ⊕ Anode is left (oxidation) negative electrode (anode) positive electrode (cathode) ⊕ liquid junction phase boundary . (porous separator) j salt bridge .. semipermeable membrane k Examples: 3 Cu(s) CuCl2(c = 0.1 mol dm ) Cl2(p = 95 kPa) Pt j − j j ⊕ Ag s AgCl s NaCl m 4 mol kg 1 Na(Hg) ( ) ( ) ( = − ) j j j 1 NaCl(m = 0.1 mol kg ) AgCl(s) Ag(s) j − j j ⊕ 2 3 4 3 3 3 Pt Sn +(0.1 mol dm ) + Sn +(0.01 mol dm ) Fe +(0.2 mol dm ) Fe j − − jj − j ⊕ 4/26 Equilibrium cell potential co08 Also: electromotive potential/voltage, electromo- tive force (EMF). -
Thin Films of Lithium Ion Conducting Garnets and Their Properties
Thin films of lithium ion conducting garnets and their properties dem Fachbereich Biologie und Chemie der Justus-Liebig-Universität Gießen vorgelegte Dissertation zur Erlangung des Grades Doktor der Naturwissenschaften – Dr. rer. nat. – von Jochen Reinacher geboren am 07.09.1984 Gießen 2014 II Dekan / Dean Prof. Dr. Holger Zorn 1. Gutachter / Reviewer Prof. Dr. Jürgen Janek 2. Gutachter / Reviewer Prof. Dr. Bruno K. Meyer Arbeit eingereicht: 10.06.2014 Tag der mündlichen Prüfung: 11.07.2014 III IV Abstract Different lithium ion conducting garnet-type thin films were prepared by pulsed laser deposition. Of these garnet-type thin films Li6BaLa2Ta2O12, cubic Li6.5La3Zr1.5Ta0.5O12 (additionally stabilized by Al2O3) and cubic Li7La3Zr2O12 stabilized by Ga2O3 were investigated in more detail. Conductivity measurements of these thin films performed in lateral geometry showed total conductivities of σ = 1.7∙10–6 S∙cm–1, σ = 2.9∙10–6 S∙cm–1 and σ = 1.2∙10–6 S∙cm–1, respectively. Electrochemical impedance spectroscopy was performed in axial geometry (orthogonal to the substrate), revealing conductivities of –5 –1 σ = 3.3∙10 S∙cm for Li6BaLa2Ta2O12 which is comparable to the bulk conductivity of –5 –1 Li6BaLa2Ta2O12 (σ = 4∙10 S∙cm ). The comparatively low lateral conductivity of the garnet-type material could be increased to a maximum of σ = 2.8∙10–5 S∙cm–1 for multilayer structures of two different alternating garnet-type materials (Li6.5La3Zr1.5Ta0.5O12:Al2O3, Li7La3Zr2O12:Ga2O3). These investigations revealed a strong influence of the thin film microstructure on the total conductivity. Additionally the electronic partial conductivity of Li6BaLa2Ta2O12 as bulk and thin film material was determined. -
Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b. -
Battery Technologies for Small Scale Embeded Generation
Battery Technologies for Small Scale Embedded Generation. by Norman Jackson, South African Energy Storage Association (SAESA) Content Provider – Wikipedia et al Small Scale Embedded Generation - SSEG • SSEG is very much a local South African term for Distributed Generation under 10 Mega Watt. Internationally they refer to: Distributed generation, also distributed energy, on-site generation (OSG) or district/decentralized energy It is electrical generation and storage performed by a variety of small, grid- connected devices referred to as distributed energy resources (DER) Types of Energy storage: • Fossil fuel storage • Thermal • Electrochemical • Mechanical • Brick storage heater • Compressed air energy storage • Cryogenic energy storage (Battery Energy • Fireless locomotive • Liquid nitrogen engine Storage System, • Flywheel energy storage • Eutectic system BESS) • Gravitational potential energy • Ice storage air conditioning • Hydraulic accumulator • Molten salt storage • Flow battery • Pumped-storage • Phase-change material • Rechargeable hydroelectricity • Seasonal thermal energy battery • Electrical, electromagnetic storage • Capacitor • Solar pond • UltraBattery • Supercapacitor • Steam accumulator • Superconducting magnetic • Thermal energy energy storage (SMES, also storage (general) superconducting storage coil) • Chemical • Biological • Biofuels • Glycogen • Hydrated salts • Starch • Hydrogen storage • Hydrogen peroxide • Power to gas • Vanadium pentoxide History of the battery This was a stack of copper and zinc Italian plates, -
Material for Teachers
For Teachers How Best to Maintain a Metal Bridge? Teacher Guide This decision making exercise is intended to reinforce previous knowledge on rusting. It introduces through simple laboratory experiments, which students can plan (if the students are unaware), the need for oxygen and water to be present for rusting to occur. The exercise also allows students to explore the use of a sacrificial metal to protect iron and includes theoretical understanding of reactions between dissimilar metals (depending on the conceptual level required by the curriculum). As a major aspect of the script, a decision making exercise is introduced. Students are called upon to reflect on factors (besides scientific ideas) that need to be taken into account in making a decision on the most appropriate way to protect a metal bridge. This may range from doing nothing - the cheapest, to galvanising it - a scientific answer. In between could be environmental, economic or societal solutions. All are possibilities, but the difficulty is to decide which is the most appropriate and then to explain the choice. Lesson Learning Outcomes Lesson 1 At the end of this lesson, students are expected to be able to: • State that iron rusts • Suggest ways to investigate the factors that cause iron to rust Lesson 2 At the end of this lesson, students are expected to be able to: • Undertake and understand experiments that can be performed to show the factors that cause iron to rust Developer: Jack Holbrook Institute: ICASE Country: UK Lesson 3 At the end of this lesson, students are expected to be able to: • Explain why oxygen and water are needed for iron to rust • Suggest a formula for rust Lesson 4 At the end of this lesson, students are expected to be able to : • Suggest experimental procedures to determine the sacrificial metal when two metals are put together • Predict the likely outcome when metals are put together in an atmosphere that prvides both oxygen and water. -
Galvanneal Zinc Coating – Paintable & Weldable Galvanized
Specifications Prime Steel Designations & Weights Engineering Data WIZcoat™ galvannealed strut is pro- WIZcoat™ galvannealed strut is pro- Galvannealed G-Strut® is produced duced from prime, hot-rolled carbon duced from steel that is designed to from hot roll carbon steel (ASTM 570) to steel substrate. Material conforms to meet requirements for forming, draw- the following mill certification physical/ the ASTM A653 specification and is ing, bending, welding and painting mechanical properties. Average yield produced from structural grade steel – conforming to designations and test strength: 42,700 pounds; Average ten- (See Engineering Data.) limits in accordance with provisions of sile strength, 62,600 pounds; Average Rockwell B (RB Value) range: 62 – 74. Produced on Gregory’s own specialty ASTM A653. Modified Sendzimir Hot-Dip Galvanizing Finish ISO CERTS - Quality Control Line, coils are alkaline-cleaned, pickled The silvery matte finish and low reflec- Gregory Industries upholds the highest and galvannealed in one continuous tivity of galvannealed coatings provides industry standards, conforming to and process. excellent weldability and paint-adher- maintaining ISO 9001; 2000 – ANSI/ Galvanneal Zinc Coating Paintability ence properties without special surface ISO/ASQ Q9001-2000 certification for the manufacture and supply of galva- WIZcoat™ galvannealed strut is designed treatment. – Paintable & Weldable Galvanized – nized steel coils. [Certificate # 112358- for superior paint adhesion. The process Galvannealed Coating Specs. 0, registration # 1132-01]. induces an ideal surface that is a zinc (Standard & metric) alloy well suited to painting. The resulting Galvannealed Minimum Minimum Minimum G-STRUT® benefits from this detailed surface forms microscopic crevices that Coating Triple Spot Triple Spot Single Spot QC process.