Commercial Space and the New Entrepreneurs

Total Page:16

File Type:pdf, Size:1020Kb

Commercial Space and the New Entrepreneurs Commercial Space and the New Entrepreneurs: Prof. Scott Hubbard Dept. of Aeronautics and Astronautics Director Emeritus, Stanford Center of Excellence for Commercial Space Transportation Editor-in-Chief, New Space June 28, 2017 Why Explore or Utilize Space? • Major scientific discoveries: “Where did we come from?”; “Are we alone?” • National interest: (e.g., US, or ESA or Russian or Chinese, etc. Leadership) –Nations that don’t explore become stagnant • New technology or business enterprise: Return on Investment • International cooperation for peaceful purposes: International Space Station • Stimulate student interest in science, technology, engineering and mathematics • A hedge against future catastrophe? A second home for humanity? What is Commercial Space/New Space? • New Space is often taken to mean “commercial space”. –By the US National Space policy, the term “commercial” refers to space goods, services, or activities provided by private sector enterprises that bear a reasonable portion of the investment risk and responsibility for the activity, operate in accordance with typical market-based incentives for controlling cost and optimizing return on investment, and have the legal capacity to offer these goods or services to existing or potential nongovernmental customers.” –In other words, if your only customer is the US government it’s not commercial. If the government pays the whole cost (including overruns and a guaranteed fee or profit), it’s not commercial • The single largest example of commercial space is the space communications industry and supporting areas (>$200B/year) • All commercial space launches are approved (a launch license) by the Federal Aviation Administration Office of Commercial Space Transportation • Commercial Spaceports are given operating permits by the same office New Space as Entreprenurship • New Space is generally defined by the practitioners, contracts and marketplace initiatives. Examples in the field outside of communications satellites in this presentation are: –NASA’s Commercial Cargo and Crew Programs –Suborbital space tourism –Commercial remote sensing –One Web worldwide internet proposals –Space Mining (Moon, asteroid, etc.) –Lunar exploration/science/transportation –Mars robotic payloads –Human habitats at Space Station –Human Exploration of Mars What about NASA? Columbia Shuttle Tragedy 2003 Accident Board recommends recertification or replacement In 2004, Pres. Bush cancels Shuttle after Space Station complete and proposes Constellation • Two new launch rockets • A new space capsule • Return to the Moon Norm Augustine’s Review in 2009 Augustine Report: The US human space flight program appears to be on an unsustainable trajectory (But) there is now a burgeoning commercial space industry. If we craft a space architecture to provide opportunities to this industry, there is the potential the costs to the government would be reduced. NASA: Commercial Space – Cargo and Crew Commercial Resupply to Space Station: Initial contracts worth ~ $2B each* Sierra Nevada Orbital Sciences Dreamchaser just Cygnus and ISS selected for Cargo Return to flight despite 2014 mishap SpaceX Dragon 6 successes/7 berths with ISS attempts Returned to flight despite 2015 mishap 10 successful/11 attempts *Space Act, Fixed Price The New (Old) Dream – Personal Space Travel Suborbital Tourism* Virgin Galactic Spaceship 2 test in 2013 Despite tragedy in 2014 VG is continuing with glide tests Blue Origin: New Shepard successful tests * XCOR has suspended operations Commercial – Entrepreneurial Remote Sensing Skybox – now Terra Bella Planet Labs – now Planet just purchased by Planet very small spacecraft Digital Globe: Worldview Spacecraft: Silicon Valley Silicon Valley Startup: ~3 meter Startup: ~1 meter imaging with high imaging with high repeat rate. repeat rate. Company partly High-resolution (30 Company sold to funded by Draper cm) imaging sold to Google for $500M Fisher Jurvetson Industry and US Gov’t One Web: In-Space Internet Service for the Planet • Google and Fidelity Put $1 Billion Into SpaceX –The Internet giant, along with Fidelity, has invested $1 billion in Space Exploration Technologies (SpaceX). The move could help achieve the aim of bringing satellite Internet to remote corners of the world. • Virgin, Qualcomm, SoftBank and others have invested in OneWeb –Richard Branson's Virgin Group and Qualcomm will invest in a venture to build and fly a constellation of 648 satellites that can provide high-speed, global Internet access. Launch by Blue Origin Space Mining Proposed Planetary Resources Shackleton Energy Deep Space Industries Proposed lunar mining effort to Arkyd small space develop propellant telescopes to depots for space identify near-Earth exploration asteroids for future Planned low cost mining “cubesat” spacecraft to study -Now refocused on asteroids <500 earth observations meters for future exploitation Google Lunar X-Prize • The Google Lunar XPRIZE (GLXP) is $20M space competition organized by XPRIZE, and sponsored by Google. • The challenge calls for privately funded spaceflight teams to be the first to land a privately funded robotic spacecraft on the Moon, travel 500 meters, and transmit back high-definition video and images. • 35 Teams initially registered. 5 teams left. • Announced 2007 – final deadline extension to end of 2017 Moon Express artist’s concept Typical business plan: provide commercial payload opportunities; especially to states, organizations without a space program Red Dragon Technology Demonstration Red Dragon – Demo 2020 SpaceX Dragon 2 capsule demonstrating Mars surface missions with a Falcon Heavy rocket for launch. With a successful 2020 demo of supersonic retro-propulsion, ~1 metric ton payload could be landed. NASA support in navigation, trajectory, communications, Entry Descent & Landing, Planetary Protection, etc. ($6M in 2016, $32M/4 years) Future Science payloads could be solicited and funded by NASA Living in Space and Settling Mars Bigelow Aerospace Mars One * Dutch-based initiative to settle Mars via one-way trips, Las Vegas real estate starting in 2024. Business entrepreneur developed an plan involves television rights “Expandable” habitat (BEAM) and advertising now attached to the ISS. Studies continuing; listed on Plan is “labs and hotels in Frankfurt Stock Exchange space”. * Mars One concept settlement. Credit: Mars One. 2015 Workshop Proposes an Orbit in 2033 Approach Independently costed study by JPL staff - shows feasibility using a minimal architecture Phobos Lander/ Mars Orbiter Mars Lander 2033 2039 Current Programs HSF Annual Cost ISS support ends in 2024 Lockheed Martin Mars Base Camp 2028 • Mars Base Camp (MBC) is a crewed Mars laboratory orbiter concept that proposes to send astronauts to Mars orbit as early as 2028. • The purpose of MBC is to conduct real-time telerobotic science, both in Mars orbit and on the surface of its moons, and serve as a proving ground in preparing humans for future missions to the Martian surface. The SpaceX Vision (IAC 2016) SpaceX Vision for Affordability Median cost ≈ $140,000 SpaceX Mars Settlement Engineering Why Do We Care About Commercial Space for Future Exploration? • Entrepreneurial space ventures creating new business and new capability • Commercial Cargo and Crew provide the basis for much less expensive transport to LEO and perhaps beyond • Entrepreneurs are co-investing. –SpaceX contributed perhaps $150M. –Bezos is selling ~$1B of stock to support Blue Origin. • At least one CEO (Musk) has the public goal of going to Mars; LMCO has developed Mars Base Basecamp • These initiatives are having a strong effect on public engagement –Students are eager to join new companies –Older, affluent citizens have going to space on their “bucket list”. “The more people who go (to space) the more who will want to go”, said Brewster Shaw. Example: How to Explore Mars Create a Consensus, Engage the Entrepreneurs – add Water Distribution of Commercial Space Revenue* * Data courtesy Space Foundation.
Recommended publications
  • Attachment J-4 Applicable and Reference Documents Lists
    NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT Attachment J-4 Applicable and Reference Documents Lists J-A4-1 NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT This attachment contains applicable documents for the contract effort. The contractor shall comply with these requirements in performing Statement of Work (SOW) requirements. This attachment is structured as follows: Table J4-1: Applicable Documents List Table J4-2: Reference Documents List Table J4-3: Book Editor/Book Coordinated/Managed Documents List Table J4-4: Orion Documents List The documents identified within Table J4-1 or within a document listed in this table (second tier) are applicable to this contract. Requirements written in these documents have full force and effect as if their text were written in this contract to the extent that the requirements relate to context of the work to be performed within the scope of this contract. When a document is classified as “reference,” the document is provided for information about the ISS Program execution and the Mission and Program Integration Contract’s role in the ISS Program. The general approach for interpreting whether a document impacts the contractor’s performance is that if a document is “applicable,” then the contractor has solid requirements that derive from that document. Applicable documents contain additional requirements and are considered binding to the extent specified. Applicable documents cited in the text of the document in a manner that indicates applicability such as follows: • In accordance with • As stated in • As specified in • As defined in • Per • In conformance with When a document is classified as “reference,” the document is provided for general context of the ISS Program execution and for influence on the performance of the Mission and Program Integration Contract in its role of support to the ISS Program.
    [Show full text]
  • Application-Story-UEI-Spacex.Pdf
    APPLICATION STORY United Electronic Industries & SpaceX WORKING TOGETHER TO FIND SOLUTIONS SpaceX was founded in 2002 by Tesla’s Elon Musk with the end goal of reducing space transportation costs enough to colonize Mars. In 2008, it became the first successful private space launch operator, and in May 2020, it successfully flew humans to the International Space Station on the SpaceX Dragon 2. Most recently, SpaceX has been developing a spacecraft for use in crewed interplanetary spaceflight. With the increasing complexity of each new spacecraft, searching for the right monitoring and control system solution for their ground support equipment was critical to ushering in more successful launches. THE IMMEDIATE CHALLENGES SpaceX’s existing ground support equipment wasn’t robust, reliable, and scalable enough to meet the environmental demand of rocket launch for manned flight on such a large, expansive launch pad. In addition, much of the equipment was becoming obsolete. The old, obsolete equipment needed twice the amount of wiring and hardware for basic feedback of sensors and controls. All new DAQ and control hardware needed to be extremely robust, since launchpads were subject to extreme temperatures, pressure, and vibration and system failure could have extreme consequences. UEI’S PATHWAY TO SUCCESS FOR SPACEX UEI specialists visited SpaceX’s existing launchpads in California and Florida, as well as their rocket production and testing facility in Texas, and found that SpaceX needed feedback on all control points, support for many different sensor types, and the ability to work with existing software infrastructure. To make the new system as reliable as possible, UEI hardware allowed SpaceX to change the architecture of their launch pads, moving from a centralized control system to a distributed system with self-diagnostic capabilities for every component.
    [Show full text]
  • NASA Develops Wireless Tile Scanner for Space Shuttle Inspection
    August 2007 NASA, Microsoft launch collaboration with immersive photography NASA and Microsoft Corporation a more global view of the launch facil- provided us with some outstanding of Redmond, Wash., have released an ity. The software uses photographs images, and the result is an experience interactive, 3-D photographic collec- from standard digital cameras to that will wow anyone wanting to get a tion of the space shuttle Endeavour construct a 3-D view that can be navi- closer look at NASA’s missions.” preparing for its upcoming mission to gated and explored online. The NASA The NASA collections were created the International Space Station. Endea- images can be viewed at Microsoft’s in collaboration between Microsoft’s vour launched from NASA Kennedy Live Labs at: http://labs.live.com Live Lab, Kennedy and NASA Ames. Space Center in Florida on Aug. 8. “This collaboration with Microsoft “We see potential to use Photo- For the first time, people around gives the public a new way to explore synth for a variety of future mission the world can view hundreds of high and participate in America’s space activities, from inspecting the Interna- resolution photographs of Endeav- program,” said William Gerstenmaier, tional Space Station and the Hubble our, Launch Pad 39A and the Vehicle NASA’s associate administrator for Space Telescope to viewing landing Assembly Building at Kennedy in Space Operations, Washington. “We’re sites on the moon and Mars,” said a unique 3-D viewer. NASA and also looking into using this new tech- Chris C. Kemp, director of Strategic Microsoft’s Live Labs team developed nology to support future missions.” Business Development at Ames.
    [Show full text]
  • International Space Station Requirement Verification for Commercial Visiting Vehicles
    https://ntrs.nasa.gov/search.jsp?R=20170002073 2019-08-31T17:01:08+00:00Z MISSION AND PROGRAM INTEGRATION (MAPI) CONTRACT International Space Station Requirement Verification for Commercial Visiting Vehicles Dan Garguilo TBD This presentation is intended solely for the audience to which it is directed. Agenda • Background on the ISS and Visiting Vehicles • Overview of the Commercial Orbital Transportation Services (COTS) Program • Integrating Commercial Visiting Vehicles to ISS • Commercial Requirement Verification and Compliance International Space Station Program Overview • Launched in 1998 as a collaboration with the space agencies of the US, Russia, Canada, Japan, and Europe • Consists of pressurized modules, an external truss and solar arrays, and robotic arms • Serves as a microgravity and space environment research laboratory in which crew members conduct experiments in biology, physics, astronomy, and meteorology • Test bed for technology and equipment for future long duration exploration missions to the Moon and Mars • Maintains a low Earth orbital attitude between 205 and 270 miles • 6 crewmembers live and work on the ISS • Currently funded operation through 2024 International Space Station Visiting Vehicle Resupply • Requires continuous resupply of food, water, clothing, spare parts, propellant, scientific experiments, and crew • Currently average approximately 12-14 Place Photo Here commercial and government flights per year • Both manned and unmanned vehicles • Spacecraft can either dock or be grappled by robotic arm and
    [Show full text]
  • Aviation Week & Space Technology
    Why T-X Losers UK to EASA How NASA Is Europe’s Flight Plan Are Not Quitting ‘Cheerio’ Cutting Red Tape for AI in Aviation $14.95 MARCH 23-APRIL 5, 2020 Aviation In Crisis Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • The-Recitals-January-2021-Vajiram.Pdf
    INDEX Message From The Desk Of Director 1 1. Feature Article 2-7 a. Future Of Food b. Vaccine Maitri Initiative 2. Mains Q&A 12-25 3. Prelims Q&A 26-67 4. Bridging Gaps 68-123 1. Vertical and Horizontal Reservations 2. Plea To Bar Disqualified Lawmakers From Contesting Bye-Polls To Same House 3. The India Justice Report 2020 4. Adultery Law And The Armed Forces 5. Urban Local Bodies (ULB) Reforms 6. PRAGATI Meeting 7. Toycathon 8. Henley Passport Index 9. GAVI Board 10. National Girl Child Day 11. Satyameva Jayate Programme 12. Smart Classes For Rural Schools VAJIRAM AND RAVI The Recitals (January 2021) 13. Special Marriage Act 14. Freight Portal 15. Agri-Hackathon 2020 16. Investment Trends Monitor 17. Bad Banks 18. Scheme For Ethanol Distillation 19. Trade Deficit With China 20. Pradhan Mantri Kaushal Vikas Yojana 3.0 21. Regulatory Structure For NBFCs 22. Startup India Seed Fund 23. Kala Utsav 2020 24. Oldest Cave Art 25. Jallikattu 26. Gulf Leaders Sign Solidarity and Stability Deal 27. Russia Withdraws from Open Skies Treaty 28. Scottish Independence Referendum 29. China Holds Third South Asia Multilateral Meet 30. US President Donald Trump Impeached 31. US Eases Restrictions on Contact with Taiwan 32. New START Treaty 33. UAE’s New Citizenship Policy 34. Article 19 of UN Charter 35. H-1B Visas and New Wage-based Rules 36. India at the UN High Table 37. India - UK Cooperation Against Cross-Border Terrorism 38. India-France to Expand Ecological Partnership 39. Document on the U.S. Strategic Framework for the Indo-Pacific 40.
    [Show full text]
  • Research Project Report 2 ... Final3.Pdf
    Multimodal learning analytics on sustained attention by measuring ambient noise Jeffrey Pronk Responsible Professor: Marcus Specht (PhD) Supervisor: Yoon Lee (PhD candidate) Peer group members: Giuseppe Deininger (BSc student) Jurriaan Den Toonder (BSc student) Sven van der Voort (BSc student) I Abstract In this research, a learner’s sustained attention in the remote learning context will be studied by collecting data from different sensors. By combining the results of these sensors in a multi-modal analytics tool, the estimation of the learner’s sustained at- tention can hopefully be improved. This research will mainly focus on microphone recordings of ambient sound in a learners room. The main research question of this re- search was "How can ambient noise sensing aid in a multi-modal analytics tool to track sustained attention?". The multi-modal learning analytics tool, if accurate enough, could potentially be used by teachers to make their material more engaging and could help learner’s to keep their focus while performing a learning task (Schneider et al., 2015). The research resulted in a model with 61% accuracy. This percentage needs to be further researched, since because of the COVID situation, not enough data could be collected to train the model. Because of the relatively low accuracy of the model, it was found that ambient noise sensing can aid the multi-modal analytics tool to some extent by adding some data-points it is certain about, when the mobile movement tracking model does not detect a distraction. If the model improves in future research, the model could be able to help mobile movement tracking model, even if the mobile movement tracking model already predicts a distraction with bigger then 50% certainty.
    [Show full text]
  • Architectural Options and Optimization of Suborbital Space Tourism Vehicles
    Chair of Astronautics Architectural Options and Optimization of Suborbital Space Tourism Vehicles Author: Markus Guerster Master Thesis, RT-MA 2017/2 Supervisors Prof. Edward F. Crawley Prof. Ulrich Walter Department of Aeronautics and Astronautics Institute of Astronautics Massachusetts Institute of Technology Technical University of Munich Dr. Christian Hock Christian Bühler CEO Institute of Astronautics in -tech industry GmbH Technical University of Munich Chair of Astronautics “I wanted to be involved in something that has an outside chance of doing some good. If there is not something meaningful in what you are doing above and beyond any commercial returns, then I think life is a bit hollow.” Elon Musk, 2013 II Chair of Astronautics Erklärung Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im Rahmen meiner Masterarbeit von der TU München bzw. vom Lehrstuhl für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden. Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben. Ich erkläre mich außerdem damit einverstanden, dass meine Masterarbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine Bibliothek, zugänglich gemacht wird. Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe. Garching, den 28. April 2017 Name: Markus Guerster Matrikelnummer: 03628540 III Chair of Astronautics Zusammenfassung Der Ansari X-Prize legte den Grundstein für den suborbitalen Weltraumtourismus.
    [Show full text]
  • Mars-Base-Camp-2028.Pdf
    Mars Base Camp An Architecture for Sending Humans to Mars by 2028 A Technical Paper Presented by: Timothy Cichan Stephen A. Bailey Lockheed Martin Space Deep Space Systems, Inc. [email protected] [email protected] Scott D. Norris Robert P. Chambers Lockheed Martin Space Lockheed Martin Space [email protected] [email protected] Robert P. Chambers Joshua W. Ehrlich Lockheed Martin Space Lockheed Martin Space [email protected] [email protected] October 2016 978-1-5090-1613-6/17/$31.00 ©2017 IEEE Abstract—Orion, the Multi-Purpose Crew Vehicle, near term Mars mission is compelling and feasible, is a key piece of the NASA human exploration and will highlight the required key systems. architecture for beyond earth orbit (BEO). Lockheed Martin was awarded the contracts for TABLE OF CONTENTS the design, development, test, and production for Orion up through the Exploration Mission 2 (EM- 1. INTRODUCTION ..................................................... 2 2). Additionally, Lockheed Martin is working on 2. ARCHITECTURE PURPOSE AND TENETS ....................... 3 defining the cis-lunar Proving Ground mission 3. MISSION CAMPAIGN, INCLUDING PROVING GROUND architecture, in partnership with NASA, and MISSIONS ................................................................ 5 exploring the definition of Mars missions as the 4. MISSION DESCRIPTION AND CONCEPT OF OPERATIONS . 7 horizon goal to provide input to the plans for 5. ELEMENT DESCRIPTIONS ....................................... 13 human exploration of the solar system. This paper 6. TRAJECTORY DESIGN ............................................ 16 describes an architecture to determine the 7. SCIENCE ............................................................. 19 feasibility of a Mars Base Camp architecture 8. MARS SURFACE ACCESS FOR CREW ......................... 14 within about a decade.
    [Show full text]
  • Batonomous Moon Cave Explorer) Mission
    DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 Analysis and Definition of the BAT- ME (BATonomous Moon cave Explorer) Mission Analys och bestämning av BAT-ME (BATonomous Moon cave Explorer) missionen ALEXANDRU CAMIL MURESAN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Analysis and Definition of the BAT-ME (BATonomous Moon cave Explorer) Mission In Collaboration with Alexandru Camil Muresan KTH Supervisor: Christer Fuglesang Industrial Supervisor: Pau Mallol Master of Science Thesis, Aerospace Engineering, Department of Vehicle Engineering, KTH KTH ROYAL INSTITUTE OF TECHNOLOGY Abstract Humanity has always wanted to explore the world we live in and answer different questions about our universe. After the International Space Station will end its service one possible next step could be a Moon Outpost: a convenient location for research, astronaut training and technological development that would enable long-duration space. This location can be inside one of the presumed lava tubes that should be present under the surface but would first need to be inspected, possibly by machine capable of capturing and relaying a map to a team on Earth. In this report the past and future Moon base missions will be summarized considering feasible outpost scenarios from the space companies or agencies. and their prospected manned budget. Potential mission profiles, objectives, requirements and constrains of the BATonomous Moon cave Explorer (BAT- ME) mission will be discussed and defined. Vehicle and mission concept will be addressed, comparing and presenting possible propulsion or locomotion approaches inside the lava tube. The Inkonova “Batonomous™” system is capable of providing Simultaneous Localization And Mapping (SLAM), relay the created maps, with the possibility to easily integrate the system on any kind of vehicle that would function in a real-life scenario.
    [Show full text]
  • BLACKWELL-THESIS-2019.Pdf
    Point Cloud Based Relative Navigation for Small Satellite Rendezvous by Branden William Blackwell Bachelor of Science Aerospace Engineering Bachelor of Science Mechanical Engineering University of Florida 2013 A thesis submitted to Florida Institute of Technology in partial fulfillment of the requirements for the degree of Master of Science in Aerospace Engineering Melbourne, Florida May, 2019 ⃝c Copyright 2019 Branden William Blackwell All Rights Reserved The author grants permission to make single copies. We the undersigned committee hereby approve the attached thesis Point Cloud Based Relative Navigation for Small Satellite Rendezvous by Branden William Blackwell Markus Wilde, Ph.D. Assistant Professor Aerospace Engineering Committee Chair Steven Shaw, Ph.D. Professor Mechanical and Aerospace Engineering Outside Committee Member Brian Kaplinger, Ph.D. Assistant Professor Aerospace Engineering Committee Member Dr. Daniel Batcheldor Professor and Head Department of Aerospace, Physics, and Space Sciences ABSTRACT Title: Point Cloud Based Relative Navigation for Small Satellite Rendezvous Author: Branden William Blackwell Major Advisor: Markus Wilde, Ph.D. The thesis describes the development and testing of a point cloud based rela- tive navigation sensor. The objective of this research is to provide a low cost, lightweight, low power, and low volume alternative to established rendezvous sen- sors , in order to enable small satellites to conduct missions such as in-space in- spection, on-orbit servicing, and space debris removal. The sensor system must be able to provide relative position and orientation data to a control system inde- pendent of the cooperation of the target spacecraft or object. This is done using commercially available hardware (Microsoft Kinect v2) and an open source C++ library (Open3D).
    [Show full text]
  • Science Possibilities Enabled by the Mars Base Camp Human Exploration Architecture
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8208.pdf SCIENCE POSSIBILITIES ENABLED BY THE MARS BASE CAMP HUMAN EXPLORATION ARCHITECTURE. T. Cichan, D. W. Murrow, S. D. Jolly, E. B. Bierhaus, and B. Clark, Lockheed Martin Space Systems Company (P.O. Box 179, MS H3005, Denver, Colorado, 80201) Introduction: Orion, the Multi-Purpose Crew Ve- Mission Design: A key feature of this architecture hicle, is a key piece of the NASA human exploration is the comprehensive exploration of Mars from the ‘high architecture for beyond earth orbit (BEO). Lockheed ground’ of orbit and with sortie missions prior to selec- Martin was awarded the contracts for the design, devel- tion of a location for long-term human presence. The opment, test, and production for Orion up through the crew spends about a year in orbit at Mars. The ability to Exploration Mission 2 (EM-2). Lockheed Martin is also tele-operate robotic assets such as rovers and UAVs will working on defining the cislunar Proving Ground mis- allow selection of the optimum site, balancing resource sion architecture, in partnership with NASA. In addi- availability, safety, local science, and accessibility. Ad- tion, Lockheed Martin is exploring the definition of ditionally, sortie missions allow Mars samples to be an- Mars missions as the horizon goal to provide input to alyzed in the Mars Base Camp orbiting laboratory, in the plans for human exploration of the solar system. A order to select the best samples for more detailed future human mission to one of the two moons of Mars has exploration.
    [Show full text]