Autonomous Inspection with Free-Flyers a Human Spaceflight

Total Page:16

File Type:pdf, Size:1020Kb

Autonomous Inspection with Free-Flyers a Human Spaceflight In-Space Condition-based Autonomous Inspection for 12th International Symposium for NDT in Aerospace October 6, 2020 George Studor NASA Engineering and Safety Center NDE Technical Discipline Team Sep 22, 2020 version 1 Bio • George Studor • NASA Engineering and Safety Center(NESC) • 35 Years with NASA and 20 years with USAF • NESC Technical Discipline Teams(TDTs) - Consultant with Analytical Mechanics Associates(AMA): • NDE TDT: In Space Inspection • Avionics TDT: Wireless Sensors/Avionics • Robotic Spacecraft TDT: Natural Systems in System Engineering • Industry Involvement: Workshops with Oil & Gas Industry/DOE • In Space Inspection Workshops (2012, 2014, 2017…. 2021) • Passive Wireless Sensor Technology Workshops (9) 2 Motivation Apollo 13 – No Views of the damage “Houston, we’ve got a problem” then, after the SM was released… "There's one whole side of that spacecraft missing!“ MIR Spectre impact/leak – No Time Only 24 minutes to find/plug leak before having to shut the hatch. 3 AERCam – Manual deploy and operation – Dec 1997 - A Bird’s Eye View for EVA Astronauts - Inspections of Shuttle and Space Station Exterior “someday” Mini-AERCam “Mini AERCam Inspection Robot for Human Space Missions” AIAA Space 2004 Conference Steven E. Fredrickson*a, Steve Duran*b, Jennifer D. Mitchell*c NASA Johnson Space Center, Houston, Texas 77058 4 5 6 More Motivation • Columbia – suspected impact to Wing Leading Edge, but NO on-board impact sensors, inspection sensors or repair options. AF Maui image 1/28/03 Columbia Breakup over TX - 2/1/03 7 Space Shuttle Thermal Protection Systems Inspections: Challenges: Needed Damage Survey & Focused Inspections - Planning/Operations for Robotic Arms - Sensor Engineering Operations and Image Analysis - Crew Time and RMS Time detracts from Mission 1:47 8 WingBiggest Leading Threat Edge comes Impact from Detection System Micro-Meteoroids and Orbital132 Debris(MMOD) Channels Impacts that can cause Critical Damage to the Re-entry Thermal Protection Systems Challenges: • Ground Engineering & Operations Physical Optics Corp/Volodymir Romanov & Victor• Wiring Plessky to the Sensors Compton Imaging Tomography (3D Backscatter) 9 • Battery Cert and Replacement Inspection-Only vs Condition-based Inspection Late Focused Un-Dock Dock WLE Impact Inspection 2 wks 6 months later Condition Monitoring-based Inspection Use as is Analysis Repair Monitoring Analysis + Focused Inspection Discard Inspection Discard Discard Replan Replan Replan Less workload, more risk reduction Inspect Early High workload, Less risk reduction (Initial Condition) Establish Baseline Survey Inspection to Detect Damage (Compare with Baseline) Inspection Discard Only Replan 10 International Space Station – Low Earth Orbit Inspections ISS Inspection Examples: - Periodic Whole Vehicle Surveys - EVA Translation Paths - Windows - Solar Arrays/Masts - Radiator Cooling Systems Visiting Vehicles: - Soyuz - Cargo Vehicles Soyuz - Commercial Crew Vehicles - SpaceX - Boeing No Impact Event Monitoring SpaceX Dragon 2 Boeing CST100 Starliner 11 International Space Station Inspections Detecting the damage vs finding the damage Periodic ISS Solar Array 120’ Masts (8) General Surveys MMOD Impacts – Periodic Inspection Ammonia Leak - Ongoing Module Leaks to Vacuum – ongoing 2018 Soyuz EVA Configuration and Hole = Translation Paths 12 Mfg Defect International Space Station ISS life Extension From: 2024 To: 2030 356’ x 240’ Orion Spacecraft(LM) for beyond ISS Lunar Gateway Space Station Restore-L Mission Satellite Servicing in Low Earth Orbit Will there be an Inflatable Space Station? 13 Detecting Damage vs Characterizing Damage Entry Holes are often Narrow, sometimes Deep and rarely Perpendicular to the Surface X-Ray CT 26 Lunar Mission Risks Greater than Low Earth Orbit Low Earth Orbit Beyond Low Earth Orbit Risks: Orbital Debris Risks: Critical Thruster Firings, Micro-Meteoroid and Radiation Van Allen Protection to 36K miles 240,000 miles! Communication will take about 2.5 seconds each way 15 Artemis III: Landing on the Moon 16 “Gateway” Lunar Space Station - High Cost means they will be Infrequent Missions - Radiation means crews have Limited Occupation - Remote & Autonomous Ops & Maintenance needed - Lead Time/Cost Rescue Missions – Failures are Costly - Hotter/Faster Re-Entry: TPS Less Tolerant of Damage 17 In Space Inspection • Scheduled When Prudent: • Periodic Surveys • Establish Initial Configuration after Mission Configuration Event. • Assessments of Unacceptably High Risk if not detected. • Validate Models of the system, structure or environments. • Support for planned external operations: EVAs, Docking, Robotics And • Triggered when Conditions Warrant (Conditions-based): • Camera surveys or Astronaut observations detect a “Region of Interest” • Structural Sensors indicate an impact or pressure decay • System Sensors indicate performance deterioration or anomaly. • Natural or Induced Environment Changes • Events produce Uncertainty in the Spacecraft External Condition. 18 New Tools Needed: • Efficient Manipulators and Human-like Robotics • Inspection in Difficult to Access Areas • Free-flying Inspection platforms • Sensors/Wireless Sensors to Trigger Inspections 19 Compact Robotic Manipulator Inspection with Roll-a-Tube Boom Wrist - Lightweight & Bulky Rigid Boom Sensor - Compact for Transport Shuttle Arm Inspection - Multiple Configurations Elbow Joint http://www.rolatube.com/satellite- deployment-booms/ Deployable Compact Boom Stowage Shoulder http://www.rolatube.com/nuclear-inspection-booms/ 20Joint Robonaut 2B heading back to ISS https://spectrum.ieee.org/automaton/robotics/space-robots/nasas-robonaut-to-return- to-iss-with-legs-attached 21 NASA Astrobee IVA (Internal) Testbed on ISS NASA/Ames/Astrobee Working Group: [email protected] AMES “Micro Gravity Test Facility” Astrobee in Japanese Kibo Module for Astrobee 22 What do we need Snake Inspector to do? Internal Functionality Snake Inspector 1. Stereo vision and articulating head with lighting, designed in stiffness at various sections along the length Entry hole Equipment Rack 2. SLAM - Simultaneous Location and Modeling Software - builds the 3d model as it goes in and subsequently determines position and orientation of all parts very accurately. Housing/control 3. Articulating snake robot - mechanical or piezo-control of the entire snake length- not just the tip as in a typical endoscope. Sensors that sense contact and feed controls to alleviate it. Area to be inspected 4. Snake real-time location - know/display the location of the entire snake - plot against accurate 3D model built in #1. 5. Self-following Software - each segment of the snake knows where and how to turn as it follows the head or backs out of a complex physical path. 6. Very small size, weight and power and works well Zero-g (assumed) 7. Length of at least 2 meters and diameter 3/8" or less – go through existing penetrations such as the holes for sending fire extinguishing 8. Minimum crew involvement/training - easy to use, hands-free, possibly remotely operated from ground. 9. Ability to change imagers at the end, and/or add sensors/wireless sensors at the tip. 10. Ability to grab items at the tip. 23 Autonomous Inspection with a Free-flying Small Spacecraft Inspector Why a Free-flyer vs a Robotic Manipulator? • Avoid Robotic Manipulator infrastructure/operations • Minimal or No Crew Operations • Autonomous Ops means Minimal Earth-based Support • Continuous Monitoring • More View Angles and Distances • Faster response and more stable/no oscillations Condition Monitoring – Wireless/Optical Comm from sensors/systems • Events and Trends to Address Risks Sooner • Avoid Inspections if not required • Data from Hazardous Zones • Data from Difficult to access areas • Need Damage Characterization Capability if results warrant: • External: Free-flyer, Robotic Manipulator, Crawler, Tethered Sensor • Internal: Free-Flyer, Micro-Crawler or Humanoid Robot with tools 24 Example: Continuously Monitoring Gateway at “safe” distance (NASA’s Version of a Smart Home Security Camera System) “Events” may Trigger additional Characterization: Multi-spectral & 3D Imaging RF/Light for ID, Location, Sensing RF: RF: Solar Array Orion Impact and Health Dynamics – When to do it? RF: Manipulator RF: Loads and Module Leak Dynamics 25 Free-flying Autonomous Spacecraft Inspector for Orion • Solar Array Tip Cameras likely can see if there is damage • MMOD damage depth not possible with fixed cameras • Complex flight path to survey the “backshell” surface - then damage characterization as necessary CubeSat Imaging: MMOD Entry Hole - 3D Maps of Damage Cubesat - Image Processing TPS Backshell Inspector - GN&C Input Cubesat RF: Position RF Sensors Cubesat Laser Comm: Solar Array - Command Sequence Updates Tip Cameras - “Answer” Downlink 26 Condition-based Autonomous Inspection is Reasonable and Practical • Piggy-back off other Autonomous Systems and Sensing • Small Satellite and Cubesat Missions • Free-flyer testbed on ISS - Astrobee • Aircraft • Automobiles/Military Ground • Underwater Inspection ROVs • Security Camera Systems • Advanced On-board Image Processing • Inspection Drones 27 Aerospace Corp Aerocube 10 (A&B): Prox Ops & Pointing and On-board Image Processing Photo at 26 meters! https://aerospace.org/article/cubesats-get-close-proximity-operation-interesting-implications Aerocube 7 and 11: Aerocube 8D: 28 Laser Communications Ion-Electrospray Propulsion Leverage Industry – Inspection Drones • Inspection with Image Downlink • Command as well
Recommended publications
  • Attachment J-4 Applicable and Reference Documents Lists
    NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT Attachment J-4 Applicable and Reference Documents Lists J-A4-1 NNJ12GA46C SECTION J Attachment J-4 MISSION AND PROGRAM INTEGRATION CONTRACT This attachment contains applicable documents for the contract effort. The contractor shall comply with these requirements in performing Statement of Work (SOW) requirements. This attachment is structured as follows: Table J4-1: Applicable Documents List Table J4-2: Reference Documents List Table J4-3: Book Editor/Book Coordinated/Managed Documents List Table J4-4: Orion Documents List The documents identified within Table J4-1 or within a document listed in this table (second tier) are applicable to this contract. Requirements written in these documents have full force and effect as if their text were written in this contract to the extent that the requirements relate to context of the work to be performed within the scope of this contract. When a document is classified as “reference,” the document is provided for information about the ISS Program execution and the Mission and Program Integration Contract’s role in the ISS Program. The general approach for interpreting whether a document impacts the contractor’s performance is that if a document is “applicable,” then the contractor has solid requirements that derive from that document. Applicable documents contain additional requirements and are considered binding to the extent specified. Applicable documents cited in the text of the document in a manner that indicates applicability such as follows: • In accordance with • As stated in • As specified in • As defined in • Per • In conformance with When a document is classified as “reference,” the document is provided for general context of the ISS Program execution and for influence on the performance of the Mission and Program Integration Contract in its role of support to the ISS Program.
    [Show full text]
  • 3D Scanner Positioning for Aircraft Surface Inspection Marie-Anne Bauda, Alex Grenwelge, Stanislas Larnier
    3D scanner positioning for aircraft surface inspection Marie-Anne Bauda, Alex Grenwelge, Stanislas Larnier To cite this version: Marie-Anne Bauda, Alex Grenwelge, Stanislas Larnier. 3D scanner positioning for aircraft surface inspection. ERTS 2018, Jan 2018, Toulouse, France. hal-02156494 HAL Id: hal-02156494 https://hal.archives-ouvertes.fr/hal-02156494 Submitted on 14 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 3D scanner positioning for aircraft surface inspection Marie-Anne Bauda, Alex Grenwelge, Stanislas Larnier AKKA Research, Toulouse, France [email protected] Abstract—The French Air-Cobot project aims at improving preflight maintenance as well as providing a traceability of the performed checks. A collaborative mobile robot has been built in order to carry out those tasks. The robot is able to navigate autonomously around the aircraft and perform non-destructive testing thanks to several sensors. More precisely, in this paper we focus on how to obtain a correct position of the 3D scanner fixed on a scissor with respect to the aircraft. It acquires 3D data which is analyzed to process surface inspection. The functional safety of the scissor is based on automatic visual checking of some cues.
    [Show full text]
  • Application-Story-UEI-Spacex.Pdf
    APPLICATION STORY United Electronic Industries & SpaceX WORKING TOGETHER TO FIND SOLUTIONS SpaceX was founded in 2002 by Tesla’s Elon Musk with the end goal of reducing space transportation costs enough to colonize Mars. In 2008, it became the first successful private space launch operator, and in May 2020, it successfully flew humans to the International Space Station on the SpaceX Dragon 2. Most recently, SpaceX has been developing a spacecraft for use in crewed interplanetary spaceflight. With the increasing complexity of each new spacecraft, searching for the right monitoring and control system solution for their ground support equipment was critical to ushering in more successful launches. THE IMMEDIATE CHALLENGES SpaceX’s existing ground support equipment wasn’t robust, reliable, and scalable enough to meet the environmental demand of rocket launch for manned flight on such a large, expansive launch pad. In addition, much of the equipment was becoming obsolete. The old, obsolete equipment needed twice the amount of wiring and hardware for basic feedback of sensors and controls. All new DAQ and control hardware needed to be extremely robust, since launchpads were subject to extreme temperatures, pressure, and vibration and system failure could have extreme consequences. UEI’S PATHWAY TO SUCCESS FOR SPACEX UEI specialists visited SpaceX’s existing launchpads in California and Florida, as well as their rocket production and testing facility in Texas, and found that SpaceX needed feedback on all control points, support for many different sensor types, and the ability to work with existing software infrastructure. To make the new system as reliable as possible, UEI hardware allowed SpaceX to change the architecture of their launch pads, moving from a centralized control system to a distributed system with self-diagnostic capabilities for every component.
    [Show full text]
  • International Space Station Requirement Verification for Commercial Visiting Vehicles
    https://ntrs.nasa.gov/search.jsp?R=20170002073 2019-08-31T17:01:08+00:00Z MISSION AND PROGRAM INTEGRATION (MAPI) CONTRACT International Space Station Requirement Verification for Commercial Visiting Vehicles Dan Garguilo TBD This presentation is intended solely for the audience to which it is directed. Agenda • Background on the ISS and Visiting Vehicles • Overview of the Commercial Orbital Transportation Services (COTS) Program • Integrating Commercial Visiting Vehicles to ISS • Commercial Requirement Verification and Compliance International Space Station Program Overview • Launched in 1998 as a collaboration with the space agencies of the US, Russia, Canada, Japan, and Europe • Consists of pressurized modules, an external truss and solar arrays, and robotic arms • Serves as a microgravity and space environment research laboratory in which crew members conduct experiments in biology, physics, astronomy, and meteorology • Test bed for technology and equipment for future long duration exploration missions to the Moon and Mars • Maintains a low Earth orbital attitude between 205 and 270 miles • 6 crewmembers live and work on the ISS • Currently funded operation through 2024 International Space Station Visiting Vehicle Resupply • Requires continuous resupply of food, water, clothing, spare parts, propellant, scientific experiments, and crew • Currently average approximately 12-14 Place Photo Here commercial and government flights per year • Both manned and unmanned vehicles • Spacecraft can either dock or be grappled by robotic arm and
    [Show full text]
  • Aviation Week & Space Technology
    STARTS AFTER PAGE 34 Using AI To Boost How Emirates Is Extending ATM Efficiency Maintenance Intervals ™ $14.95 JANUARY 13-26, 2020 2020 THE YEAR OF SUSTAINABILITY RICH MEDIA EXCLUSIVE Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • Aviation Week & Space Technology
    Why T-X Losers UK to EASA How NASA Is Europe’s Flight Plan Are Not Quitting ‘Cheerio’ Cutting Red Tape for AI in Aviation $14.95 MARCH 23-APRIL 5, 2020 Aviation In Crisis Digital Edition Copyright Notice The content contained in this digital edition (“Digital Material”), as well as its selection and arrangement, is owned by Informa. and its affiliated companies, licensors, and suppliers, and is protected by their respective copyright, trademark and other proprietary rights. Upon payment of the subscription price, if applicable, you are hereby authorized to view, download, copy, and print Digital Material solely for your own personal, non-commercial use, provided that by doing any of the foregoing, you acknowledge that (i) you do not and will not acquire any ownership rights of any kind in the Digital Material or any portion thereof, (ii) you must preserve all copyright and other proprietary notices included in any downloaded Digital Material, and (iii) you must comply in all respects with the use restrictions set forth below and in the Informa Privacy Policy and the Informa Terms of Use (the “Use Restrictions”), each of which is hereby incorporated by reference. Any use not in accordance with, and any failure to comply fully with, the Use Restrictions is expressly prohibited by law, and may result in severe civil and criminal penalties. Violators will be prosecuted to the maximum possible extent. You may not modify, publish, license, transmit (including by way of email, facsimile or other electronic means), transfer, sell, reproduce (including by copying or posting on any network computer), create derivative works from, display, store, or in any way exploit, broadcast, disseminate or distribute, in any format or media of any kind, any of the Digital Material, in whole or in part, without the express prior written consent of Informa.
    [Show full text]
  • French Armed Forces Update November 2020
    French Armed Forces Update November 2020 This paper is NOT an official publication from the French Armed Forces. It provides an update on the French military operations and main activities. The French Defense Attaché Office has drafted it in accordance with open publications. The French Armed Forces are heavily deployed both at home and overseas. On the security front, the terrorist threat is still assessed as high in France and operation “Sentinelle” (Guardian) is still going on. Overseas, the combat units are extremely active against a determined enemy and the French soldiers are constantly adapting their courses of action and their layout plans to the threat. Impacted by the Covid-19 pandemic, the French Armed Forces have resumed their day-to-day activities and operations under the sign of transformation and modernization. DeuxIN huss arMEMORIAMds parachut istes tués par un engin explosif improvisé au Mali | Zone Militaire 09/09/2020 11:16 SHARE On September 5th, during a control operation within the Tessalit + region, three hussards were seriously injured after the explosion & of an Improvised Explosive Device. Despite the provision of + immediate care and their quick transportation to the hospital, the ! hussard parachutiste de 1ère classe Arnaud Volpe and + brigadier-chef S.T1 died from their injuries. ' + ( Après la perte du hussard de 1ere classe Tojohasina Razafintsalama, le On23 November 12th, during a routine mission in the vicinity of juillet, lors d’une attaque suicide commise avec un VBIED [véhicule piégé], le 1er Régiment de Hussards Parachutistes [RHP] a une nouvelle fois été Sharm el-Sheikh, Egypt, nine members of the Multinational endeuillé, ce 5 septembre.
    [Show full text]
  • The-Recitals-January-2021-Vajiram.Pdf
    INDEX Message From The Desk Of Director 1 1. Feature Article 2-7 a. Future Of Food b. Vaccine Maitri Initiative 2. Mains Q&A 12-25 3. Prelims Q&A 26-67 4. Bridging Gaps 68-123 1. Vertical and Horizontal Reservations 2. Plea To Bar Disqualified Lawmakers From Contesting Bye-Polls To Same House 3. The India Justice Report 2020 4. Adultery Law And The Armed Forces 5. Urban Local Bodies (ULB) Reforms 6. PRAGATI Meeting 7. Toycathon 8. Henley Passport Index 9. GAVI Board 10. National Girl Child Day 11. Satyameva Jayate Programme 12. Smart Classes For Rural Schools VAJIRAM AND RAVI The Recitals (January 2021) 13. Special Marriage Act 14. Freight Portal 15. Agri-Hackathon 2020 16. Investment Trends Monitor 17. Bad Banks 18. Scheme For Ethanol Distillation 19. Trade Deficit With China 20. Pradhan Mantri Kaushal Vikas Yojana 3.0 21. Regulatory Structure For NBFCs 22. Startup India Seed Fund 23. Kala Utsav 2020 24. Oldest Cave Art 25. Jallikattu 26. Gulf Leaders Sign Solidarity and Stability Deal 27. Russia Withdraws from Open Skies Treaty 28. Scottish Independence Referendum 29. China Holds Third South Asia Multilateral Meet 30. US President Donald Trump Impeached 31. US Eases Restrictions on Contact with Taiwan 32. New START Treaty 33. UAE’s New Citizenship Policy 34. Article 19 of UN Charter 35. H-1B Visas and New Wage-based Rules 36. India at the UN High Table 37. India - UK Cooperation Against Cross-Border Terrorism 38. India-France to Expand Ecological Partnership 39. Document on the U.S. Strategic Framework for the Indo-Pacific 40.
    [Show full text]
  • 6.2020-0389 Publication Date 2020 Document Version Final Published Version Published in AIAA Scitech 2020 Forum
    Delft University of Technology Towards automated aircraft maintenance inspection. A use case of detecting aircraft dents using mask r-cnn Bouarfa, Soufiane; Doğru, Anıl; Arizar, Ridwan; Aydoğan, Reyhan; Serafico, Joselito DOI 10.2514/6.2020-0389 Publication date 2020 Document Version Final published version Published in AIAA Scitech 2020 Forum Citation (APA) Bouarfa, S., Doğru, A., Arizar, R., Aydoğan, R., & Serafico, J. (2020). Towards automated aircraft maintenance inspection. A use case of detecting aircraft dents using mask r-cnn. In AIAA Scitech 2020 Forum [AIAA 2020-0389] (AIAA Scitech 2020 Forum; Vol. 1 PartF). American Institute of Aeronautics and Astronautics Inc. (AIAA). https://doi.org/10.2514/6.2020-0389 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. AIAA SciTech Forum 10.2514/6.2020-0389 6-10 January 2020, Orlando, FL AIAA Scitech 2020 Forum
    [Show full text]
  • Research Project Report 2 ... Final3.Pdf
    Multimodal learning analytics on sustained attention by measuring ambient noise Jeffrey Pronk Responsible Professor: Marcus Specht (PhD) Supervisor: Yoon Lee (PhD candidate) Peer group members: Giuseppe Deininger (BSc student) Jurriaan Den Toonder (BSc student) Sven van der Voort (BSc student) I Abstract In this research, a learner’s sustained attention in the remote learning context will be studied by collecting data from different sensors. By combining the results of these sensors in a multi-modal analytics tool, the estimation of the learner’s sustained at- tention can hopefully be improved. This research will mainly focus on microphone recordings of ambient sound in a learners room. The main research question of this re- search was "How can ambient noise sensing aid in a multi-modal analytics tool to track sustained attention?". The multi-modal learning analytics tool, if accurate enough, could potentially be used by teachers to make their material more engaging and could help learner’s to keep their focus while performing a learning task (Schneider et al., 2015). The research resulted in a model with 61% accuracy. This percentage needs to be further researched, since because of the COVID situation, not enough data could be collected to train the model. Because of the relatively low accuracy of the model, it was found that ambient noise sensing can aid the multi-modal analytics tool to some extent by adding some data-points it is certain about, when the mobile movement tracking model does not detect a distraction. If the model improves in future research, the model could be able to help mobile movement tracking model, even if the mobile movement tracking model already predicts a distraction with bigger then 50% certainty.
    [Show full text]
  • Airline & Aerospace Mro & Flight Operations It Conference
    AIRLINE & AEROSPACE MRO & FLIGHT OPERATIONS IT CONFERENCE 11th & 12th March 2020 – Hilton Miami Downtown Hotel, Miami, USA AMERICAS 2020 INDEPENDENT MROs – DELEGATE INFORMATION Vendors exhibiting their software include: The World’s Leading Aviation IT Conference for MRO/M&E and Flight Operations Solutions returns to Miami in 2020 bigger and better! For further information contact Stephen Keeble – [email protected] +44 1403 230 888 2020 AIRLINE & AEROSPACE MRO & OPERATIONS IT CONFERENCE Americas 11th & 12th March 2020 www.aircraft-commerce.com Hilton Miami Downtown Hotel, Miami, USA WHY ATTEND AS A DELEGATE The Airline & Aerospace MRO & Flight Operations IT Conference – Americas, returns to Miami for 2020 with over 50 of the world’s leading IT vendors exhibiting their solutions. Delegates can listen to keynote presentations and case studies, and take part in interactive workshop sessions. It is the only event in the world providing airlines, aircraft operators, MROs and OEMs with a one- stop shop to be able to review and demo the latest cutting edge technology, designed to streamline and increase efficiency for aircraft maintenance and flight operations, as well as dramatically reduce costs. From the latest paperless and mobile solutions for the Flight Deck or Hangar to a complex maintenance management system; it will all be there. Keynote Presentations/Case Studies As well as refreshments being available throughout the event, breakfast and lunch is included on both days with a cocktail reception taking place in the evening of day one (11th March). CONFERENCE OVERVIEW The conference provides a number of superb opportunities: A two day agenda of presentations, case studies and interactive workshops given by industry experts and the airline/MRO IT users themselves will review and let delegates discuss the latest trends and innovations in this rapidly developing sector of the industry.
    [Show full text]
  • Architectural Options and Optimization of Suborbital Space Tourism Vehicles
    Chair of Astronautics Architectural Options and Optimization of Suborbital Space Tourism Vehicles Author: Markus Guerster Master Thesis, RT-MA 2017/2 Supervisors Prof. Edward F. Crawley Prof. Ulrich Walter Department of Aeronautics and Astronautics Institute of Astronautics Massachusetts Institute of Technology Technical University of Munich Dr. Christian Hock Christian Bühler CEO Institute of Astronautics in -tech industry GmbH Technical University of Munich Chair of Astronautics “I wanted to be involved in something that has an outside chance of doing some good. If there is not something meaningful in what you are doing above and beyond any commercial returns, then I think life is a bit hollow.” Elon Musk, 2013 II Chair of Astronautics Erklärung Ich erkläre, dass ich alle Einrichtungen, Anlagen, Geräte und Programme, die mir im Rahmen meiner Masterarbeit von der TU München bzw. vom Lehrstuhl für Raumfahrttechnik zur Verfügung gestellt werden, entsprechend dem vorgesehenen Zweck, den gültigen Richtlinien, Benutzerordnungen oder Gebrauchsanleitungen und soweit nötig erst nach erfolgter Einweisung und mit aller Sorgfalt benutze. Insbesondere werde ich Programme ohne besondere Anweisung durch den Betreuer weder kopieren noch für andere als für meine Tätigkeit am Lehrstuhl vorgesehene Zwecke verwenden. Mir als vertraulich genannte Informationen, Unterlagen und Erkenntnisse werde ich weder während noch nach meiner Tätigkeit am Lehrstuhl an Dritte weitergeben. Ich erkläre mich außerdem damit einverstanden, dass meine Masterarbeit vom Lehrstuhl auf Anfrage fachlich interessierten Personen, auch über eine Bibliothek, zugänglich gemacht wird. Ich erkläre außerdem, dass ich diese Arbeit ohne fremde Hilfe angefertigt und nur die in dem Literaturverzeichnis angeführten Quellen und Hilfsmittel benutzt habe. Garching, den 28. April 2017 Name: Markus Guerster Matrikelnummer: 03628540 III Chair of Astronautics Zusammenfassung Der Ansari X-Prize legte den Grundstein für den suborbitalen Weltraumtourismus.
    [Show full text]