Space Science in China

Total Page:16

File Type:pdf, Size:1020Kb

Space Science in China J. Jpn. Soc. Microgravity Appl. Vol. 22 No. 4 2005 (242–245) Keynote Paper Space Science in China Ji WU1 and Jin CHANG2 Abstract China started to develop space science in the early 1960s. from 1960s to 1990s we have developed some payloads for space science study onboard the spacecrafts which are not ˆxed in space science. In the 1990s the space science experi- ments including space astronomy have been done in the SZ spacecrafts. Up to now we have launched ˆve spacecrafts for space science experiment. Recently China's Geospace Double Star Exploration Program (DSP) is a very success- ful space science mission. More and more proposals, or potential projects have been proposed in recent two years. We try to brie‰y outline these new proposals, although most of them are in fact only in their conception studies. veloped and operated during every launch activities 1. Introduction and throughout each mission lifetime cycle. China started to explore the upper atmosphere using On the theoretical part, many of the state key sounding rockets and balloons in the early 1960s. Start laboratories have been established. The scientists have from the early 70's, right after China launched its ˆrst been using observation data from both abroad and satellite DFH–1, a series of scientiˆc/experiment satel- homemade satellites. China also built up some ground lites has been launch, the so called SJ series. For exam- observation facilities, including telescope for the Sun ple SJ–1 in 1971, SJ–2 in 1984, SJ–4 in 1994 and SJ–5 observation and radars for ionosphere observations. in 1999, etc. The SJ series are mostly dedicated to In 2000, Chinese government has issued a white space environment exploration and test the radiation paper on Chinese Space Activities. In this book, space environment eŠects. A good example is SJ–5. It has its science is listed together with space technology and main goal to study the single particle event in the LEO space application and one of the three major areas of on varies circuits. Besides it also was acting as the space activities in China. Under this framework, new microgravity experiment platform carried out a space science mission proposals are called right after double-layer ‰uid science experiment, in which a re- that, for example the Double Star Program in 2001, mote science operation of this experiment was real- and also recently, for example Chang'E–1 in 2004. A ized. ground based observation chain is approved by the Since late 1980s, retrievable satellites have been em- government in 2005. It involves 15 ground stations ployed for various kinds of scientiˆc experiments, such along 120 degree east meridian line and 30 degree west as natural resource discovery by means of remote sens- latitude line. They will be given a more detailed ing and microgravity experiments. In the later experi- coverage in the following sections under the topic of ments, many satisfactory results have been achieved in ongoing projects. crystal and protein growth, cell cultivation and crop Currently, missions proposed to next ˆve years plan breeding. Innovative achievements have been scored in are intensively evaluated and selected. After the ˆrst the study of basic theory of space science. round selection, a few proposals are given higher In 1992, Chinese government initialized the manned priorities than others and got the green light to con- space program. Before the ˆrst successful manned mis- tinue for Phase A studies. These mission proposals are sion, 4 unmanned test missions have been launched Hard X-ray Modulation Telescope (HXMT) in as- from 1999 to 2002. On the missions, the scientists have tronomy, KUAFU–space storms and aurora monitor- got a lot of opportunities to carry out scientiˆc experi- ing in geospace exploration, Small Explorer for Solar ments in the ˆeld of space astronomy, space physics, Eruption (SMESE) and Space Solar Telescope (SST). space environment eŠects test, earth remote sensing, Other proposals are kept for further study and for next microgravity science including basic ‰uid physics, round of evaluation in one year, such as DMS, AS- material science and life science. TROID I, SPORT and WIMS. The details of them are Along with the manned space program, the space given in the sections under the topic of proposed environment/space weather forecast has also been de- projects. 1 Center for Space Science and Applied Research, Chinese Academy of Sciences Beijing 100080, P.R. China (E-mail: wuji@cssar.ac.cn) 2 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, P.R. China (E-mail: chang@mail.pmo.ac.cn) 50 ― 242 ― Space Science in China – to probe the space environment in the vicinity of 2. Onging Projects the moon 2.1 Double Star Program (DSP) To accomplish the above goals, six scientiˆc pay- The Geo-space Double Star Exploration Program loads will be on board. They are, a stereo CCD camer- (DSP) is the ˆrst complete space science mission in a, a visible light band spectrometer, a laser altimeter, a China that starting from its orbit design to its payloads x-ray spectrometer, a four waveband microwave and application systems. It has been approved by the radiometer, a space environment detector package. To government on 2002 but with a early starting from mid better serve these payloads, a dedicated payload data 2001.ItisalsoajointprojectbetweenChinaandEu- management system is also employed. It composed by rope. The scientiˆc objective of DSP is to extend our a 1553B data bus controller, a 48 Gb solid state mass knowledge of the Earth's magnetosphere. It comprises memory, a power distributor and a remote data col- two Tan Ce (Explorer) spacecraft: lecting unit. The obiter is a 3-axis stabilized lunar Tan Ce 1 (TC–1) ‰ies in a highly elliptical equatorial pointing platform with capability of communicating orbit with apogee at 79000 km. Thus it will sample directly to the earth ground station and one year life- key regions on the day and night sides of the Earth time. The spacecraft including the payload is not turn- where the process of magnetic reconnection occurs. ing into its ‰y model manufacturing phase now and These reconnection processes dominate the dynam- everything shows that the planed launch date in 2007 ics of the magnetosphere. It was launched in 30 De- will be kept. cember 2003. The scientiˆc data from the payloads are mainly Tan Ce 2 (TC–2) ‰ies in a highly elliptical polar orbit received by a 50 meter antenna in Beijing (Miyun) and with apogee at 39000 km. Thus it will sample the po- backup with one 40 meter antenna in Kunming, Yun- larcapandcuspregionswhicharethemainregions nan province. There are more than one hundred scien- where energy from the Sun ‰ows into the mag- tists are awaiting for the ˆrst hand lunar exploration netosphere. Those ‰ows are largely controlled by the data coming down in 2007. reconnection processes to be studied by TC–1. It All the above is under development within the in- was successfully launched in 25 July 2004. stitutes of Chinese Academy of Sciences. Double Star provides measurements in key regions of 2.3 Meridian Project the magnetosphere. In addition, the orbits of the two The Meridian Project is a Chinese multi-station spacecraft are designed with coordination to ESA's chain along 1209E to monitor space environment, Cluster mission. Double Star and Cluster will make starting from Mohe, the most northern station in Chi- simultaneous observations when in separate but relat- na, through Beijing, Wuhan, Guangzhou and extend- ed regions. By exploiting such measurements, scien- ed to Chinese Zhongshan station in Antarctic. tists will improve their understanding of the mag- The project is composed with three systems, namely netosphere much better than from either mission a- monitoring, network and data transmission, research lone. A prime example will be when Double Star ob- and forecast. The monitoring system is further divided serves in the reconnection region on the dayside of the into four sub-systems. They are radio wave band ob- magnetosphere while Cluster observes in the so-called servation, optical observation, the Earth magnetism ``cusp'' region, where it can detect plasma ‰owing observation and sounding rocket observation. The ra- deep into the Earth's magnetosphere after entering the dio wave band observation sub-system includes the magnetosphere in the reconnection region. The two following instruments: non-coherent scattering radar, spacecrafts carry a total of sixteen scientiˆc in- MST radar, coherent scattering radar, interplanetary struments–eight from China and eight from Europe. plasma scintillation, middle wave radar and GPS The scientiˆc data are received by two ground stations receivers. The optical observation sub-system includes in Beijing (Miyun) and Shanghai (Sheshan) in China atmosphere lidar and interferometers. The Earth mag- and one ground stations in Spain (Villafranca) in Eu- netism observation sub-system includes many mag- rope. netometers. The sounding rocket sub-system will not 2.2 Chang'E–1 only carry out insitu measurement from 40 km upto Chang'E–1 is the ˆrst Chinese lunar mission. It aims 200 km, but also support the on site radar and other to launch a lunar orbiter in 2007. This mission is consi- remote sensing instrument for calibration. The sound- dered as the ˆrst step of China to go into the deep ing rocket launch site will be located in Hainan island space. The mission has four major scientiˆc objec- in south of China. tives. They are, The ground stations that will be build up or updated – to study lunar surface topography are: Mohe, Manzhouli, Harbin, Changchun, Beijing, – to analyze abundance of elements and distribu- Zhengzhou, Wuhan, Hangzhou, Hefei, Chengdu, tion of surface materials on the moon Lahsa, Shaoyang, Guangzhou, Hainan and Zhong- – to survey the global properties of the lunar shan.
Recommended publications
  • Curriculum Vitae Hongbo Du NSF Crest Center for Energy & Environmental Sustainability (CEES) Prairie View A&M University Phone: 936-261-1654 Email: [email protected]
    Curriculum Vitae Hongbo Du NSF Crest Center for Energy & Environmental Sustainability (CEES) Prairie View A&M University Phone: 936-261-1654 Email: [email protected] EDUCATION Ph.D. Mechanical Engineering--- 2011 Colorado State University, Fort Collins, USA Master in Mechanical Engineering --- 2002 Beijing Forestry University, Beijing, China Bachelor in Mechanical Engineering ---1999 Beijing Forestry University, Beijing, China WORKING EXPERIENCE February, 2015-present Post-doctoral Researcher Prairie View A& M University ♦ Studying oil and shale gas produced water treatment via various membrane technologies ♦ Working on digestion of organic matter in produced water with advanced photocatalyst ♦ Working on applications of polyethyleneimine impregnated on titanate nanotubes in post combustion CO2 capture ♦ Working on energy sustainability of biofuels including bioethanol and biodiesel, electrical vehicles and renewable energies ♦ Expertise in material characterization with SEM, TEM, AFM, TGA-DSC, and surface area and porosity analysis, and chemical detection with IC, HPLC and GC-MS. ♦ Mentored more than 20 graduate and undergraduate student researchers at CEES. Under my mentoring, 1 one graduate student won the first place of oral research presentation and one undergraduate student won the second place in the land-grant research symposium at PVAMU (2018); one graduate student won the third place in the 13th annual research symposium at PVAMU (2018); one undergraduate student won the second place at the Texas A&M University System’s 13th Annual
    [Show full text]
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • CASC Efforts on Dealing with Space Debris Toward Space Long Term Sustainability
    China Aerospace Science and Technology Corporation CNSACNSA CASC Efforts on Dealing with Space Debris toward Space Long Term Sustainability Dr. Zizheng GONG Chief Scientist Beijing Institute of Spacecraft Environment Engineering, China Aerospace Science and Technology Corporation (CASC) COPUOS Scientific and Technical Subcommittee, the fifty session. Vienna, February 11-22,2013. Slide 1 Outline CNSACNSA 1 Overview 2 CASC Efforts of Space Debris Activities 3 Views and Conclusions COPUOS Scientific and Technical Subcommittee, the fifty session. Vienna, February 11-22,2013. Slide 2 CONTENTS CNSACNSA 1 Overview 2 CASC Efforts of Space Debris Activities 3 Conclusions and Comments COPUOS Scientific and Technical Subcommittee, the fifty session. Vienna, February 11-22,2013. Slide 3 China Aerospace Science and Technology Corporation CNSACNSA CASC is the main and the largest state-owned aerospace enterprise in China. Main fields & Mission : 1. Launchers 2. Human Spaceflight 3. Earth Observation 4. Telecommunications 5. Navigation 6. Space Science and Deep Space Exploration COPUOSFeb Scientific 14,2013 Viennaand Technical Subcommittee, the fifty session. Vienna, February 11-22,2013. SlideSlide 4 4 Manned Space Programs CNSACNSA The current manned space program in China Programs: is composed of 3 phases: Shenzhou - 1 Shenzhou - 2 Phase 1: Manned space flight Shenzhou - 3 Phase 2:Extravehicular activity, rendezvous & docking Shenzhou - 4 Shenzhou - 5 Phase 3: Space Lab and Space station Shenzhou - 6 In 2011 and 2012, Tiangong-1 and Shenzhou-8, Shenzhou-9 Shenzhou - 7 accomplished first space rendezvous and docking test, laying Tiangong - 1 the foundation for the construction of future space station. Shenzhou - 8 Shenzhou - 9 Extravehicular activity Rendezvous & Docking Space Lab Feb 14,2013 Vienna COPUOS Scientific and Technical Subcommittee, E-mail:[email protected] the fifty session.
    [Show full text]
  • A New Dawn for China's Space Scientists
    NEWSFOCUS In the hot seat. The crew of Shenzhou 9 prepares for China’s fi rst mission to dock spacecraft with astronauts aboard. A New Dawn for China’s Space Scientists China’s crewed space program has won admiration for the engineering mer governor Bo Xilai and the high-profi le on April 22, 2013 prowess on display earlier this week in the Shenzhou 9 mission. fl ight of blind activist Chen Guangcheng. For the party, the elegant pas de deux at 343 kilo- Upcoming science missions hope to steal some of the spotlight meters above Earth’s surface was a timely propaganda triumph. “China’s space pro- BEIJING—When Shenzhou 9 gently fi red its moment: Shenzhou’s former chief designer, gram gives the party legitimacy,” Cheng thrusters to pull to within several centime- Qi Faren. “I wasn’t nervous,” he claims. says. “The leaders can say, ‘Look what we ters of the orbiting Tiangong module on 24 Shenzhou’s fi rst fl ight in 1999, Qi says, was have done for the country.’ ” June, mission managers were on edge. For a far riskier roll of the dice. That landmark The engineering feat is indisputable. a fleeting moment, a question hung in the mission went well, as did the Shenzhou 9 “China is emerging as a world leader in www.sciencemag.org air: Would the astronauts succeed in China’s docking maneuvers, completing a milestone space,” says Mark Stokes, executive direc- fi rst attempt to manually dock the two space- on China’s road to a sustained human pres- tor of the Project 2049 Institute, a think tank craft, circling Earth at 7.8 kilometers per sec- ence in space.
    [Show full text]
  • Space Security 2004 V2
    Space Security 2004 Space “I know of no similar yearly baseline of what is happening in space. The Index is a valuable tool for informing much-needed global discussions of how best to achieve space security.” Professor John M. Logsdon Director, Space Policy Institute, Elliott School of International Affair, George Washington University “Space Security 2004 is a salutary reminder of how dependent the world has become on space- based systems for both commercial and military use. The overcrowding of both orbits and frequencies needs international co-operation, but the book highlights some worrying security trends. We cannot leave control of space to any one nation, and international policy makers need to read this excellent survey to understand the dangers.” Air Marshal Lord Garden UK Liberal Democrat Defence Spokesman & Former UK Assistant Chief of the Defence Staff Space Security “Satellites are critical for national security. Space Security 2004 is a comprehensive analysis of the activities of space powers and how they are perceived to affect the security of these important assets and their environment. While all may not agree with these perceptions it is 2004 essential that space professionals and political leaders understand them. This is an important contribution towards that goal.” Brigadier General Simon P. Worden, United States Air Force (Ret.) Research Professor of Astronomy, Planetary Sciences and Optical Sciences, University of Arizona “In a single source, this publication provides a comprehensive view of the latest developments in space, and the trends that are influencing space security policies. As an annual exercise, the review is likely to play a key role in the emerging and increasingly important debate on space security.
    [Show full text]
  • Changes to the Database for May 1, 2021 Release This Version of the Database Includes Launches Through April 30, 2021
    Changes to the Database for May 1, 2021 Release This version of the Database includes launches through April 30, 2021. There are currently 4,084 active satellites in the database. The changes to this version of the database include: • The addition of 836 satellites • The deletion of 124 satellites • The addition of and corrections to some satellite data Satellites Deleted from Database for May 1, 2021 Release Quetzal-1 – 1998-057RK ChubuSat 1 – 2014-070C Lacrosse/Onyx 3 (USA 133) – 1997-064A TSUBAME – 2014-070E Diwata-1 – 1998-067HT GRIFEX – 2015-003D HaloSat – 1998-067NX Tianwang 1C – 2015-051B UiTMSAT-1 – 1998-067PD Fox-1A – 2015-058D Maya-1 -- 1998-067PE ChubuSat 2 – 2016-012B Tanyusha No. 3 – 1998-067PJ ChubuSat 3 – 2016-012C Tanyusha No. 4 – 1998-067PK AIST-2D – 2016-026B Catsat-2 -- 1998-067PV ÑuSat-1 – 2016-033B Delphini – 1998-067PW ÑuSat-2 – 2016-033C Catsat-1 – 1998-067PZ Dove 2p-6 – 2016-040H IOD-1 GEMS – 1998-067QK Dove 2p-10 – 2016-040P SWIATOWID – 1998-067QM Dove 2p-12 – 2016-040R NARSSCUBE-1 – 1998-067QX Beesat-4 – 2016-040W TechEdSat-10 – 1998-067RQ Dove 3p-51 – 2017-008E Radsat-U – 1998-067RF Dove 3p-79 – 2017-008AN ABS-7 – 1999-046A Dove 3p-86 – 2017-008AP Nimiq-2 – 2002-062A Dove 3p-35 – 2017-008AT DirecTV-7S – 2004-016A Dove 3p-68 – 2017-008BH Apstar-6 – 2005-012A Dove 3p-14 – 2017-008BS Sinah-1 – 2005-043D Dove 3p-20 – 2017-008C MTSAT-2 – 2006-004A Dove 3p-77 – 2017-008CF INSAT-4CR – 2007-037A Dove 3p-47 – 2017-008CN Yubileiny – 2008-025A Dove 3p-81 – 2017-008CZ AIST-2 – 2013-015D Dove 3p-87 – 2017-008DA Yaogan-18
    [Show full text]
  • 第 28 届国际天文学联合会大会 Programme Book
    IAU XXVIII GENERAL ASSEMBLY 20-31 AUGUST, 2012 第 28 届国际天文学联合会大会 PROGRAMME BOOK 1 Table of Contents Welcome to IAU Beijing General Assembly XXVIII ........................... 4 Welcome to Beijing, welcome to China! ................................................ 6 1.IAU EXECUTIVE COMMITTEE, HOST ORGANISATIONS, PARTNERS, SPONSORS AND EXHIBITORS ................................ 8 1.1. IAU EXECUTIVE COMMITTEE ..................................................................8 1.2. IAU SECRETARIAT .........................................................................................8 1.3. HOST ORGANISATIONS ................................................................................8 1.4. NATIONAL ADVISORY COMMITTEE ........................................................9 1.5. NATIONAL ORGANISING COMMITTEE ..................................................9 1.6. LOCAL ORGANISING COMMITTEE .......................................................10 1.7. ORGANISATION SUPPORT ........................................................................ 11 1.8. PARTNERS, SPONSORS AND EXHIBITORS ........................................... 11 2.IAU XXVIII GENERAL ASSEMBLY INFORMATION ............... 14 2.1. LOCAL ORGANISING COMMITTEE OFFICE .......................................14 2.2. IAU SECRETARIAT .......................................................................................14 2.3. REGISTRATION DESK – OPENING HOURS ...........................................14 2.4. ON SITE REGISTRATION FEES AND PAYMENTS ................................14
    [Show full text]
  • ISU Team Project
    Additional copies of the Project Report or the Executive Summary for this project may be ordered from the International Space University (ISU) Headquarters. The Executive Summary and the Project Report also can be found on the ISU website. International Space University Strasbourg Central Campus Attention: Publications Parc d’Innovation 1 rue Jean-Dominque Cassini 67400 Illkirch-Graffenstaden France Tel : +33 (0)3 88 65 54 30 Fax: +33(0) 88 65 54 47 http://www.isunet.edu Copyright 2003 by the International Space University All Rights Reserved TRACKS TO SPACE ACKNOWLEDGEMENTS The following individuals and organisations have generously contributed their time, resources, expertise and facilities to help us make TRACKS to Space possible. PROJECT SPONSOR European Space Agency — Industrial Matters and Technology Programmes Hans Kappler Director Marco Guglielmi Head of Technology Strategy Section Marco Freire Technology Strategy Engineer PROJECT FACULTY AND TA Project Initiator Walter Peeters Co-chair Nicolas Peter Co-chair Ray Williamson Teaching Associate Philippos Beveratos English Tutor Sarah Delaveaud English Tutor Carol Carnett EXTERNAL EXPERTS Andrew Aldrin Boeing, NASA Systems Randall Correll Science Applications International Corporation Dan Glover NASA Glenn Research Center Tetsuichi Ito NASDA, ISU Faculty Joan Johnson-Freese United States Naval War College Chiaki Mukai NASDA Astronaut Ichiro Nakatani Institute of Space and Astronautical Science (ISAS) Jean-Claude Piedboeuf Canadian Space Agency Roy Sach Director Defence Space, Australia Gongling Sun EurasSpace GmbH Simon P. Worden Brigadier General, United States Air Force PERSONAL THANKS The authors would like to extend a heartfelt thanks to those who made the greatest sacrifices during this two-month space odyssey.
    [Show full text]
  • Publisher Version (Open Access)
    Macquarie University ResearchOnline This is the published version of: Anthony Horton ; Lee Spitler ; Naomi Mathers ; Michael Petkovic ; Douglas Griffin ; Simon Barraclough ; Craig Benson ; Igor Dimitrijevic ; Andrew Lambert; Anthony Previte ; John Bowen ; Solomon Westerman ; Jordi Puig-Suari ; Sam Reisenfeld ; Jon Lawrence ; Ross Zhelem ; Matthew Colless and Russell Boyce " The Australian Space Eye: studying the history of galaxy formation with a CubeSat ", Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 99041Q (July 29, 2016) Access to the published version: http://dx.doi.org/10.1117/12.2232467 Copyright: Copyright 2016 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Australian Space Eye: studying the history of galaxy formation with a CubeSat Anthony Hortona, Lee Spitlera,b, Naomi Mathersc, Michael Petkovicc, Douglas Griffind, Simon Barracloughd, Craig Bensond, Igor Dimitrijevicd, Andrew Lambertd, Anthony Previtee, John Bowene, Solomon Westermane, Jordi Puig-Suarie,f, Sam Reisenfeldb, Jon Lawrencea, Ross Zhelema, Matthew Collessc, and Russell Boyced aAustralian Astronomical Observatory, Sydney, Australia bMacquarie University, Sydney, Australia cAustralian National University, Canberra, Australia dUNSW Canberra, Canberra, Australia eTyvak Inc., Irvine CA, USA fCal Poly, San Luis Obispo CA, USA ABSTRACT The Australian Space Eye is a proposed astronomical telescope based on a 6 U CubeSat platform. The Space Eye will exploit the low level of systematic errors achievable with a small space based telescope to enable high accuracy measurements of the optical extragalactic background light and low surface brightness emission around nearby galaxies.
    [Show full text]
  • Changes to the June 19, 2006 Release of the UCS Satellite Database This Version of the Database Includes Launches Through June 15, 2006
    For the 7-1-16 release: This version of the Database includes launches through June 30, 2016. There are currently 1419 active satellites in the database. The changes to this version of the database include: The addition of 75 satellites The deletion of 37 satellites The addition of and corrections to some satellite data. Satellites removed Akebono – 1989-016A Navstar GPS II-10 (USA 66) – 1990-103A Navstar GPS II-23 (USA 96) – 1993-068A Superbird-C – 1997-036A Intelsat-7 – 1998-052A Dove 1d-2 – 1998-067FV Dove 1e-1 – 1998-067GF Dove 1e-2 – 1998-067GE Dove 1e-3 – 1998-067GH Dove 1e-4 – 1998-067GG Dove 1e-5 – 1998-067GL Dove 1e-8 – 1998-067GK Dove 1e-9 – 1998-067GN SERPENS – 1998-067GX AAUSat-5 – 1998-067GZ Dove 2b-8 – 1998-067HJ Eutelsat 115 West A – 1998-070A Ørsted – 1999-008B Keyhole 3 (USA 144) – 1999-028A Galaxy-27 – 1999-052A XM-1 – 2001-018A Keyhole 4 (USA 161) -- 2001-044A Yaogan-2 – 2007-019A Yaogan-3 – 2007-055A Can-X2 – 2008-021H STUDSat – 2010-035B Tian-Xun-1 – 2011-066A Yubileiny-2/RS-40 – 2012-041C Can-X3a -- 2013-009G ORSES – 2013-064G $50Sat – 2013-066W DMSP-19 – 2014-015A Can-X4 -- 2014-034C Can-X5 -- 2014-034D Angels (USA 255) – 2014-043C USS Langley – 2015-025B BRICSat-P – 2015-025E Satellites Added Belintersat-1 – 2016-001A Jason-3 – 2016-002A IRNSS-1E – 2016-003A Intelsat-29E – 2016-004A Eutelsat-9B – 2016-005A Beidou 3M-3S – 2016-006A Navstar GPS IIF-12 (USA 266) – 2016-007A Glonass 751 (Cosmos 2514) – 2016-008A Topaz-4 (USA 267) – 2016-010A Sentinel-3A – 2016-011A ChubuSat-2 – 2016-012B ChubuSat-3 – 2016-012C Horyu-4
    [Show full text]
  • BR-260 Content 21-03-2007 15:11 Pagina 1
    BR-260_Content 21-03-2007 15:11 Pagina 1 BR-260 June 2006 THETHE EUROPEANEUROPEAN SPACESPACE SECTORSECTOR ININ AA GLOBALGLOBAL CONTEXTCONTEXT –– ESA’sESA’s AnnualAnnual AnalysisAnalysis 20052005 1 BR-260_Content 21-03-2007 15:11 Pagina 2 THE EUROPEAN This report provides an overview of the European space sector SPACE SECTOR IN A in a global context. It takes into account the geopolitical and economic changes that occurred in the World during 2005 and are of importance to current and future development of the GLOBAL CONTEXT European space sector. It therefore provides facts and figures with regard to the latest state of European space policies and industry, while putting recent developments into perspective with ESA’s Annual Analysis 2005 the situation of other space powers. 2 BR-260_Content 21-03-2007 15:11 Pagina 3 1. Introduction 5 2. Global Political and Economic Trends 7 2.1 Europe 7 2.2 International Partners 13 3. The Global Space Sector – Size and developments 19 4. The Space Sector in Europe 25 4.1 Public policies and strategies 25 4.2 Assessing the institutional market 34 4.3 European space industry evolution 38 5. European Parameters in Perspective 45 5.1 Between partnership and competition – Europe’s potential in international relations 45 5.1.1 United States 46 5.1.2 Russia 51 5.1.3 Japan 53 5.1.4 China 54 5.1.5 India 55 Contents 5.2 Industry and markets – Europe’s competitiveness on a global scale 57 5.2.1 United States 59 5.2.2 Russia 60 5.2.3 Japan 62 5.2.4 China 63 5.2.5 India 64 6.
    [Show full text]
  • Appendix B Acronyms and Abbreviations
    Appendix B Acronyms and Abbreviations Units of Measure and some Physical Constants A . ampere --- unit of electric current [named after André M. Ampère (1775---1836), French physicist]. 1 A represents a flow of one coulomb of electricity per second (or: 1A = 1C/s) Ah ............ amperehour Å . angstrom --- unit of length (used in particular for the short wavelength spectrum); 1Å= 10---10 m [named after Anders Jonas Ängström (1814--- 1874), Swedish physicist and astronomer] amu. atomic mass unit (1.6605402 10---27 kg) are............) unit of area (1 are = 100 m2 arcmin......... arcminute [1’ = (1/60)º or 1 arcmin = 2.908882 x 10---4 radian] arcsec.......... arcsecond [1” = (1/60)’ or 1 arcsec = 4.848137 x 10---6 radian= 0.000278º] au . astronomical unit --- unit of length, namely the mean Earth/sun distance [=1.495978706 1013 cm, which is the semimajor axis of the Earth’s orbit around the sun (or about 150 million km)] bar............) pressure, (1 bar = 105 Nm---2 Bq . Becquerel [named after Alexandre Edmond Becquerel, a French physi- cist (1820---1891)]. The Bq is a SI unit used to measure a radioactivity. One Becquerel is that quantity of a radioactive material that will have 1 transformations in one second. c . velocity of light in vacuum (299,792,458 m/s) cd . candela (unit of luminous intensity). The candela is the luminous inten- sity, in a given direction, of a source that emits monochromatic radi- ation of frequency 540 × 1012 Hz and that has a radiant intensity in that direction of 1/683 watt per steradian. cm...........
    [Show full text]